On continuous solutions to scalar balance laws

G. Alberti, L. Caravenna, S.B.

September 11, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

Bibliography

Table of Contents

Introduction Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

Bibliography

Introduction

We consider the balance law

$$u_t + f(u)_x = g(t,x) \in L^{\infty}(\mathbb{R}^2), \quad u \in C(\mathbb{R}^2,\mathbb{R}), \ f:\mathbb{R} \to \mathbb{R}.$$
 (1)

If u is smooth and g continuous, then the PDE is equivalent to

$$u_t + \lambda(u)u_x = g, \quad \lambda := \frac{df}{du}$$

$$\frac{d\gamma}{dt} = \lambda(u), \quad \frac{d}{dt}u(t,\gamma(t)) = g(t,\gamma(t)). \tag{2}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The converse is also true: a smooth solution u = u(t, x) of the above ODE yields a solution to the PDE.

Introduction

We consider the balance law

$$u_t + f(u)_x = g(t,x) \in L^{\infty}(\mathbb{R}^2), \quad u \in C(\mathbb{R}^2,\mathbb{R}), \ f:\mathbb{R} \to \mathbb{R}.$$
 (1)

If u is smooth and g continuous, then the PDE is equivalent to

$$u_t + \lambda(u)u_x = g, \quad \lambda := \frac{df}{du}$$

$$\frac{d\gamma}{dt} = \lambda(u), \quad \frac{d}{dt}u(t,\gamma(t)) = g(t,\gamma(t)). \tag{2}$$

The converse is also true: a smooth solution u = u(t, x) of the above ODE yields a solution to the PDE.

We are interested what of the above equivalence is valid under the assumptions u continuous and g bounded Borel function.

Remark 1

By the finite speed of propagation, the results can be restated locally.

Problems we study

We will consider the relations among the following statements: for general smooth flux f

1. u distributional solution

$$u_t+f(u)_x=g(t,x)\in L^\infty(\mathbb{R}^2),$$

2. *u* broad solution

$$\text{if } \gamma \ \left(\dot{\gamma} = \lambda(u(t,\gamma))\right) \quad \Rightarrow \quad \frac{d}{dt} u \circ \gamma = \tilde{g}_{\gamma}(t) \in L^{\infty}(\mathbb{R}),$$

3. there exists a universal Borel source $\hat{g} : \mathbb{R}^2 \to \mathbb{R}$

$$\int_{\mathbb{R}^2} |g - \hat{g}| \mathcal{L}^2 = 0 \quad ext{and} \quad \int_{\mathbb{R}} | ilde{g}_\gamma(t) - \hat{g}(t,\gamma(t))| dt = 0.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Table of Contents

ntroduction Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

Bibliography

The case g continuous and f convex

If γ is a characteristic, the balance of $\operatorname{div}_{t,x}(u, f(u))$ in the region

$${\sf \Gamma}^\epsilon := ig\{t\in [t_1,t_2], \gamma(t)\leq x\leq \gamma(t)+\epsilonig\}$$

yields

$$\begin{split} \int_{\Gamma^{\epsilon}} g(t,x) dt dx &= \int_{0}^{\epsilon} \left(u(t_{2},\gamma(t_{2})+x) - u(t_{1},\gamma(t_{1})+x) \right) dx \\ &+ \int_{t_{1}}^{t_{2}} \left[f(u(t,\gamma(t)+\epsilon)) - f(u(t,\gamma(t))) \\ &- \lambda(u(t,\gamma(t))(u(t,\gamma(t)+\epsilon) - u(t,\gamma(t)))) \right] dt \\ &\geq \int_{0}^{\epsilon} \left(u(t_{2},\gamma(t_{2})+x) - u(t_{1},\gamma(t_{1})+x) \right) dx, \end{split}$$

because $f(u') \ge f(u) + \lambda(u)(u' - u)$ by convexity.

