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In this section, we introduce mathematical tools used in the course. They are a collection of elementary
probability theory and linear algebra, and somewhat advanced materials on stochastic processes. Some of
these topics will covered during the first lesson. Some computational problems are proposed.

I. MATHEMATICAL TOOLBOX

In this section, we introduce mathematical tools used
in the subsequent chapters. They are a collection of ele-
mentary probability theory and linear algebra, and some-
what advanced materials on stochastic processes.

A. Probability

1. Discrete variables

A random variable is a variable that takes its value
stochastically. A discrete random variable X is defined
on a set S of possible values x such that p(x) ≥ 0 for any
x ∈ S and

∑
x∈S p(x) = 1, where p(x) is the probability

that X takes value x; we use p to denote the probability
throughout these notes. A common example is a fair dice
for which S = {1, 2, 3, 4, 5, 6} and p(x) = 1/6 for each
x ∈ S. If one throws the dice many times, the fraction
of times with which one observes 1 tends to 1/6.

A probabilistic event is specified by a certain subset of
possible values in X. In the previous example, the event
that a dice produces an odd number is represented as
the event X ∈ {1, 3, 5}. When two events X1 and X2 are
mutually exclusive, i.e., no value x belongs to both sets,
we obtain

p(X1 or X2) = p(X1) + p(X2). (1)

Information about one event may inform the proba-
bility of another event. For instance, knowing that the
dice produces an odd number increases the probability
of X = 1 and decreases the probability of X = 2 to
zero. Such information is quantified by the conditional
probability. The conditional probability of X given Y is

p(X|Y ) =
p(X and Y )

p(Y )
. (2)

By swapping X and Y in Eq. (2), we obtain p(Y |X) =
p(X and Y )/p(X). By combining this equation with
Eq. (2), we obtain the Bayes rule for conditional proba-
bilities:

p(X|Y ) =
p(Y |X)p(X)

p(Y )
. (3)

Two events X and Y are said to be independent if the
probability that X occurs is not affected by whether Y
has occurred and vice versa. In other words,

p(X|Y ) = p(X|not Y ) = p(X). (4)

When two events are independent, the probability that
both events occur is the product of the probabilities that
each event occurs, i.e.,

p(X and Y ) = p(X)p(Y ). (5)

In terms of the values of X and Y , we obtain

p(x, y) = p(x)p(y), (6)

where p(x, y) is the joint probability that X = x and
Y = y. The marginal distribution, i.e., the probability
that X = x regardless of the value of Y , is obtained by

p(x) =
∑
y

p(x, y). (7)

In principle, the random variable X can be either nu-
merical (e.g., 1, 2, 3) or non-numerical (e.g., white, red,
black). In the former case, mostly relevant in these notes,
there exist different types of tools to characterise its prop-
erties. For instance, the expected value, or average, is
defined as

〈x〉 =
∑
x

xp(x). (8)

We use 〈·〉 to denote the mean throughout these notes.
The nth moment of X is defined by

〈xn〉 =
∑
x

xnp(x), (9)

where n is typically a positive integer, generalising
Eq. (8). The second moment 〈x2〉 is related to the vari-
ance as follows:

σ2 = 〈(x− 〈x〉)2〉 = 〈x2〉 − 〈x〉2, (10)

where σ is the standard deviation. Moments can be gen-
eralised to the case of multiple random variables, often
to evaluate correlations between them. A familiar mea-
sure of linear dependence between two variables is the
Pearson correlation coefficient defined by

ρX,Y =
〈(x− 〈x〉)(y − 〈y〉)〉

σXσY
, (11)

where σX and σY are the standard deviations of X and
Y , respectively.

Here is a short list of frequently used discrete distribu-
tions:
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1. The Bernoulli distribution takes only two possible
values, 0 or 1, i.e., failure or success, with proba-
bilities 1− p and p respectively. The mean 〈x〉 = p
and the variance σ2 = p(1− p).

2. The binomial distribution describes the outcome of
n independent and identically distributed random
variables generated by the Bernoulli distribution
with parameter p. The probability that exactly m
successes are observed is given by

p(m) =

(
n

m

)
pm(1− p)n−m, (12)

where 0 ≤ m ≤ n. Note that pm(1 − p)n−m is the
probability that a particular sequence containing
exactly m successes is realised, and(

n

m

)
=

n!

m!(n−m)!
(13)

is the number of sequences of length n that possess
exactly m successes. We obtain 〈m〉 = np and σ2 =
np(1− p).

3. The geometric distribution is defined via the wait-
ing time before a success is observed, in a sequence
of independent and identically distributed random
variables obeying the Bernoulli distribution. The
geometric distribution is defined as

p(m) = (1− p)mp, (14)

where m = 0, 1, . . .. The factor (1 − p)m corre-
sponds to m consecutive failures, and p to the suc-
cess on the (m + 1)th trial. We obtain 〈m〉 =
(1− p)/p and σ2 = (1− p)/p2.

4. The Poisson distribution is given as the limit of the
binomial distribution as n → ∞ while the mean
np tends to a constant λ (therefore p → 0). The
Poisson distribution is given by

p(m) =
mλe−λ

m!
, (15)

where m = 0, 1, . . .. We obtain 〈m〉 = σ2 = λ.

Ex.III.1 : Using the computer language of your choice,
calculate the mean and variance of a Bernouilli process,
as a function of p.

2. Continuous variables

Continuous random variables describe variables that
take any value in a continuum of values, typically any real
values or non-negative real values. Continuous random
variables are set by their probability density function,

f(x)(≥ 0), defined such that the probability of observing
any value between a and b is equal to

p(a ≤ X ≤ b) =

∫ b

a

f(x)dx, (16)

where
∫∞
−∞ f(x)dx = 1.

