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Introduction
We consider the balance law

ut + f (u)x = g(t, x) ∈ L∞(R2), u ∈ C (R2,R), f : R→ R. (1)

If u is smooth and g continuous, then the PDE is equivalent to

ut + λ(u)ux = g , λ :=
df

du

dγ

dt
= λ(u),

d

dt
u(t, γ(t)) = g(t, γ(t)). (2)

The converse is also true: a smooth solution u = u(t, x) of the
above ODE yields a solution to the PDE.

We are interested what of the above equivalence is valid under the
assumptions u continuous and g bounded Borel function.

Remark 1
By the finite speed of propagation, the results can be restated
locally.
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Problems we study

We will consider the relations among the following statements: for
general smooth flux f

1. u distributional solution

ut + f (u)x = g(t, x) ∈ L∞(R2),

2. u broad solution

if γ
(
γ̇ = λ(u(t, γ))

)
⇒ d

dt
u ◦ γ = g̃γ(t) ∈ L∞(R),

3. there exists a universal Borel source ĝ : R2 → R∫
R2

|g − ĝ |L2 = 0 and

∫
R
|g̃γ(t)− ĝ(t, γ(t))

∣∣dt = 0.
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The case g continuous and f convex

If γ is a characteristic, the balance of divt,x(u, f (u)) in the region

Γε :=
{

t ∈ [t1, t2], γ(t) ≤ x ≤ γ(t) + ε
}

yields∫
Γε

g(t, x)dtdx =

∫ ε

0

(
u(t2, γ(t2) + x)− u(t1, γ(t1) + x)

)
dx

+

∫ t2

t1

[
f (u(t, γ(t) + ε))− f (u(t, γ(t))

− λ(u(t, γ(t))(u(t, γ(t) + ε)− u(t, γ(t)))
]
dt

≥
∫ ε

0

(
u(t2, γ(t2) + x)− u(t1, γ(t1) + x)

)
dx ,

because f (u′) ≥ f (u) + λ(u)(u′ − u) by convexity.



The balance on the region

Γ−ε :=
{

t ∈ [t1, t2], γ(t)− ε ≤ x ≤ γ(t)
}

yields the opposite inequality∫
Γ−ε

g(t, x)dtdx ≤
∫ 0

−ε

(
u(t2, γ(t2) + x)− u(t1, γ(t1) + x)

)
dx .

Dividing by ε and letting ε→ 0 one recovers

u(t2, γ(t2))− u(t1, γ(t1)) =

∫ t2

t1

g(t, γ(t))dt,

which implies
d

dt
u ◦ γ = g(t, γ(t)).

Proposition 1 (Dafermos)

If f convex, g continuous then ĝ = g.



A counterexample

Let f be strictly increasing, and such that the set

N :=
{

u : f ′(u) = f ′′(u) = 0
}

satisfies L1(N) > 0.

Define

f̃ (u) = f
(
u + L1(N ∩ [0, u])

)
, f̃ ′(u) = f ′(f −1(f̃ (u))).

The the function u(x) := f −1(x) is a solution to ut + f (u)x = 1,
and the curve γ(t) := f̃ (t) is a characteristic:

γ̇ = f̃ ′(t) = f ′(f −1(f̃ (t))) = f ′(u(γ(t))).

However

d

dt
f −1(f̃ (t)) = L1 + f]L1xN , f]L1xN⊥ L1.



Given f , partition R into

1. a countable family of disjoint open sets {Ii = (u−i , u
+
i )}i∈N

where f xIi is either convex or concave,

2. a residual set of inflection points I.

Theorem 1
If L1(I) = 0, then u is Lipschitz along each characteristic.

Thus

u distributional solution
L1(I)=0

=⇒ u broad solution

otherwise counterexamples.
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Proof.
Proposition 1 implies that

u ◦ γ(t1), u ◦ γ(t2) ∈ Īi

(∣∣u ◦ γ(t2)− u ◦ γ(t1)
∣∣ ≤ |t2 − t1|

)
.

Since L1(I) = 0, for v t := u ◦ γ(t), t1 < t2, Ii2 3 v t2 ≥ v t1 ∈ Ii1

v t2 − v t1 = L1
([

v t1 , v t2
])

=
⋃
i

L1
([

v t1 , v t2
]
∩ Ii
)

= v t2 − u−i2 +
∑

Ii⊂[v t1 ,v t2 ]

(
u+
i − u−i

)
+ u+

i1
− v t1

= v t2 − v
t−i2 +

∑
Ii⊂[v t1 ,v t2 ]

(
v t+

i − v t−i
)

+ v
t+
i1 − v t1

≤ t2 − t−i2 +
∑

Ii⊂[v t1 ,v t2 ]

(t+
i − t−i ) + t+

i1
− t1 ≤ t2 − t1.
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Monotone flow

Consider the continuous ODE in R

ẋ = λ(t, x). (3)

Proposition 2

There exists a continuous flow χ(t, y) such that

1. t 7→ χ(t, y) is a solution to (3),

2. y 7→ χ(t, y) is increasing.