The balance on the region

$$\Gamma^{-\epsilon} := \left\{ t \in [t_1, t_2], \gamma(t) - \epsilon \leq x \leq \gamma(t) \right\}$$

yields the opposite inequality

$$\int_{\Gamma^{-\epsilon}} g(t,x) dt dx \leq \int_{-\epsilon}^0 \big(u(t_2,\gamma(t_2)+x) - u(t_1,\gamma(t_1)+x) \big) dx.$$

Dividing by ϵ and letting $\epsilon \rightarrow 0$ one recovers

$$u(t_2,\gamma(t_2))-u(t_1,\gamma(t_1))=\int_{t_1}^{t_2}g(t,\gamma(t))dt,$$

which implies

$$\frac{d}{dt}u\circ\gamma=g(t,\gamma(t)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition 1 (Dafermos) If f convex, g continuous then $\hat{g} = g$.

A counterexample

Let f be strictly increasing, and such that the set

$$N := \left\{ u : f'(u) = f''(u) = 0
ight\}$$
 satisfies $\mathcal{L}^1(N) > 0$.

Define

$$\widetilde{f}(u) = f(u + \mathcal{L}^1(N \cap [0, u])), \quad \widetilde{f}'(u) = f'(f^{-1}(\widetilde{f}(u))).$$

The the function $u(x) := f^{-1}(x)$ is a solution to $u_t + f(u)_x = 1$, and the curve $\gamma(t) := \tilde{f}(t)$ is a characteristic:

$$\dot{\gamma} = \tilde{f}'(t) = f'(f^{-1}(\tilde{f}(t))) = f'(u(\gamma(t))).$$

However

$$\frac{d}{dt}f^{-1}(\tilde{f}(t)) = \mathcal{L}^1 + f_{\sharp}\mathcal{L}^1_{\sqcup N}, \quad f_{\sharp}\mathcal{L}^1_{\sqcup N} \perp \mathcal{L}^1.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Given f, partition \mathbb{R} into

1. a countable family of disjoint open sets $\{I_i = (u_i^-, u_i^+)\}_{i \in \mathbb{N}}$ where $f \sqcup_{I_i}$ is either convex or concave,

2. a residual set of inflection points $\boldsymbol{\mathfrak{I}}.$

Theorem 1 If $\mathcal{L}^1(\mathfrak{I}) = 0$, then u is Lipschitz along each characteristic. Given f, partition \mathbb{R} into

- 1. a countable family of disjoint open sets $\{I_i = (u_i^-, u_i^+)\}_{i \in \mathbb{N}}$ where $f \sqcup_{I_i}$ is either convex or concave,
- 2. a residual set of inflection points \mathfrak{I} .

Theorem 1 If $\mathcal{L}^1(\mathfrak{I}) = 0$, then u is Lipschitz along each characteristic.

Thus

```
u distributional solution \overset{\mathcal{L}^1(\mathfrak{I})=0}{\Longrightarrow} u broad solution
```

otherwise counterexamples.

Proof. Proposition 1 implies that

$$\begin{split} u \circ \gamma(t_{1}), u \circ \gamma(t_{2}) \in \bar{l}_{i} \left(\left| u \circ \gamma(t_{2}) - u \circ \gamma(t_{1}) \right| \leq |t_{2} - t_{1}| \right). \\ \text{Since } \mathcal{L}^{1}(\mathfrak{I}) &= 0, \text{ for } v^{t} := u \circ \gamma(t), \ t_{1} < t_{2}, \ l_{i_{2}} \ni v^{t_{2}} \geq v^{t_{1}} \in l_{i_{1}} \\ v^{t_{2}} - v^{t_{1}} &= \mathcal{L}^{1}(\left[v^{t_{1}}, v^{t_{2}}\right]) = \bigcup_{i} \mathcal{L}^{1}(\left[v^{t_{1}}, v^{t_{2}}\right] \cap l_{i}) \\ &= v^{t_{2}} - u_{i_{2}}^{-} + \sum_{l_{i} \subset [v^{t_{1}}, v^{t_{2}}]} (u^{+}_{i} - u^{-}_{i}) + u^{+}_{i_{1}} - v^{t_{1}} \\ &= v^{t_{2}} - v^{t_{i_{2}}^{-}} + \sum_{l_{i} \subset [v^{t_{1}}, v^{t_{2}}]} (v^{t_{i}^{+}} - v^{t_{i}^{-}}) + v^{t_{i_{1}}^{+}} - v^{t_{1}} \\ &\leq t_{2} - t_{i_{2}}^{-} + \sum_{l_{i} \subset [v^{t_{1}}, v^{t_{2}}]} (t^{+}_{i} - t^{-}_{i}) + t^{+}_{i_{1}} - t_{1} \leq t_{2} - t_{1}. \end{split}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Table of Contents

