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Currents are functionals on differential forms

Fix integers m ≥ n ≥ 0. A classical n-current in Rm is a
continuous linear functional

T : C∞cpt(R
m,ΛnRm)→ R

on compactly supported smooth differential forms of degree n.

Furthermore:

its mass is M(T ) := sup{|T (ω)| : ‖ω‖L∞ ≤ 1},

its boundary is the (n−1)-current ∂T with ∂T (ψ) := T (dψ).
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Interpretation and motivation

0-currents with finite mass =̂ finite signed measures.

Moreover, for all n ≥ 1:

Example (currents generalize surfaces, mass generalizes area)
Integration over an n-dimensional submanifold (or a rectifiable
set) Σ in Rm with orientation ~Σ,

q
Σ

y
(ω) :=

∫
Σ

〈
ω(x), ~Σ(x)

〉
dHn(x) ,

defines an n-current
q

Σ
y

with M
(q

Σ
y)

= Hn(Σ), ∂
q

Σ
y

=
q
∂Σ

y
.
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Metric functionals

On a complete metric space E imitate classical currents with
(1+n)-linear functionals

T : Lipb(E)︸ ︷︷ ︸
bounded Lipschitz

function ϕ

× Lip(E)n︸ ︷︷ ︸
Rn-valued Lipschitz

function π=(π1,π2,...,πn)︸ ︷︷ ︸
shortcut notation ϕ dπ≡ϕ dπ1∧dπ2∧...∧dπn

→ R ,

and write ‖T‖ for the least (tight) Borel measure on E with

|T (ϕ dπ)| ≤
∫

E
|ϕ| d‖T‖

n∏
i=1

Lip(πi)︸ ︷︷ ︸
Lipschitz
constant

∀ϕ, π .
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The axioms of metric currents

Definition (Ambrosio & Kirchheim ‘00)

The space Mn(E) of metric n-currents in E with finite mass
consists of all functionals T as before with

finite mass: M(T ) := ‖T‖(E) <∞,

continuity axiom: πl → π pointwise with Lip(πl) bounded
=⇒ T (ϕ dπl)→ T (ϕ dπ),

locality axiom: πi0 constant on {ϕ 6= 0} =⇒ T (ϕ dπ) = 0.

Remark: automatically alternating!

Boundary operator: ∂T (ϕ dπ) := T (1 d(ϕ, π)) .
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Normal and integral currents

Normal currents:

Nn(E) := {T ∈ Mn(E) : ∂T ∈ Mn−1(E)} .

Integral currents:

In(E) :=

{
θJΣK ∈ Nn(E) :

Σ oriented Hn-rectifiable set
θ : Σ→ Z measurable

}
.
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General existence results

Classical and generalized Plateau problem

Classical Plateau problem: Given a closed curve S in R3 look
among surfaces T with boundary S for one of minimal area.

Generalized Plateau problem: For a given (n−1)-current
S ∈ In−1(E) in a complete metric space E study optimal
n-currents T in

FillvolE (S) := inf{M(T ) : T ∈ In(E), ∂T = S} .
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Metric formulation
General existence results

Existence for compact spaces and boundaries

Basic result: E (locally) compact
=⇒ If FillvolE (S) is finite, then it is attained.

From now on focus on infinite-dimensional Banach spaces
(linear, but never locally compact):

Theorem 1 (Ambrosio & Kirchheim ‘00)
Consider a separable normed space X such that Y := X ∗ has
isoperimetric inequalities and S ∈ In−1(Y ) with ∂S ≡ 0 such
that spt ‖S‖ is compact. Then FillvolY (S) is finite and is attained.

applies for reflexive Y , in particular in all Hilbert spaces.

proved via Gromov’s isometric embedding of an
equi-compact sequence in a compact metric space,
projection back to Y , and w∗-compactness.
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Existence for general boundaries

Now consider also

FillmassE (S) := inf{M(T ) : T ∈ Nn(E), ∂T = S} .