Most operations for discrete random variables are eas-
ily transferred to continuous random variables via re-
placement of sums by integrals. For instance, the joint
probability density function f(x, y) for continuous ran-
dom variables satisfies

p(a ≤ X ≤ b, c ≤ Y ≤ d) =

∫ b

a

∫ d

c

f(x, y)dxdy. (17)

The moments of the distribution are given by

〈xn〉 =

∫ ∞
−∞

xnf(x)dx. (18)

If two random variables are independent, their joint dis-
tribution factorises into the product of their marginals:

f(x, y) = f(x)f(y). (19)

Finally, it is often practical to focus on the cumulative
probability F (x), defined as the probability that the vari-
able takes a value smaller than x:

F (x) =

∫ x

−∞
f(x′)dx′. (20)

By definition, F (−∞) = 0 and F (∞) = 1. We also
often use the complementary cumulative probability, also
called the survival probability or survival function, given
by

F̃ (x) =

∫ ∞
x

f(x′)dx′ = 1− F (x). (21)

Classical distributions for continuous random variables
include the following ones:

1. The uniform distribution takes a constant proba-
bility on interval [a, b], i.e.,

f(x) =
1

b− a
(a ≤ x ≤ b). (22)

We obtain 〈x〉 = (b− a)/2 and σ2 = (b− a)2/12.

2. The exponential distribution is defined by

f(x) = λe−λx (x ≥ 0). (23)

Its cumulative distribution is given by

F (x) = 1− e−λx (x ≥ 0). (24)

We obtain 〈x〉 = 1/λ and σ2 = 1/λ2.
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3. The Gaussian or normal distribution is defined by

f(x) =
1√
2πσ

e−
(x−µ)2

2σ2 (−∞ < x <∞), (25)

where µ is the average and σ2 is the variance. The
Gaussian distribution exhibits a bell shape. The
Gaussian distribution can been seen as a continu-
ous limit of the binomial distribution. The bino-
mial distribution with n trials, each with probabil-
ity p, converges to the Gaussian distribution with
mean np and variance np(1− p) owing to the cen-
tral limit theorem. In particular for this reason,
the Gaussian distribution is frequently observed in
empirical data.

Ex..2 : Given an arbitrary continuous distribution de-
termined by the cumulative probability F (x), design a
computational method that generates the corresponding
random variables.

B. Renewal processes

Let us consider a system where events take place in a
discrete and apparently random fashion. Those events
may be emails arriving in a mail box, or atoms collid-
ing in a gas. Such systems are often modelled, as a first
order approximation, by a Poisson process, also called
the homogeneous Poisson process. The Poisson process
assumes that the events are independent of each other,
that the rate at which the events take place is constant
over time and that time is continuous. These assump-
tions are often violated in empirical data. For instance,
in the case of emails, their reception certainly depends
on the time of the day and on the day of the week. In
addition, emails are often not independent processes; an
email may trigger a discussion thread between two users,
causing a cascade of emails. Yet, the Poisson processes
are advantageous in their simplicity, which allows us to
exactly calculate their properties and make them serve
as a baseline model.

The Poisson process is defined as follows. Consider a
time window of duration ∆t and the probability q that an
event takes place within time ∆t. By definition, the event
rate is given by λ = q/∆t. A Poisson process is specified
by the rate λ for infinitesimally small ∆t. For λ to be
well-defined, q → 0 must be satisfied as ∆t → 0. Con-
sistent with this requirement, we do not allow multiple
events to occur in a time window when ∆t is sufficiently
small. An event sequence generated by a Poisson process
is shown in Fig. 1(a).

Let us derive two key properties of Poisson processes:

(1) The distribution of inter-event times, i.e., time be-
tween consecutive events: Let p(n, t) be the probability
of observing n events in time window [0, t]. By definition,

 0  1  2  3time

(a)

(b)

(c)

FIG. 1. Homogeneous and non-homogeneous Poisson pro-
cesses. (a) An event sequence generated by the (homoge-
neous) Poisson process with λ = 5. (b) An event sequence
generated by the non-homogeneous Poisson process with the
sinusoidal rate shown in (c), i.e., λ(t) = 5(1 + sin 2πt).

we obtain

q =p(1,∆t) = λ∆t,

1− q =p(0,∆t) = 1− λ∆t, (26)

when ∆t (and hence q) is small. For any n ≥ 1, we obtain

p(n, t+ ∆t) =p(n, t)p(0,∆t) + p(n− 1, t)p(1,∆t)

=p(n, t)(1− λ∆t) + p(n− 1, t)λ∆t. (27)

Equation (27) holds true because, if there are n events in
time window [0, t+ ∆t], either there are n events in [0, t]
and no event in [t, t + ∆t], or there are n − 1 events in
[0, t] and one event in [t, t+∆t]. This equation relates the
probability of a system at a certain time to that at a pre-
vious time, and hence is an example of master equation,
which we will encounter many times in the following.

In the limit ∆t→ 0, Eq. (27) is reduced to

dp(n, t)

dt
= λp(n− 1, t)− λp(n, t). (28)

For n = 0, we obtain

dp(0, t)

dt
= −λp(0, t), (29)

which results in

p(0, t) = e−λt. (30)

To derive Eq. (30), we have used the initial condition
p(0, 0) = 1, i.e., no event has occurred at t = 0. Because
p(0, t) is equal to the probability that no event occurs in
[0, t], the probability that the first event occurs in [t, t+
∆t] is given by p(0, t)−p(0, t+∆t). Equation (30) implies



4

that the inter-event time between two consecutive events,
denoted by τ , is distributed according to

ψ(τ) = −dp(0, τ)

dτ
= λe−λτ . (31)

The inter-event time of a Poisson process is distributed
according to the exponential distribution. The mean
inter-event time is given by

〈τ〉 =

∫ ∞
0

τψ(τ)dτ =
1

λ
. (32)

In Poisson processes, different inter-event times τ are
independent of each other because event times before the
last event time t do not affect the time τ to the next event
since t. This property is called the renewal property of
a Poisson process. Poisson processes satisfy a stronger
property, i.e., having no memory in the sense that

p(τ > t1 + t2|τ > t2) = p(τ > t1). (33)

Equation (33) indicates that the length of time, t2, for
which we have waited, actually without an event, does
not affect the time of the next event. The time to the
next event starting from t = t2, i.e., t1, is independent of
t2 and obeys ψ(t1).