Introduction

Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

▲□▶ ▲圖▶ ▲理▶ ▲理▶ 三語……

Bibliography

Monotone flow

Consider the continuous ODE in $\ensuremath{\mathbb{R}}$

$$\dot{x} = \lambda(t, x). \tag{3}$$

Proposition 2

There exists a continuous flow $\chi(t, y)$ such that

1. $t \mapsto \chi(t, y)$ is a solution to (3), 2. $y \mapsto \chi(t, y)$ is increasing.

Proof.

For every point point (\bar{t}, \bar{x}) consider the curve

$$\gamma_{\overline{t},\overline{x}}(t) := \begin{cases} \max\{\gamma(t):\gamma(\overline{t})=\overline{x}\} & t \leq \overline{t}, \\ \min\{\gamma(t):\gamma(\overline{t})=\overline{x}\} & t \geq \overline{t}, \end{cases}$$

and choose suitable parameterization.

Monotone approximations

Fix now two characteristics $\chi(t, y_1) \leq \chi(t, y_2)$, solutions to $\dot{x} = \lambda(u(t, x))$, and define for $u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2))$

$$u'(t,x) = u(t,\chi(t,y_1)) \vee (u(t,x) \wedge u(t,\chi(t,y_2)))$$

where $\chi(t, y_1) \leq x \leq \chi(t, \overline{y}_2)$. Let now χ' be the monotone flow for u' in this interval.

Monotone approximations

Fix now two characteristics $\chi(t, y_1) \leq \chi(t, y_2)$, solutions to $\dot{x} = \lambda(u(t, x))$, and define for $u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2))$

$$u'(t,x) = u(t,\chi(t,y_1)) \vee (u(t,x) \wedge u(t,\chi(t,y_2)))$$

where $\chi(t, y_1) \le x \le \chi(t, \overline{y}_2)$. Let now χ' be the monotone flow for u' in this interval.

Fixing a characteristic curve $\chi'(t, y')$ in between, define

$$u''(t,x) = egin{cases} u'(t,x) \wedge u'(t,\chi'(t,y')) & \chi(t,y_1) \leq x \leq \chi'(t,y'), \ u'(t,x) ee u'(t,\chi'(t,y')) & \chi'(t,y') < x \leq \chi(t,y_2), \end{cases}$$

and let χ'' be the new monotone flow with $\chi''(t,y') = \chi'(t,y')$.

Monotone approximations

Fix now two characteristics $\chi(t, y_1) \leq \chi(t, y_2)$, solutions to $\dot{x} = \lambda(u(t, x))$, and define for $u(t, \chi(t, y_1)) \leq u(t, \chi(t, y_2))$

$$u'(t,x) = u(t,\chi(t,y_1)) \vee (u(t,x) \wedge u(t,\chi(t,y_2)))$$

where $\chi(t, y_1) \le x \le \chi(t, \bar{y}_2)$. Let now χ' be the monotone flow for u' in this interval.

Fixing a characteristic curve $\chi'(t, y')$ in between, define

$$u''(t,x) = \begin{cases} u'(t,x) \land u'(t,\chi'(t,y')) & \chi(t,y_1) \le x \le \chi'(t,y'), \\ u'(t,x) \lor u'(t,\chi'(t,y')) & \chi'(t,y') < x \le \chi(t,y_2), \end{cases}$$

and let χ'' be the new monotone flow with $\chi''(t, y') = \chi'(t, y')$. By repeating countably many times, we obtain a function u^{mon} such that $x \mapsto u^{\text{mon}}(t, x)$ increasing, and

 $u \circ \gamma$ 1-Lipschitz $\Rightarrow u^{\text{mon}} \circ \chi^{\text{mon}}$ 1-Lipschitz.