Proof.
For every point point (t̄, x̄) consider the curve

γt̄,x̄(t) :=

{
max{γ(t) : γ(t̄) = x̄} t ≤ t̄,

min{γ(t) : γ(t̄) = x̄} t ≥ t̄,

and choose suitable parameterization.



Monotone approximations

Fix now two characteristics χ(t, y1) ≤ χ(t, y2), solutions to
ẋ = λ(u(t, x)), and define for u(t, χ(t, y1)) ≤ u(t, χ(t, y2))

u′(t, x) = u(t, χ(t, y1)) ∨
(
u(t, x) ∧ u(t, χ(t, y2))

)
where χ(t, y1) ≤ x ≤ χ(t, ȳ2). Let now χ′ be the monotone flow
for u′ in this interval.

Fixing a characteristic curve χ′(t, y ′) in between, define

u′′(t, x) =

{
u′(t, x) ∧ u′(t, χ′(t, y ′)) χ(t, y1) ≤ x ≤ χ′(t, y ′),

u′(t, x) ∨ u′(t, χ′(t, y ′)) χ′(t, y ′) < x ≤ χ(t, y2),

and let χ′′ be the new monotone flow with χ′′(t, y ′) = χ′(t, y ′).
By repeating countably many times, we obtain a function umon

such that x 7→ umon(t, x) increasing, and

u ◦ γ 1-Lipschitz ⇒ umon ◦ χmon 1-Lipschitz.
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where χ(t, y1) ≤ x ≤ χ(t, ȳ2). Let now χ′ be the monotone flow
for u′ in this interval.
Fixing a characteristic curve χ′(t, y ′) in between, define

u′′(t, x) =

{
u′(t, x) ∧ u′(t, χ′(t, y ′)) χ(t, y1) ≤ x ≤ χ′(t, y ′),

u′(t, x) ∨ u′(t, χ′(t, y ′)) χ′(t, y ′) < x ≤ χ(t, y2),

and let χ′′ be the new monotone flow with χ′′(t, y ′) = χ′(t, y ′).
By repeating countably many times, we obtain a function umon

such that x 7→ umon(t, x) increasing, and

u ◦ γ 1-Lipschitz ⇒ umon ◦ χmon 1-Lipschitz.



If χmon, umon are monotone, with χ̇mon = λ(umon), then by writing∫
dyumon(t)dt =

∫
υy (dt)m(dy),

one obtains dyχ
mon
t = λ′(umon)dyumon(t) ∈M(R) and∫

dyχ
mon(t)dt =

∫ (∫ t

0
λ′(umon(s))dyumon(s)ds

)
dt

=

∫ (∫ t

0
λ′(umon(s))υy (ds)

)
m(dy)dt.

Thus the disintegration of
∫

dyχ
mon(t)dt along characteristics is

a.c. w.r.t. time.
Being the parameterization y arbitrary, we can take m ≤ L1, and

χmon,a(t, y) = χmon(t, y) + ay
(
i.e. enlarging [χ(t, y1), χ(t, y2)]

)
we have a ≤ χmon,a

y ≤ (1 + a).



The balance for φ(t, χ−1(t, x)) is estimated by∫ (
(φt − λφx)umon + φx f (umon)

)
dxdt

=

∫
φtu

monχydydt +

∫
φy
(
f (umon)− λ(umon)umon

)
dydt

= −
∫
φ

d

dt
(umon ◦ χmon)χydydt

because if uy ∈M(R) then

dy (f (u)− λ(u)u) = −uλ′(u)dyu = −udyχt .

Proposition 3

If u is a 1-Lipschitz broad solution such that x 7→ u(t, x) is
monotone, then is it also a distributional solution with source term
g ∈ [−1, 1].



By repeating this procedure on locally finitely many sheets

R2 = ∪j∈N
[
χ(t, yj), χ(t, yj+1)

]
we obtain a family of continuous locally BV solutions u{yj}

converging to u in C 0. Hence

Theorem 2
The function u is a distributional solution with source term g
bounded by 1 in L∞.

Thus

u distributional solution ⇐= u broad solution.

Remark 2
Since u{yj} ∈ BV ∩ C 0, then in the sense of measures

u
{yj}
t + λ(u{yj})u

{yj}
x = g{yj}L2.
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Entropy equation

For continuous BV solution we have for q′ = η′λ

η(u)t + q(u)x = η′(u)
(
ut + λ(u)ux

)
= η′(u)g(t, x), (4)

and since entropy solutions are stable w.r.t. strong convergence,
we conclude that

Corollary 1

The solution u is entropic if L1(I) = 0.

In the general case, the entropy equation (4) holds if η is linear in
a neighborhood of I. Since int I = ∅, we can approximate every η
with a family ηn linear in a neighborhood of I, and thus

Proposition 4

If u is a continuous solution to a balance laws with L∞ source
term, then it is entropic.
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Continuity estimate in the strictly convex case

Let u be a broad solution and f strictly convex, and consider

u(t, x1) = ū + v , u(t, x2) = ū − v , x1 < x2, v > 0.