(2) The distribution of the number of events observed
within a given time window: Using Eq. (28) recursively,
we obtain

p(n, t) =
(λt)n

n!
e−λt (34)

for any n ≥ 0. Therefore, the probability of observing n
events in [0, t] obeys the Poisson distribution with mean
and variance equal to λt. As discussed in Section I A 1,
the Poisson distribution is a limiting case of the binomial
distribution when the number of trials is very large and
the expected number of successes remains fixed. This
interpretation is consistent with the discrete-time formu-
lation of the Poisson process because in [0, t], there are
t/∆t trials in each of which an event occurs with small
probability q. Therefore, the number of events in [0, t] is
distributed according to the binomial distribution whose
mean is equal to (t/∆t)× q = λt.

A method to generate an event sequence obeying a
Poisson process is to generate events one by one by in-
dependently drawing the inter-event time τ according to
Eq. (31). An alternative method when the final time
tmax is specified is to first draw the number of events
n in [0, tmax] according to the Poisson distribution with
parameter λtmax. Then, distribute each of the n events
independently and uniformly on [0, tmax]. The second
method exploits the memoryless property of Poisson pro-
cesses.

Let us introduce two extensions of Poisson processes.
The first is non-homogeneous (also called inhomoge-
neous) Poisson processes, in which the event rate λ(t)
is time-dependent. In other words, an event occurs in

[t, t + ∆t] with probability λ(t)∆t. This model is moti-
vated by the fact that event rates seem to vary over time
in a majority of empirical data. An event sequence gen-
erated by a non-homogeneous Poisson process is shown
in Fig. 1(b). In this example, the rate is modulated sinu-
soidally as shown in Fig. 1(c). For a non-homogeneous
Poisson process, Eq. (34) is extended as

p(n, t) =
Λ(t)n

n!
e−Λ(t), (35)

where

Λ(t) =

∫ t

0

λ(t′)dt′. (36)

The distribution of inter-event times, conditioned by the
last event at t = 0, is given by

ψ(τ) = λ(τ)e−Λ(τ), (37)

which extends Eq. (31). It should be noted that Eq. (37)
is properly normalised, i.e.,

∫∞
0
ψ(τ)dτ = 1.

The second extension of Poisson processes, called re-
newal processes, considers a general distribution of inter-
event times, ψ(τ). The renewal property dictates that
different inter-event times are independent of each other
and drawn from the same distribution ψ(τ). When
ψ(τ) = λe−λτ , we recover a Poisson process. When
ψ(τ) = δ(τ −1), events periodically happen at all integer
times. To obtain the time of the nth event or the number
of events in a given time period, we need to sum inde-
pendent random variables generated according to ψ(τ).
In that case, it is convenient to study the problem in a
frequency domain and to consider the Laplace transform,
related to the Fourier transform defined below.

Ex.III.3 : Take at random 104 numbers in the interval
]0, 1[, and plot the histogram of the 104−1 lengths of the
resulting intervals.

C. Random walks and diffusion

The Poisson processes provide a basic model for mod-
elling temporal events, i.e., when random events take
place. Random walk processes are its counterpart for
modelling trajectories in space, i.e., when and where ran-
dom events take place. Random walk processes are a
standard tool to emulate diffusion on networks and also
to extract information from the structure of networks, as
we will show later. In this section, we derive some ba-
sic properties of random walk processes in their simplest
setting, when they take place on a one-dimensional space
(i.e., line) in discrete time.

In each discrete time step, a walker performs a jump
whose length and direction are random variables. The
probability density of transition is denoted by f(r). In
other words, the probability that the walker located at
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x arrives in the interval [x + r, x + r + ∆r] in one jump
is equal to f(r)∆r. The normalisation condition is given
by
∫∞
−∞ f(r)dr = 1.

Our aim is to derive the density of the probability den-
sity that the walker is located at x after t steps, denoted
by p(x; t). Under the assumption that jumps are inde-
pendent events, we obtain the following master equation:

p(x; t) =

∫ ∞
−∞

f(x− x′)p(x′; t− 1)dx′ (38)

because the probability of visiting x at time t is the prob-
ability of having visited x′ at time t− 1 and performing
a jump of displacement x− x′.

Equation (38) for the entire range of x is more easily
solved in the Fourier domain. The Fourier transform is
defined by

p̂(k; t) ≡
∫ ∞
−∞

p(x; t)e−ikxdx, (39)

The original function is recovered through the inverse
Fourier transform given by

p(x; t) =
1

2π

∫ ∞
−∞

p̂(k; t)eikxdk. (40)

Probability p(x; t) is thus a combination of the oscillatory
functions eikx, which form a base in the space of func-
tions. The Fourier mode p̂(k; t) is the projection of p(x; t)

onto this base. The Fourier transform of f(x), f̂(k), is
called the structure function of the random walk. The
Taylor expansion around k = 0 yields

p̂(k; t) =〈e−ikx〉

=1− ik〈x〉 − 1

2
k2〈x2〉+O(k3). (41)

Equation (41) implies that the moments of p(x; t) are
obtained from the derivatives of p̂(k; t) at k = 0.