If χ^{mon} , u^{mon} are monotone, with $\dot{\chi}^{mon} = \lambda(u^{mon})$, then by writing $\int d_y u^{mon}(t) dt = \int v_y(dt) m(dy)$,

one obtains $d_y\chi_t^{\mathrm{mon}}=\lambda'(u^{\mathrm{mon}})d_yu^{\mathrm{mon}}(t)\in\mathcal{M}(\mathbb{R})$ and

$$\int d_{y}\chi^{\mathrm{mon}}(t)dt = \int \left(\int_{0}^{t} \lambda'(u^{\mathrm{mon}}(s))d_{y}u^{\mathrm{mon}}(s)ds\right)dt$$
$$= \int \left(\int_{0}^{t} \lambda'(u^{\mathrm{mon}}(s))v_{y}(ds)\right)m(dy)dt.$$

Thus the disintegration of $\int d_y \chi^{\text{mon}}(t) dt$ along characteristics is a.c. w.r.t. time.

Being the parameterization y arbitrary, we can take $m \leq \mathcal{L}^1$, and

 $\chi^{\text{mon},a}(t,y) = \chi^{\text{mon}}(t,y) + ay$ (i.e. enlarging $[\chi(t,y_1),\chi(t,y_2)]$) we have $a \leq \chi_y^{\text{mon},a} \leq (1+a)$.

The balance for $\phi(t, \chi^{-1}(t, x))$ is estimated by

$$\int \left((\phi_t - \lambda \phi_x) u^{\text{mon}} + \phi_x f(u^{\text{mon}}) \right) dx dt$$

= $\int \phi_t u^{\text{mon}} \chi_y dy dt + \int \phi_y (f(u^{\text{mon}}) - \lambda(u^{\text{mon}}) u^{\text{mon}}) dy dt$
= $-\int \phi \frac{d}{dt} (u^{\text{mon}} \circ \chi^{\text{mon}}) \chi_y dy dt$

because if $u_y \in \mathcal{M}(\mathbb{R})$ then

$$d_y(f(u) - \lambda(u)u) = -u\lambda'(u)d_yu = -ud_y\chi_t.$$

Proposition 3

If u is a 1-Lipschitz broad solution such that $x \mapsto u(t, x)$ is monotone, then is it also a distributional solution with source term $g \in [-1, 1]$. By repeating this procedure on locally finitely many sheets

$$\mathbb{R}^2 = \cup_{j \in \mathbb{N}} \big[\chi(t, y_j), \chi(t, y_{j+1}) \big]$$

we obtain a family of continuous locally BV solutions $u^{\{y_j\}}$ converging to u in C^0 . Hence

Theorem 2

The function u is a distributional solution with source term g bounded by 1 in L^{∞} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

By repeating this procedure on locally finitely many sheets

$$\mathbb{R}^2 = \cup_{j \in \mathbb{N}} \big[\chi(t, y_j), \chi(t, y_{j+1}) \big]$$

we obtain a family of continuous locally BV solutions $u^{\{y_j\}}$ converging to u in C^0 . Hence

Theorem 2

The function u is a distributional solution with source term g bounded by 1 in L^{∞} .

Thus

u distributional solution $\leftarrow u$ broad solution.

Remark 2 Since $u^{\{y_j\}} \in \mathrm{BV} \cap C^0$, then in the sense of measures

$$u_t^{\{y_j\}} + \lambda(u^{\{y_j\}})u_x^{\{y_j\}} = g^{\{y_j\}}\mathcal{L}^2.$$

Entropy equation

For continuous BV solution we have for $q' = \eta' \lambda$

$$\eta(u)_t + q(u)_x = \eta'(u)(u_t + \lambda(u)u_x) = \eta'(u)g(t,x), \quad (4)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and since entropy solutions are stable w.r.t. strong convergence, we conclude that

Corollary 1 The solution u is entropic if $\mathcal{L}^1(\mathfrak{I}) = 0$.

Entropy equation

For continuous BV solution we have for $q'=\eta'\lambda$

$$\eta(u)_t + q(u)_x = \eta'(u)(u_t + \lambda(u)u_x) = \eta'(u)g(t,x), \quad (4)$$

and since entropy solutions are stable w.r.t. strong convergence, we conclude that

Corollary 1

The solution u is entropic if $\mathcal{L}^1(\mathfrak{I}) = 0$.