To avoid the shock formation, the best situation is

u ◦ γ1(t + s) = ū + v − ‖g‖∞s, u ◦ γ2(t + s) = ū − v + ‖g‖∞s

γ1 = x1+f (ū+v)−f (u◦γ1(t+s)), γ2 = x2+f (u◦γ2(t+s))−f (ū−v)

At the meeting point u ◦ γi = ū, i.e.

x2 − x1 ≥ f (u1) + f (u2)− 2f
(u1 + u2

2

)
. (5)

Lemma 1
If f is strictly convex, then u satisfies (5). In particular, if
f = u2/2, then u is 1/2-Hölder continuous.
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Uniqueness of {g̃γ(t) : γ(t) = x}

The source term g̃ is a priori a function of the characteristic,

G̃ (t, x) :=
{

g̃γ(t) : γ(t) = x
}

is a multifunction.

Theorem 3
Up to a residual set N negligible along each characteristic, it holds

]{g̃(t) : γ(t) = x} ≤ 1.

For the proof, we subdivide the each interval Ii of
convexity/concavity into

I closed intervals with non empty interior where f is linear,

I open intervals where f is strictly convex.



Proof.
We have to consider 3 cases.

Inflection points. Since L1(I) = 0, for all u ◦ γ Lipschitz

d

dt
u ◦ γxu◦γ∈I= 0 L1 − a.e..

Linear intervals. Begin λ constant, the characteristic curves do not
overlaps so that g̃ is uniquely defined.
Strictly convex intervals. If g̃ is a Borel selection of G̃ , since f is
strictly convex, it is enough to prove that for fixed ε, δ > 0, γ̄ the
following set is negligible:{

t :
d

dt
λ
(
u ◦ γ̄(t + s)

)
≤ λ(u ◦ γ(t) + (g̃ ◦ γ(t)− ε)s), |s| < δ︸ ︷︷ ︸

the derivative of u ◦ γ is ≤ g̃ − ε in a neighborhood of size δ

}
.

The points in this set must have a distance of at least 2δ,
otherwise at the crossing the curves γ̃ are transversal.
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Broad solution not differentiable L2-a.e. (t, x)

Since g ∈ L∞, then g(t, γ(t)) is meaningless, so that one cannot
compute directy g̃ from g .

On the other hand, it is possible to construct a solution u of the
balance law with strictly convex flux f and source g ∈ L∞ such
that

L2
({

(t, x) : @γ
(
γ̇ = λ(u), γ(t) = x ,∃du ◦ γ

dt
(t)
)})

> 0.

Hence in general we cannot compute g directly from g̃ , and the
function g , g̃ live on different sets.
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Existence of a universal source ĝ

However the two functions are compatible: define in fact

ĝ(t, x) :=

{
g̃(t, x) ∃g̃(t, x),

g(t, x) otherwise.

Theorem 4
It holds ‖ĝ − g‖∞ = 0.

Hence
there exists a universal source ĝ .
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Proof.
Since y is an arbitrary parameterization, we can assume that

(t, χ−1(t, y))]L2 =

∫
ξy (t)m(dy), m(dy) ≤ L1.

Thus the sets, where we need to compare g and g̃ are the sets
which are not negligible for both, which means

dyχ(t, χ−1(t, x)) ∼ a ∈ (0,∞),
(t, x), (t, y = χ−1(t, x)) density point of g , g̃ , respectively.

For ε� 1, in the set (t, x) + [−ε, ε]2 one thus has

lim
h→0

1

ah

∫ ε

−ε
χ(t + s, y ± h)− χ(t + s, y)ds = ±2ε(1 +O(

√
δ)),

lim
h→0

1

ah

∣∣∣∣ ∫ ε

−ε

∫ χ(t,y±h)

χ(t,y)

∣∣g(t + s, z)− g(t, x)
∣∣dzds

∣∣∣∣ = O(
√
δ),

up to a set of y of measure ≤ O(
√
δ), hence g̃ is close to g .
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The uniformly convex case

In the case f is uniformly convex outside a L1-negligible set, then
g̃ determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where g̃ is defined is of full
Lebesgue measure in (t, x).

The above theorem can be extended to the following situation:
there exists p ≥ 1 such that for ε� 1

1

ε2p

(
f (u + εv)− f (u)− εf ′(u)v

)
∼C2 v 2p

Remark 3
The set where p > 1 has Lebesgue measure 0.

Hence

f uniformly convex =⇒ g̃ = ĝ L2 − a.e..
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Proof for Burgers equation.

Step 1. The covering

Qε
t,x :=

{
t ≤ s ≤ t + ε/2, χ(s, yx−ε) ≤ x ≤ χ(s, yx+ε)

}
satisfies Besicovitch covering property: in particular,

lim
ε→0

1

L2(Qε
t,x)

∫
Qεt,x

|g(s, z)− g(t, x)|dsdz = 0 L2 − a.e. (t, x).

Step 2. In the above points, being u(t, x) Lipschitz along
characteristics and 1/2-Hölder in x , the rescaling

uε(τ, z) :=
1

ε

(
u(t + εs, x + ε2z)− u(t, x)

)
converges strongly to a solution to

us +
(
u2/2

)
z

= g(t, x).

Step 3. Dafermos computation applies.
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