The Fourier transform transfers a convolution, such
as Eq. (38), to a product. For this reason, working in
the Fourier domain is often recommended when deal-
ing with problems involving summations of random vari-
ables. Equation (38) is equivalent to

p̂(k; t) = f̂(k)p̂(k; t− 1). (42)

If the walker is initially located at x = 0, such that
p(x; 0) = δ(x), which translates to p̂(k; 0) = 1, we ob-
tain

p̂(k; t) =
[
f̂(k)

]t
. (43)

Using the inverse Fourier transform (Eq. (40)), the formal
solution of the random walk in the time domain is given
by

p(x; t) =
1

2π

∫ ∞
−∞

[
f̂(k)

]t
eikxdk. (44)

FIG. 2. Left: histogram of the populations of all US cities
with population of 10 000 or more. Right: another histogram
of the same data, but plotted on logarithmic scales. The
approximate straight-line form of the histogram in the right
panel implies that the distribution follows a power law. Data
from the 2000 US Census.. Taken from Adamic, Lada A.
”Zipf, power-laws, and pareto-a ranking tutorial.” Xerox Palo
Alto Research Center, Palo Alto, CA, http://ginger. hpl. hp.
com/shl/papers/ranking/ranking. html (2000).

This solution generally depends on the details of the

structure function, f̂(k). However, the asymptotic be-
haviour of the random walk as t grows only depends on
some of its properties. When the first two moments of
the structure function are finite, the solution converges
to the Gaussian profile

p(x; t) =
1

(2πDt)1/2
e−

(x−vt)2
4Dt (45)

with a variance growing linearly with time.

Ex.III.4 : Take a RW on a discrete one-dimensional line.
Assuming that the walker has, at each step, a probability
1/2 to go to the left and 1/2 to go to the right. Explore by
numerical simulations how the probability distribution
evolves over time, and verify the accuracy of Eq.(45).
Provide a simple metric to test the “Gaussianity” of the
distribution.

D. Power-law distributions

We have seen the emergence of two types of distribu-
tions in stochastic processes, the exponential distribution
in the case of Poisson processes, and the Gaussian dis-
tribution in the case of random walk processes. Another
type of distribution, i.e., power-law distribution, plays
a central role in network science and in the theory of
complex systems in general. In this section we overview
properties of power-law distributions and raise some flags
in order to properly use them when modelling complex
systems.

We explain a power-law distribution for continuous
variables, keeping in mind that most of the observations
generalise to the case of discrete variables. Consider the
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Pareto distribution given by

p(x) = Cx−α (x ≥ xmin), (46)

where α is the power-law exponent of the distribution,
xmin(> 0) is the minimum value taken by the random
variable and C = (α − 1)xα−1

min is the normalisation con-
stant respecting ∫ ∞

xmin

Cx−αdx = 1. (47)

Other power-law distributions are by definition asymp-
totically (i.e., for large x) the same as Eq. (46) up to a
normalisation constant.

Power-law distributions mainly differ from the expo-
nential and Gaussian distributions by the significant
mass of probability carried by their tail, i.e., large val-
ues of x. The exponential and Gaussian distributions
have a characteristic scale such that the probability of
observing instances many times larger than this scale is
negligible. In contrast, under a power-law distribution,
a vast majority of instances exhibits small values while
few but non-negligible instances produce very large val-
ues. Power-law distributions are associated with a broad
heterogeneity in the system and are said to have a fat or
long tail, because the tail of the distribution is much more
populated than in exponential-like distributions. Power-
law distributions are typically found in the wealth of in-
dividuals, populations of cities, the frequency of words
in text, sales of books and music, citations that a scien-
tific paper receives and so forth. Since the advent of the
Pareto distribution and the associated Zipf’s law, power-
law distributions have been studied over a century. We
stress that fat tails are also present in distributions with-
out a power-law tail. Examples include stretched expo-
nential distributions and log-normal distributions.

The moments of power-law distributions are given by

〈xβ〉 =

∫ ∞
xmin

xβp(x)dx =
α− 1

α− 1− β
xβmin (β < α− 1).

(48)
The moments for β ≥ α − 1 are divergent. In partic-
ular, the mean 〈x〉 does not exist for 1 < α ≤ 2, and
the variance does not exist for 2 < α ≤ 3. These fea-
tures impact various structural and dynamical properties
of complex systems including networks, as we will see
throughout these notes. When α ≤ 1, the distribution
is ill-defined because

∫∞
xmin

p(x)dx is divergent such that

p(x) cannot be normalised. When a moment, 〈xβ〉, di-
verges, its empirical measurement diverges as the number
of samples increases and 〈xβ〉 with β only slightly smaller
than α − 1 converges very slowly. Both the divergence
and slow convergence of moments are due to the appear-
ance of extreme values. For example, the sample mean
for the power-law distribution with α = 2 diverges as we
accumulate samples.

In a majority of empirical data, the distribution can be
close to Eq. (46) only in a certain range of the variable.

However, key observations such as the divergent moments
hold true as long as a distribution behaves the same as
Eq. (46) when x → ∞ up to a normalisation constant.
For example, the Cauchy distribution given by p(x) =
1/
[
π(1 + x2)

]
is qualitatively the same as Eq. (46) with

α = 2 as x→∞. It should also be noted that the tail of
an empirical distribution ceases to be a power-law beyond
a certain scale because of the finiteness of the system.
The finite size effect typically leads to exponential cut-
offs. Therefore, the power-law regime, if present, usually
dominates for values that are neither too small nor too
large.