In the general case, the entropy equation (4) holds if η is linear in a neighborhood of \mathfrak{I} . Since $\operatorname{int} \mathfrak{I} = \emptyset$, we can approximate every η with a family η^n linear in a neighborhood of \mathfrak{I} , and thus

Proposition 4

If u is a continuous solution to a balance laws with L^∞ source term, then it is entropic.

Continuity estimate in the strictly convex case

Let u be a broad solution and f strictly convex, and consider

$$u(t, x_1) = \overline{u} + v, \ u(t, x_2) = \overline{u} - v, \ x_1 < x_2, v > 0.$$

To avoid the shock formation, the best situation is

$$u \circ \gamma_1(t+s) = \overline{u} + v - \|g\|_{\infty}s, \ u \circ \gamma_2(t+s) = \overline{u} - v + \|g\|_{\infty}s$$
$$\gamma_1 = x_1 + f(\overline{u} + v) - f(u \circ \gamma_1(t+s)), \ \gamma_2 = x_2 + f(u \circ \gamma_2(t+s)) - f(\overline{u} - v)$$
At the meeting point $u \circ \gamma_i = \overline{u}$, i.e.

$$x_2 - x_1 \ge f(u_1) + f(u_2) - 2f\left(\frac{u_1 + u_2}{2}\right).$$
 (5)

Lemma 1 If f is strictly convex, then u satisfies (5). In particular, if $f = u^2/2$, then u is 1/2-Hölder continuous.

Table of Contents

Introduction

Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

Bibliography

Uniqueness of $\{\tilde{g}_{\gamma}(t) : \gamma(t) = x\}$

The source term \tilde{g} is a priori a function of the characteristic,

$$ilde{G}(t,x):=ig\{ ilde{g}_\gamma(t):\gamma(t)=xig\}$$
 is a multifunction.

Theorem 3

Up to a residual set N negligible along each characteristic, it holds

$$\sharp\{\tilde{g}(t):\gamma(t)=x\}\leq 1.$$

For the proof, we subdivide the each interval I_i of convexity/concavity into

- closed intervals with non empty interior where f is linear,
- open intervals where f is strictly convex.

We have to consider 3 cases.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

We have to consider 3 cases.

Inflection points. Since $\mathcal{L}^1(\mathfrak{I}) = 0$, for all $u \circ \gamma$ Lipschitz

$$\frac{d}{dt}u\circ\gamma_{{}\sqsubseteq u\circ\gamma\in\mathfrak{I}}=0\quad\mathfrak{L}^1-\mathsf{a.e.}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

We have to consider 3 cases.

Inflection points. Since $\mathcal{L}^1(\mathfrak{I}) = 0$, for all $u \circ \gamma$ Lipschitz

$$\frac{d}{dt}u\circ\gamma_{{}\sqsubseteq u\circ\gamma\in\mathfrak{I}}=0\quad\mathfrak{L}^1-\mathsf{a.e.}.$$

Linear intervals. Begin λ constant, the characteristic curves do not overlaps so that \tilde{g} is uniquely defined.

We have to consider 3 cases.

Inflection points. Since $\mathcal{L}^1(\mathfrak{I}) = 0$, for all $u \circ \gamma$ Lipschitz

$$\frac{d}{dt}u\circ\gamma_{{}\sqsubseteq u\circ\gamma\in\mathfrak{I}}=0\quad\mathfrak{L}^1-\mathsf{a.e.}.$$

Linear intervals. Begin λ constant, the characteristic curves do not overlaps so that \tilde{g} is uniquely defined.

Strictly convex intervals. If \tilde{g} is a Borel selection of \tilde{G} , since f is strictly convex, it is enough to prove that for fixed $\epsilon, \delta > 0$, $\bar{\gamma}$ the following set is negligible:

$$\Big\{t: \underbrace{d}{dt}\lambdaig(u\circar\gamma(t+s)ig)\leq\lambda(u\circ\gamma(t)+(ilde g\circ\gamma(t)-\epsilon)s), |s|<\delta\Big\}.$$

the derivative of $u \circ \gamma$ is $\leq \tilde{g} - \epsilon$ in a neighborhood of size δ

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

The points in this set must have a distance of at least 2δ , otherwise at the crossing the curves $\tilde{\gamma}$ are transversal.