Theorem 2 (Ambrosio & S. ‘12)

Consider a separable dual Y and S ∈ Mn−1(Y ). Whenever
FillmassY (S) or FillvolY (S) is finite, then it is also attained.

proved via w∗-compactness, but intrinsically in Y .

criteria for finiteness:

∂S ≡ 0, spt ‖S‖ bounded =⇒ FillmassY (S) <∞,

S ∈ In−1(Y ), ∂S ≡ 0 ⇐⇒ FillvolY (S) <∞.
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Metric formulation
General existence results

Existence with a free boundary

Theorem 3 (Ambrosio & S. ‘12)

Consider a separable dual Y and S ∈ Mn−1(Y ). Then the
infima

F N
Y (S) := inf{M(T ) + M(S−∂T ) : T ∈ Nn(Y )} ,

F I
Y (S) := inf{M(T ) + M(S−∂T ) : T ∈ In(Y )}

are attained.
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Metric formulation
General existence results

Existence in non-separable duals

Theorem 4 (Wenger ‘05/‘11/‘12)
The isoperimetric inequality for currents holds in every Banach
space. Moreover, Theorem 1 and the In-parts of Theorems 2, 3
remain valid in every dual Y .

existence results proved via ultralimit completion and
projection arguments plus refined isometric embeddings.
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Currents and w∗-topology
The intrinsic strategy of proof

w∗-convergence

Definition (Ambrosio & Kirchheim ‘00)

For currents T ,T1,T2, . . . ∈ Mn(Y ) in a dual space Y one says
that Tk w∗-converges to T if Tk (ϕ dπ) converges to T (ϕ dπ) for
all w∗-continuous (ϕ, π) ∈ Lipb(Y )× Lip(Y )n.

in fact a “weak-weak∗-convergence”: distributional and with
w∗-topology on Y .

example: δyk

w∗→ δy in M0(Y ) ⇐⇒ yk
w∗→ y in Y .

necessarily requires ϕ and π with unbounded support.
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w∗-compactness

The main ingredient in our existence proof is . . .

Theorem 5 (Ambrosio & S. ‘12)

Consider T1,T2, . . . ∈ Nn(Y ) in a separable dual Y = X ∗ with

sup
k∈N

[
M(Tk ) + M(∂Tk )

]
<∞ and

∞⋃
k=1

spt ‖Tk‖ bounded .

Then Tk w∗-converges to some T ∈ Nn(Y ).

equi-bound for spt ‖Tk‖ can be weakened to w∗-tightness.

Tk ∈ In(Y ) =⇒ T ∈ In(Y ) (by closure theorem of AK ‘00).

still true in In(Y ) if merely X is separable (Wenger ‘12).

both separability assumptions are sharp!
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Construction of a limit object

The intrinsic proof of Theorem 5:

For R � 1 consider the compact metric space K := (BY
R , dw∗).
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Construction of a limit object

The intrinsic proof of Theorem 5:

For R � 1 consider the compact metric space K := (BY
R , dw∗).

We can assume‡

‖Tk‖
w∗→ µ

‖∂Tk‖
w∗→ ν

Tk (· dπ)
w∗→ Fπ

 in C0(K )∗

for all π in a countable set An.
‡ µ, ν are Borel measures, as Bw∗(Y ) = B(Y ) holds by separability.
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w∗-separability

A is chosen according to the following . . .

Lemma

There exists a countable subset A of Lip(BY
R), dense with

respect to pointwise convergence, such that A contains only
w∗-continuous functions.

We can now define the seed of the limit current T by

T (ϕ dπ) :=
〈
Fπ, ϕ

〉
for (ϕ, π) ∈ A× An .
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The intrinsic strategy of proof

Equi-continuity and conclusions

By equi-continuity ∀(ϕ, π), (ϕ̃, π̃) ∈ A× An:

|Tk (ϕ̃ dπ̃)− Tk (ϕ dπ)|

≤ C
[ ∫

Y
|ϕ̃−ϕ| d ‖Tk‖︸ ︷︷ ︸

w∗→µ

+

∫
Y
|π̃−π| d (‖Tk‖+‖∂Tk‖)︸ ︷︷ ︸

w∗→µ+ν

]
.

 T is suitably uniformly continuous on A× An,
 T extends to arbitrary ϕ dπ,
 T satisfies the axioms of a current

(locality axiom requires additional w∗-separation lemma),

 conclusion: Tk
w∗→ T with ‖T‖ ≤ µ, ‖∂T‖ ≤ ν.
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The intrinsic strategy of proof

The existence proof

Recall:

Theorem 2

In a separable dual Y : If FillmassY (S)
FillvolY (S)

is finite, it is attained.

Sketch of proof:
Fix a minimizing sequence Tk for M with ∂Tk = S,

 for good radii Rk compare Tk with T1 + (Tk−T1) BY
Rk
−Ck ,

where a cone Ck of small mass adjusts the boundary,

 infer w∗-tightness: limR→∞ supk ‖Tk‖(Y \ BY
R) = 0,

 by Theorem 5*: Tk w∗-converges to some T ,

 by w∗-semicontinuity: M(T ) ≤ limk M(Tk ) = FillvolY (S).
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