The heterogeneity of power-law distributions is often
associated with the presence of inequalities in the system.
What fraction w of the total wealth is held by a certain
fraction of the richest people when the wealth distribu-
tion is given by Eq. (46)? To answer this question, let us
first calculate the fraction of the people whose wealth is
at least x0:

p(x ≥ x0) =

∫ ∞
x0

Cx−αdx =

(
x0

xmin

)−α+1

. (49)

The fraction of wealth held by these richest people is
given by

w(x0) =

∫∞
x0
x · Cx−αdx∫∞

xmin
x · Cx−αdx

=

(
x0

xmin

)−α+2

= [p(x ≥ x0)]
α−2
α−1 , (50)

where we have assumed that α > 2 so that the average
wealth is finite. Equation (50) neither depends on x0

nor xmin explicitly, and it provides a direct relation be-
tween w(x0) and p(x ≥ x0). This relation is often called
the “80-20 rule”, anecdotally meaning that 80% of the
wealth is in the hands of the richest 20%. More pre-
cisely, setting p(x ≥ x0) = 0.2, w(x0) = 0.2(α−2)/(α−1)

can take any value between 0.2 and 1 depending on the
value of α. In the limit α → ∞, the system does not
exhibit a power-law tail, and we obtain w(x0) = 0.2. In
this case, the system is egalitarian. As α decreases, the
tail of the distribution becomes fat and inequality grows.
In the extreme situation with α → 2, the total wealth
belongs to an infinitesimally small fraction of the richest
people. In the econometrics literature, the measurement
of this effect in empirical data can be done with the Gini
coefficient.

Other properties of power-law distributions include the
following:

• Power-law distributions are scale-invariant because
they satisfy

p(c1x) = c2p(x) (51)

for large x, where c1 and c2 are constants. Equa-
tion (51) implies that multiplying the variable, or
equivalently, changing the unit in which it is mea-
sured, does not affect properties of the system.
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• Power-law distributions conveniently take the form
of a straight line in a log-log plot because Eq. (46)
is equivalent to

log p(x) = logC − αx. (52)

When testing if empirical data are power-law dis-
tributed, it is instructive (but not conclusive) to
plot their distribution on the log-log scale.

As a side note, tauberian and Abelian types of theo-
rems help us understand power-law tails of probability
distributions and functions in general. They are particu-
larly useful for analytically understanding the long-term
behaviour of stochastic dynamics when power-law statis-
tics come into play. In short, Tauberian and Abelian
theorems are the inverse of each other. The Tauberian
theorem for the Laplace transform, i.e. related to the
Fourier transform, is stated as follows :

Consider a function f(t) whose asymptotic behaviour
is given by f(t) ≈ tρ−1 (ρ > 0) for large t. The Laplace

transform of f(t) near s = 0 is given by f̂(s) ≈ Γ(ρ)s−ρ,
where Γ(ρ) is the gamma function.

Ex.III.4 : Take an electronic version of a large book (e.g.
the Bible), measure the number of occurrences of each
word and then plot the distribution of these numbers.
Observe the behaviour of the distribution for large val-
ues. Plot the Zipf plot of the data, that it is the relation
between the rank and the number of occurrences of the
words. Any connection between the Zipf plot and the
distribution?

E. Maximum likelihood

The previous sections provide mechanisms by which
certain families of distributions emerge. When we are
confronted with empirical data, a crucial step is to find
the parameter values that best reproduce the data, given
a model. There exist different approaches to parameter
fitting. The most popular one is probably the maximum
likelihood method.

Consider a sequence of observations {xi} (i = 1, 2, . . .).
We are trying to fit a certain model whose parameter set
is denoted by θ and is assumed to have a finite support for
simplicity. Maximum likelihood dictates that the param-
eter values are chosen to maximise the probability with
which the model generates the observed data. To this
end, we calculate p(θ|{xi}), which is related to p({xi}|θ)
by Bayes’ law

p(θ|{xi}) = p({xi}|θ)
p(θ)

p({xi})
. (53)

By definition, the probability of observing certain data,
p({xi}), is fixed, and it does affect the optimisation of θ.
Moreover, in the absence of other information, it is con-
venient to assume that any values of θ are equally likely

such that the prior distribution p(θ) is a constant. Then,
p(θ|{xi}) and p({xi}|θ) are proportional to each other,
and the locations of their maximum coincide. Therefore,
it suffices to maximise p(θ|{xi}) in terms of θ.

As an example, consider the model in which each xi
independently obeys the same exponential distribution.
The likelihood of the data is given by

L({xi}|λ) =

n∏
i=1

p(xi|λ), (54)

where p(x|λ) = λe−λx and n is the number of observa-
tions. To find the value of λ that maximises the like-
lihood, we conventionally maximise the logarithm of L.
The maximum of

logL({xi}|λ) = log

n∏
i=1

p(xi|λ) = n log λ− λ
n∑
i=1

xi (55)

is obtained via

∂

∂λ
logL({xi}|λ) = 0, (56)

which leads to

λ̂ =
1

1
n

∑n
i=1 xi

=
1

〈x〉
. (57)

The maximum likelihood estimation is easy if the log
likelihood takes an analytical form and its maximum is
explicitly computed. Otherwise, we resort to numeri-
cal methods such as the expectation-maximisation algo-
rithm.

There are also other situations in which likelihood
maximisation needs to be done carefully. For example,
suppose that we are fitting the power-law distribution,
Eq. (46), to data. Usually, a power-law distribution pro-
vides a good fit of empirical data in a regime excluding
small x values. Therefore, we regard xmin as the point
where the power-law regime starts, which we are inter-
ested in estimating in addition to the power-law exponent
α. The log likelihood of the data under the power-law
distribution is given by

logL({xi}|α, xmin) = n log

(
α− 1

xmin

)
−α

n∑
i=1

log

(
xi
xmin

)
.

(58)
Setting ∂ logL/∂α = 0 yields the maximum likelihood
estimator given by

α̂ = 1 +
n∑n

i=1 log
(

xi
xmin

) . (59)

However, finding the optimal xmin value is not a straight-
forward exercise because changing values of xmin also
changes the number of observations, n, falling within the
assumed power-law regime, i.e., x ≥ xmin. The likeli-
hood monotonically decreases with increasing n because
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the probability of observing an additional data point is
always smaller than unity. Therefore, the maximum like-
lihood in terms of xmin is obtained by a trivial solution
x̂min = maxi xi, yielding n = 0. Other techniques must
be used to estimate x̂min. The minimisation of goodness-
of-fit statistics, such as the Kolmogorov-Smirnov test,
measuring the distance between the cumulative distri-
bution of the empirical data and that of the model, is
one such possibility.