Broad solution not differentiable \mathcal{L}^2 -a.e. (t, x)

Since $g \in L^{\infty}$, then $g(t, \gamma(t))$ is meaningless, so that one cannot compute directy \tilde{g} from g.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Broad solution not differentiable \mathcal{L}^2 -a.e. (t, x)

Since $g \in L^{\infty}$, then $g(t, \gamma(t))$ is meaningless, so that one cannot compute directy \tilde{g} from g.

On the other hand, it is possible to construct a solution u of the balance law with strictly convex flux f and source $g \in L^{\infty}$ such that

$$\mathcal{L}^{2}\Big(\Big\{(t,x): \nexists\gamma\Big(\dot{\gamma}=\lambda(u),\gamma(t)=x,\exists rac{du\circ\gamma}{dt}(t)\Big)\Big\}\Big)>0.$$

Hence in general we cannot compute g directly from \tilde{g} , and the function g, \tilde{g} live on different sets.

Existence of a universal source \hat{g}

However the two functions are compatible: define in fact

$$\hat{g}(t,x) := egin{cases} ilde{g}(t,x) & \exists ilde{g}(t,x), \ g(t,x) & ext{otherwise.} \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Theorem 4 It holds $\|\hat{g} - g\|_{\infty} = 0$.

Existence of a universal source \hat{g}

However the two functions are compatible: define in fact

$$\hat{g}(t,x) := egin{cases} ilde{g}(t,x) & \exists ilde{g}(t,x), \ g(t,x) & ext{otherwise.} \end{cases}$$

Theorem 4 It holds $\|\hat{g} - g\|_{\infty} = 0$.

Hence

there exists a universal source \hat{g} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Since y is an arbitrary parameterization, we can assume that

$$(t,\chi^{-1}(t,y))_{\sharp}\mathcal{L}^2 = \int \xi_y(t)m(dy), \quad m(dy) \leq \mathcal{L}^1.$$

Thus the sets, where we need to compare g and \tilde{g} are the sets which are not negligible for both, which means

$$d_y\chi(t,\chi^{-1}(t,x)) \sim a \in (0,\infty),$$

 $(t,x), (t,y=\chi^{-1}(t,x))$ density point of g, \tilde{g} , respectively.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Since y is an arbitrary parameterization, we can assume that

$$(t,\chi^{-1}(t,y))_{\sharp}\mathcal{L}^2 = \int \xi_y(t)m(dy), \quad m(dy) \leq \mathcal{L}^1.$$

Thus the sets, where we need to compare g and \tilde{g} are the sets which are not negligible for both, which means

$$d_y\chi(t,\chi^{-1}(t,x)) \sim a \in (0,\infty),$$

 $(t,x), (t,y=\chi^{-1}(t,x))$ density point of g, \tilde{g} , respectively.

For $\epsilon \ll 1$, in the set $(t,x) + [-\epsilon,\epsilon]^2$ one thus has

$$\lim_{h\to 0} \frac{1}{ah} \int_{-\epsilon}^{\epsilon} \chi(t+s, y\pm h) - \chi(t+s, y) ds = \pm 2\epsilon (1+\mathcal{O}(\sqrt{\delta})),$$

$$\lim_{h\to 0} \frac{1}{ah} \left| \int_{-\epsilon}^{\epsilon} \int_{\chi(t,y)}^{\chi(t,y\pm h)} \left| g(t+s,z) - g(t,x) \right| dz ds \right| = \mathcal{O}(\sqrt{\delta}),$$

up to a set of y of measure $\leq \mathcal{O}(\sqrt{\delta})$, hence \tilde{g} is close to g.

The uniformly convex case

In the case f is uniformly convex outside a \mathcal{L}^1 -negligible set, then \tilde{g} determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where \tilde{g} is defined is of full Lebesgue measure in (t, x).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The uniformly convex case

In the case f is uniformly convex outside a \mathcal{L}^1 -negligible set, then \tilde{g} determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where \tilde{g} is defined is of full Lebesgue measure in (t, x).

The above theorem can be extended to the following situation: there exists $p \ge 1$ such that for $\epsilon \ll 1$

$$\frac{1}{\epsilon^{2p}} \big(f(u+\epsilon v) - f(u) - \epsilon f'(u) v \big) \sim_{C^2} v^{2p}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Remark 3

The set where p > 1 has Lebesgue measure 0.

