
A model for polycrystalline shape-memory alloys
derived from microscopically motivated

assumptions

Barbora Benešová
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Microscopic point of view

On the microscopic level, we have
◦ high temperature:

atomic grid with high symmetry (usually cubic):
the so-called austenite, higher heat capacity

◦ low temperature
atomic grid with lower symmetry: martensite, lower heat capacity

typically in many symmetry-related variants;



Microscopic point of view

I Microstructure particularly appears on the austenite -
martensite interface



Macroscopic point of view



Macroscopic point of view

I One could start the phenomenological modelling “just” from
the available measurement
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Macroscopic point of view

I One could start the phenomenological modelling “just” from
the available measurement
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 see Petr Sedlák’s talk for more experimental data



Macroscopic point of view

1. We need to model the hysteretic (inelastic) stress-strain
behavior

2. The designed model needs to be simple, should allow for
computations even on large specimens

3. Detailed knowledge of the processes on the microscopic level
is not necessary (but we will need to reflect the microscopic
knowledge)
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2. The designed model needs to be simple, should allow for
computations even on large specimens
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is not necessary (but we will need to reflect the microscopic
knowledge)



Aside: Modelling von-Mises plasticity

I A prototypical non-elastic behavior is plasticity
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Aside: Modelling von-Mises plasticity

I The modelling ansatz (small-strain setting) is to divide the
strain into its elastic and plastic part: ε = εel + εin

I The stress σ (given e.g. by σ = Cεel) is confined to a ball
(region of elasticity)

I Plastic strain increases only if the stresses are at the boundary
of the region of elasticity (Yield criterion)

⇓

The inelastic material properties are described by the inner variable
and the main constitutive quantity for their modelling is the
“shape” of the region of elasticity



Inspiration for shape-memory alloys
A number of models for polycrystalline shape-memory alloys have
been designed building up on a similar principle:

1. The inner variables are

εtr (transformation strain) OR

ξ (volume frac. of mart.) and εtr

2. The stress is given by σ = dϕ
dεel

with

φ =
1

2
εelC(ξ)εel︸ ︷︷ ︸
elastic part

+ ξf A(T ) + (1− ξ)f M(T )︸ ︷︷ ︸
chemical part

+ . . .︸︷︷︸
hardening,...

=
1

2
εelC(ξ)εel + ∆sAM(T − T0)ξ

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]
3. A region of elasticity or “dissipative forces” are prescribed

[Auricchio, Petrini, 2004], [Chemisky et al; 2011], [Panico, Brinson, 2007], [Sadjapour, Bhattacharya; 2007]
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Inspiration for shape-memory alloys

⇓

The region of elasticity is of a high dimension (tensor as inner
variable)

⇓

maybe a different (“scalar”) modelling approach?



Generalized standard materials (GSM)

I The constitutive properties of the material are encoded in two
scalar potentials:

φ(ε, ξ, εtr) energy

d(ε, ξ, εtr, ξ̇, ε̇tr) dissipation potential

I The generalized thermodynamic forces are given by

A ∈ ∂ξ̇,ε̇trd(ε, ξ, εtr, ξ̇, ε̇tr)

I To ensure thermodanymical consistency (second law of
thermodynamics) the dissipation potential is convex and zero
for zero rates



Plasticity in the GSM network

I For von-Mises plasticity we set

φ(ε, εpl) =
1

2
εelCεel

d(ε̇pl) = α|ε̇pl|

I The dissipation potential is homogeneous of degree 1  
corresponds to an rate-independent (activated) process
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Plasticity in the GSM network

I For von-Mises plasticity we set

φ(ε, εpl) =
1

2
εelCεel

d(ε̇pl) = α|ε̇pl|

I The dissipation potential is homogeneous of degree 1  
corresponds to an rate-independent (activated) process

⇓

We will restrict our modelling only to rate-independent processes
in shape-memory alloys



From dissipation potential to a dissipation distance

For our modelling we will use yet another approach and define

δ(αA, αB) := inf
{∫

αA→αB

d(α, α̇)dΓ; over all smooth paths from

αA to αB

}
a dissipation distance between two states αA, αB

Since the dissipation is independent of the speed, we can find a
path that leads to minimal dissipation between two states  this
defines the dissipation distance
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d(α, α̇)dΓ; over all smooth paths from

αA to αB

}
a dissipation distance between two states αA, αB

I If the dissipation distance is derived from a potential, we have
that

d(α, α̇) = lim
ε→0+

1

ε
δ(α, α + εα̇)

(but otherwise the “reverse” relation is unclear)



From dissipation potential to a dissipation distance

For our modelling we will use yet another approach and define

δ(αA, αB) := inf
{∫

αA→αB

d(α, α̇)dΓ; over all smooth paths from

αA to αB

}
a dissipation distance between two states αA, αB For
thermodynamical consistency we will need that

I δ(·, ·) ≥ 0

I δ is convex in the second variable

I it fulfills the triangle inequality

δ(αA, αB) ≤ δ(αA, αC ) + δ(αC , αB)

for all admissible states of the system αA, αB , αC .