Ex.III.5 : Write a code that takes as an input a sequence
of real value numbers and returns the best exponential
distribution for the intervals. Verify the accuracy of the
prediction (including its absence of bias).

F. Entropy, information and similarity measures

The entropy of a random variable, denoted by H, is
a measure of its uncertainty and quantifies how much
we know about a variable before observing it. After the
observation, we get rid of the uncertainty and thus gain
information H about the system. For a discrete random
variable X, entropy is defined as

H(X) = −
∑
x

p(x) log p(x). (60)

If X can take one of n states, we obtain 0 ≤ H(X) ≤
log n. The maximum value H(X) = log n is realised
when p(x) is the uniform density, i.e., when p(x) = 1/n
for all x. The minimum value H(X) = 0 is realised when
X is deterministic, i.e., p(x) = δx,x0

for a specific x0,
where δ is Kronecker delta. In the latter case, we know
the value of X before observing it, hence the lack of un-
certainty.

The joint entropy H(X,Y ) of a pair of discrete random
variables with joint distribution p(x, y) is defined as

H(X,Y ) = −
∑
x

∑
y

p(x, y) log p(x, y). (61)

The conditional entropy H(Y |X) is defined as

H(Y |X) =−
∑
x

∑
y

p(x, y) log p(y|x)

=−
∑
x

p(x)H(Y |X = x), (62)

and refers to the entropy of Y conditioned on the value of
X and averaged over all possible values of X. The joint
entropy and conditional entropy are related by the chain
rule:

H(X,Y ) = H(X) +H(Y |X). (63)

Equation (63) states that the total uncertainty about X
and Y is simply the uncertainty about X, plus the aver-
age uncertainty about Y once X is known.

FIG. 3. Anscombe’s quartet: all four sets are identical when
examined using simple summary statistics, including their
Pearson coefficient, but vary considerably when graphed

What does the knowledge of one variable tell us about
another one? The conditional entropy H(Y |X) ad-
dresses this question. More precisely, mutual information
I(X,Y ) is defined as the amount of information gained
on X by knowing the value of Y as follows:

I(X,Y ) = H(X)−H(X|Y ) = H(X)+H(Y )−H(X,Y ).
(64)

If Y is perfectly informative in the sense that it tells us
everything about X, mutual information reduces to the
entropy of X because I(X,Y ) = H(X) − H(X|Y ) =
H(X). Mutual information is rewritten as

I(X,Y ) =
∑
x

∑
y

p(x, y) log
p(y, x)

p(x)p(y)
. (65)

Equations (64) and (65) show that mutual information
is symmetric, i.e., I(X,Y ) = I(Y,X). Mutual informa-
tion measures the cost of assuming that two variables
are independent when they are in fact not. Mutual in-
formation captures non-linear correlations between ran-
dom variables, in contrast to linear quantities such as the
Pearson correlation coefficient (see Figure 3).

‘
There exist many situations when we have to compare

two networks defined on the same set of nodes, for in-
stance in the case of temporal networks. Mutual infor-
mation can serve to this end by specifying a distribution
p(x) that summarises a network. Other commonly used
similarity measures include the Pearson correlation coef-
ficient and the Jaccard index. The Pearson correlation
for random variables is given by Eq. (11) and adapted
for a list of pairwise observations {(xi, yi); 1 ≤ i ≤ n} as
follows: ∑n

i=1(xi − 〈x〉)(yi − 〈y〉)√∑n
i=1(xi − 〈x〉)2

∑n
i=1(yi − 〈y〉)2

, (66)
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where 〈x〉 =
∑n
i=1 xi/n and 〈y〉 =

∑n
i=1 yi/n. The Jac-

card index for two sets S1 and S2 is defined by

|S1 ∩ S2|
|S1 ∪ S2|

, (67)

where |·| denotes the number of elements in the set. The
Jaccard index takes the largest value, 1, when S1 = S2.
It takes the smallest value, 0, when S1 and S2 do not
have any common element.

Ex.III.6 : After reading Information Theory and Statis-
tical Mechanics, by ET Jaynes, calculate the maximum-
entropy prediction of the following system:
A traditional die (with 6-faces) is biased. The average
value is 5, instead of 3, 5. Calculate the probability to
observe a value 6.

G. Matrix algebra

Matrices are a standard representation of networks.
Properties of matrices are crucial in order to describe
linear dynamical systems and at the core of several algo-
rithms to extract structural information from networks.
In this section, we provide a short, practical summary
of results from linear algebra, emphasising what will be
used in later chapters.

Consider an N × N matrix A. A vector and scalar
value λ satisfying

Au = λu (68)

are called the eigenvector and eigenvalue, respectively.
There are at most N eigenvalues and associated eigen-
vectors. If A is a symmetric matrix, i.e., Aij = Aji
(1 ≤ i, j ≤ N), all the eigenvalues λi (1 ≤ i ≤ N) are
real. In addition, the eigenvectors ui associated with dif-
ferent eigenvalues λi are orthogonal, i.e., 〈ui, uj〉 = 0 if
i 6= j, where 〈, 〉 is the inner product. Matrix A may have
duplicated eigenvalues. Even in this case, we can select
the set of N eigenvectors such that the orthogonality is
respected.