The uniformly convex case

In the case f is uniformly convex outside a \mathcal{L}^1 -negligible set, then \tilde{g} determines g completely.

Theorem 5 (Rademacher)

If f uniformly convex, then the set where \tilde{g} is defined is of full Lebesgue measure in (t, x).

The above theorem can be extended to the following situation: there exists $p \ge 1$ such that for $\epsilon \ll 1$

$$\frac{1}{\epsilon^{2p}} \big(f(u+\epsilon v) - f(u) - \epsilon f'(u) v \big) \sim_{C^2} v^{2p}$$

Remark 3

The set where p > 1 has Lebesgue measure 0.

Hence

$$f$$
 uniformly convex $\implies \tilde{g} = \hat{g} \mathcal{L}^2 - a.e.$

▲ロト ▲圖 ▶ ▲ 国 ト ▲ 国 ・ の Q () ・

Step 1. The covering

$$Q_{t,x}^{\epsilon} := \Big\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \Big\}$$

satisfies Besicovitch covering property: in particular,

$$\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q_{t,x}^\epsilon)} \int_{Q_{t,x}^\epsilon} |g(s,z) - g(t,x)| ds dz = 0 \quad \mathcal{L}^2 - \text{a.e.} \ (t,x).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Step 1. The covering

$$Q_{t,x}^{\epsilon} := \Big\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \Big\}$$

satisfies Besicovitch covering property: in particular,

$$\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q_{t,x}^\epsilon)} \int_{Q_{t,x}^\epsilon} |g(s,z) - g(t,x)| ds dz = 0 \quad \mathcal{L}^2 - \text{a.e.} \ (t,x).$$

Step 2. In the above points, being u(t,x) Lipschitz along characteristics and 1/2-Hölder in x, the rescaling

$$u^{\epsilon}(\tau,z) := rac{1}{\epsilon} (u(t+\epsilon s, x+\epsilon^2 z) - u(t,x))$$

converges strongly to a solution to

$$u_s + \left(u^2/2\right)_z = g(t, x).$$

Step 1. The covering

$$Q_{t,x}^{\epsilon} := \Big\{ t \leq s \leq t + \epsilon/2, \chi(s, y_{x-\epsilon}) \leq x \leq \chi(s, y_{x+\epsilon}) \Big\}$$

satisfies Besicovitch covering property: in particular,

$$\lim_{\epsilon \to 0} \frac{1}{\mathcal{L}^2(Q_{t,x}^\epsilon)} \int_{Q_{t,x}^\epsilon} |g(s,z) - g(t,x)| ds dz = 0 \quad \mathcal{L}^2 - \text{a.e.} \ (t,x).$$

Step 2. In the above points, being u(t,x) Lipschitz along characteristics and 1/2-Hölder in x, the rescaling

$$u^{\epsilon}(\tau,z) := rac{1}{\epsilon} (u(t+\epsilon s, x+\epsilon^2 z) - u(t,x))$$

converges strongly to a solution to

$$u_s + \left(u^2/2\right)_z = g(t, x).$$

・ロト 4 課 ト 4 課 ト 4 課 ト 単 の Q (や)

Step 3. Dafermos computation applies.

Table of Contents

Introduction

Statement of the problem

Distributional to broad

Dafermos computation in the convex case The non convex case

Broad to distributional

Monotone flow Entropy solution Continuity estimate of broad solutions

Identification of the source terms

Uniqueness of the derivative along characteristics Existence of a universal source The uniformly convex case

Bibliography

L. Ambrosio, F. Serra Cassano, and D. Vittone. Intrinsic Regular Hypersurfaces in Heisenberg Groups.

- F. Bigolin, L. Caravenna, and F. Serra Cassano. Intrinsic Lipschitz graphs in Heisenberg groups and continuous solutions of a balance equation.
- F. Bigolin, and F. Serra Cassano.

Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non linear first-order PDEs.

F. Bigolin, and F. Serra Cassano.

Distributional solutions of Burgers equation and Intrinsic regular graphs in Heisenberg groups.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

C. Dafermos.

Continuous solutions for balance laws.

B. Franchi, R. Serapioni, and F. Serra Cassano. Differentiability of intrinsic Lipschitz Functions within Heisenberg groups.