Matrix A is decomposed as

A =

N∑
`=1

λ`u`u
>
` , (69)

where > represents the transposition. The validity of
Eq. (69) is verified by multiplying an arbitrary eigenvec-
tor ui to both sides of Eq. (69). Due to the orthogonality
of the eigenvector, we obtain Aui = λiui, assuming that
the eigenvectors are properly normalised such that

〈u`, u`′〉 = δ``′ . (70)

By combining Eqs. (69) and (70), we obtain

An =

N∑
`=1

λn` u`u
>
` . (71)

We are often interested in the extremal eigenvalue such
as the largest eigenvalue of a symmetric matrix A, i.e.,
λmax. The Perron-Frobenius theorem guarantees that
when all elements of A are strictly positive, λmax is the
isolated (i.e., not duplicated) largest eigenvalue. In addi-
tion, all elements of the corresponding eigenvector umax,
called the Perron-Frobenius vector, have the same sign.
Any other eigenvector u` does not show this property be-
cause, due to the orthogonality 〈u`, umax〉 = 0, some of
the elements in u` must have the opposite signs. The
Perron-Frobenius theorem also holds true for asymmet-
ric matrices. In the asymmetric case, the statement that
the largest eigenvalue is isolated is replaced by that of the
modulus, or the absolute value of the eigenvalue. Matri-
ces appearing in network analysis are often sparse, with
a majority of elements being zero. The Perron-Frobenius
theorem is also applicable in this situation if matrix A is
primitive, i.e., if all elements of A are non-negative and
all elements of An are positive for some integer n > 0. If
an undirected network of interest is connected as a single
component, which is usually the case in theoretical stud-
ies, matrices representing the network are usually prim-
itive (with the exception of so-called bipartite graphs),
such that the Perron-Frobenius theorem can be used.

The power method is a computationally efficient
method to calculate λmax and umax of a given matrix.
To do this, we start with an (almost) arbitrary initial
vector x and repeat multiplying A. By multiplying x to
both sides of Eq. (69), we obtain

x(1) ≡ Ax =

N∑
`=1

λ`u`〈u>` , x〉 (72)

By repeating the multiplication of A on both sides of
Eq. (72), we obtain

x(n) ≡ Anx = Anx(n− 1) =

N∑
`=1

λn` u`〈u>` , x〉. (73)

If λmax is the isolated eigenvalue, as in the case of the
primitive matrix, λnmax � λn` for any other eigenvalue λ`
for large n. Then, in Eq. (73), all but the one term corre-
sponding to λmax is negligible on the right-hand side as
n→∞. After many iterations, we can obtain the largest
eigenvalue λmax by looking at how much each element of
x(n) grows by one iterate and the corresponding eigen-
vector umax from x(n). In practice, we normalise x(n)
in each iterate to avoid the elements of x(n) to become
very large or small.

Ex.III.7 : Implement the power-method and test it on
some examples.
Ex.III.8 : Calculate numerically the distribution of eigen-
values of a random symmetric matrix A of size 1000,
where each entry is an independent Bernouilli random
variable, subject to the constraint that Aij = Aji to en-
sure symmetry.
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H. Markov chains

Markov chains are stochastic dynamics on N states in
discrete time. A state may be the position in a network
having N nodes such that the process represents a ran-
dom walk on the network. Alternatively, a state may be
the number of infected people, between 0 and N − 1, in
a structureless population of N − 1 individuals. In both
cases, we number the states as 1, 2, . . ., N . The state
at time t (t = 0, 1, . . .), which is a random variable, is
denoted by Xt.

In a stochastic process on N states in general, state
Xt+1 may depend on all preceding states (i.e., full his-
tory) of the dynamics, i.e., X0, X1, . . ., Xt. Under the
Markov assumption, the conditional probability to ob-
serve a state at time t + 1 only depends on the state at
time t. In other words, a discrete-time stochastic process
verifying

p(Xt+1 = it+1|Xt = it, . . . , X1 = i1, X0 = i0)

= p(Xt+1 = it+1|Xt = it), (74)

is called the Markov chain. Among the class of Markov
chains, we are often interested in the stationary ones, in
which the conditional state-transition probability does
not depend on t:

p(Xt+1 = j|Xt = i) ≡ Tij . (75)

Processes verifying both properties, Markovianity and
stationarity, are called stationary Markov chains. Be-
cause a realisation of the process visiting state i must
go somewhere including itself in the next time step, we
obtain

N∑
j=1

Tij = 1. (76)

A stationary Markov chain is fully described by an
initial state and an N × N transition matrix T = (Tij).
The probability that state i is visited at time t, denoted
by pi(t), evolves according to

pj(t+ 1) =

N∑
i=1

pi(t)Tij (1 ≤ j ≤ N). (77)

It should be noted that
∑N
i=1 pi(t) = 1 for any t, if the

initial condition is properly normalised. Equation (77) is
compactly rewritten as

p(t+ 1) = p(t)T, (78)

where p(t) = (p1(t) · · · pN (t)). Equation (78) yields

p(t) = p(0)T t. (79)

A Markov chain is composed of different types of
states. By definition, the process does not escape from an

absorbing state once it has been reached. State i is ab-
sorbing if and only if Tii = 1, which implies that Tij = 0
for any j 6= i. A group of states forms an ergodic set
if it is possible to go from i to j for any states i and j
in the set and if the process does not leave the set once
the process has reached it. An absorbing state is thus an
ergodic set composed of a single state. Finally, a state is
called a transient state if it is not a member of an ergodic
set.

We denote the stationary density by p∗ = (p∗1, . . . , p
∗
N ),

where p∗i = limt→∞ pi(t) (1 ≤ i ≤ N) and hence∑N
i=1 p

∗
i = 1. Substitution of pi(t) = pi(t + 1) = p∗i

(1 ≤ i ≤ N), which holds true in the limit t → ∞, in
Eq. (77) yields

p∗ = p∗T. (80)

Therefore, the stationary density is the left eigenvector
of T with eigenvalue unity. Because

T

1
...
1

 =

1
...
1

 , (81)

which is a consequence of Eq. (76), T is guaranteed to
have an eigenvalue of unity. If the entire set of the N
states is ergodic, one can go from i to j for any i and j.
In this case, p∗ is unique, and iterates of Eq. (79) starting
from an almost arbitrary initial condition converge p∗

except in special cases.

Then, the eigenvalue of unity is in fact the largest
eigenvalue of T in terms of the modulus (i.e., absolute
value). Therefore, p∗ is the Perron-Frobenius vector.
This observation is consistent with the fact that all el-
ements of the Perron-Frobenius vector are positive (Sec-
tion I G). In addition, Eq. (71) adapted to the case of
asymmetric matrices dictates that the discrepancy of p(t)

from p∗ decays exponentially as ∝ |λ2nd|t, where λ2nd is
the second largest eigenvalue of T in terms of the modu-
lus. In words, the second largest eigenvalue governs the
relaxation time of the iterate. More generally, the speed
of convergence is determined by the difference or ratio be-
tween λ2nd and λmax, with the latter being equal to unity
in the current case. Therefore, we often call 1− λ2nd the
spectral gap. A Markov chain with a large spectral gap
converges rapidly.

Markov chain theory also allows us to answer other
types of questions. For example, how long on average
do the dynamics need to reach a certain state? What
is the probability of ending in a certain absorbing state,
depending on the initial condition?

Ex.III.9 : Construct the 3 × 3 transition matrix of a
Markov chain (or your choice) and describe its properties.
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for Lambiotte book

Z0 = 1 Z1 = 3 Z2 = 6 Z3 = 13

FIG. 4. Schematic of the Galton-Watson branching process.

I. Branching processes

A branching process is a Markov process in which each
individual produces some (possibly zero) individuals and
then dies, each of the new individuals undergoes repro-
duction, and so forth (Fig. 4). In network theory, branch-
ing processes are a useful tool for understanding network
generation and epidemic processes on networks. In net-
work generation, we start from a given node and explore
its neighbours, neighbours of neighbours, and so on to ex-
pand the network under investigation. In epidemic pro-
cesses, an initially infected node typically propagates in-
fection to a certain number of neighbouring nodes, each of
which then infects some others, and so on. In both cases,
the number of nodes that a node newly recruits usually
depends on the node and hence can be considered as a
random number, as assumed in branching processes.

The Galton-Watson process is a prototypical branching
process model defined as follows. Fix the distribution of
the number of offspring, {p(n)}, where p(n) is the prob-
ability that an individual reproduces n individuals. The
number of individuals in the tth generation is denoted
by Zt (Fig. 4). First, there is initially one individual,
i.e., Z0 = 1. Second, this individual generates offspring
whose number Z1 is drawn from {p(n)}. Third, each of
the Z1 individuals in the first generation produces off-
spring whose number independently obeys distribution
{p(n)}. The individuals born in this stage, which total
Z2, define the second generation. We repeat this proce-
dure to define further generations until the process gets
extinguished. The extinction may not occur, in which
case the number of individuals grows indefinitely.

The extinction requires p(0) > 0. In other words, an
individual does not produce any offspring with a positive
probability. If p(n) for large n values is large, the popu-
lation would grow rather than shrink. In fact, the mean
number of offspring, i.e., 〈n〉 ≡

∑∞
n=0 np(n) is the main

determinant of a branching process. If 〈n〉 ≤ 1, a real-
isation of the process will always die out for sufficiently
large t, except in the deterministic case n = 〈n〉 = 1 such
that each individual always yields exactly one offspring.
In particular, E[Zt] = 〈n〉t → 0 as t → ∞. If 〈n〉 > 1,
E[Zt] exponentially grows and individual realisations of

the process may exponentially grow as well.

We denote by q the probability that the process start-
ing from one individual eventually dies out and, as we
now show, q = 1 when 〈n〉 ≤ 1. If an individual produces
n individuals, then the process will die out with probabil-
ity qn because of the independence of the sub-processes
starting from n individuals. Therefore, we obtain the
recursive relationship

q =

∞∑
n=0

p(n)qn. (82)

Equation (82) always has q = 1 as a solution. It has a
solution with q < 1 if and only if 〈n〉 > 1. To show this,
we use the fact that the solution is the intersection of

y = f1(q) ≡ q

and

y = f2(q) ≡
∞∑
n=0

p(n)qn

. Because 〈n〉 > 1, it suffices to consider the case p(0) +
p(1) < 1. If p(0) = 0, q = 0 is a solution because

f2(0) = p(0) = 0 = f1(0).

If p(0) > 0, we obtain 0 < f2(0) < 1. Because f1(1) =
f2(1) = 1, and

df2(q)/dq =

∞∑
n=1

np(n)qn−1 > 0

and

d2f2(q)/dq2 =

∞∑
n=2

n(n− 1)p(n)qn−2 > 0

when 0 < q ≤ 1, y = f1(q) and y = f2(q) cross in 0 < q ≤
1 if and only if df2(q)/dq > 1 at q = 1. This condition
is equivalent to 〈n〉 > 1. In this case, the process grows
exponentially with probability 1− q.

Ex.III.10 : Consider a Galton-Watson process with
p(0) = a, p(2) = 1 − a and p(i) = 0 otherwise. Esti-
mate numerically the evolution of E[Zt] as a function of
a.
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Application : Branching processes are often used to
model cascades in social media. For instance, cascades
of retweets on Twitter can be represented by trees and
modelled by a Galton-Watson, or variations around it.
From a practical point of view, the initial structure of a
cascade can be fed into a machine learning framework to
predict their future success, or the cascade can be used to
calibrate the parameters of a branching process for such
a prediction. See for instance:
Cheng, Justin, et al. ”Can cascades be predicted?.” Pro-
ceedings of the 23rd international conference on World
wide web. ACM, 2014.
Kobayashi, Ryota, and Renaud Lambiotte. ”TiDeH:
Time-Dependent Hawkes Process for Predicting Retweet
Dynamics.” ICWSM. 2016.