From dissipation potential to a dissipation distance

For our modelling we will use yet another approach and define

δ(αA, αB) := inf
{∫

αA→αB

d(α, α̇)dΓ; over all smooth paths from

αA to αB

}
a dissipation distance between two states αA, αB

In our modelling, we will see the dissipation distance as the
dissipation between two states within a small time increment.



Recalling: variables, energy

I For the inner variables we will take

εin = ξεtr (inelastic strain) AND ξ (volume frac.)

with the constraints

〈εin〉 ≤ ξ AND 0 ≤ ξ ≤ 1.

 this corresponds to the fact that only some microstructures
can be reached without elasticity
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Recalling: variables, energy

This already gives some inspiration from microscopic to
macroscopic point of view

But what is missing is the microstructure formation

⇓

We will try to take this into account for the dissipation distance



Transformation-favourable martensite

Transformation-favourable martensite-forward

Austenite transforms to martensite always through formation of a
particular martensitic structure – transformation favorable
martensite (TFM) – that is characterized by zero net macroscopic
strain at the moment of creation. Immediate subsequent
reorientation of TFM is possible.

Transformation-favourable martensite-reverse

A necessary condition for initialisation of a reverse transformation
in any amount of martensite is formation of TFM within it.



Transformation-favourable martensite

What we have in mind....

.... when an austenite-martensite interface is formed, the
martensite has to form twins/microstructure at the interface for
compatibility.



Transformation-favourable martensite

However,...

Transformation-favourable martensite-forward

Austenite transforms to martensite always through formation of a
particular martensitic structure – transformation favorable
martensite (TFM) – that is characterized by zero net macroscopic
strain at the moment of creation. Immediate subsequent
reorientation of TFM is possible.

Transformation-favourable martensite-reverse

A necessary condition for initialisation of a reverse transformation
in any amount of martensite is formation of TFM within it.

⇓

this is an oversimplification!



On the microscopic level...

I Even for monoclinic SMAs (like NiTi) no twinned structure
actually has zero-net strain.

⇓

How can we actually interpret this assumption?



On the microscopic level...

Averaging...

I in every material point there are many grains with very
different microstructures



On the microscopic level...
Averaging...

I in every material point there are many grains with very
different microstructures

⇓

However, there is no rigorous proof that the average has to be of
zero-net strain



On the microscopic level...

Looking just from the dissipation point of view...

I The assumption is that there is no dissipation connected to
reorientation when transforming from austenite to TFM (and
back)

I in the simplified case of phenomenological modelling this is
achieved by the zero-net strain assumption

I  also other phenomenological models assume that the
twinned structure is of zero-net inelastic strain

[Lexcellent et al; 2006], [Popov, Lagoudas; 2007]



On the microscopic level...

The best argument is of course that the derived model compares
well to experiment

⇓

see Petr Sedlák’s talk!



Implications on the dissipation distance

I We can split the dissipation distance into a transformation
part and a reorientation part:

δ = δtr + δreo.

⇓

Notice: Here this split is a consequence of formation of TFM

[Zaki, Moumni;2009], [Chemisky et al.; 2011]



Transformation part of dissipation distance

Assumption on transformation part of dissipation distance

The transformation part of dissipation distance is proportional to
the absolute value of the difference between its initial and final
volume fraction of martensite. The positive proportionality factor
may depend (linearly) on the volume fraction.

⇓

δtr(ξA, ξB) = c(ξA, ξB)|ξB − ξA|
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Transformation part of dissipation distance

Assumption on transformation part of dissipation distance

The transformation part of dissipation distance is proportional to
the absolute value of the difference between its initial and final
volume fraction of martensite. The positive proportionality factor
may depend (linearly) on the volume fraction.

⇓
δtr(ξA, ξB) = c(ξA, ξB)|ξB − ξA|

 for thermodynamical consistency (triangle inequality) the form
of c(ξA, ξB) is not arbitrary
Here, we take

ξB ≥ ξA : δtr(ξA, ξB) = ∆sAM
[

(T0 −Ms) +
ξA + ξB

2
(Ms −Mf)

]
|ξB − ξA|,

ξB < ξA : δtr(ξA, ξB) = ∆sAM
[

(Af − T0) +
ξA + ξB

2
(As − Af)

]
|ξB − ξA|.



Reorientation part of dissipation distance

Assumption on the reorientation part of the dissipation
distance

If martensite is subject to reorientation, the corresponding
dissipation distance is proportional to the norm of the difference
between its final and initial inelastic strain



Reorientation part of dissipation distance

Assumption on the reorientation part of the dissipation
distance

If martensite is subject to reorientation, the corresponding
dissipation distance is proportional to the norm of the difference
between its final and initial inelastic strain

⇓

this already allows us to deduce the dissipation when no phase
transition is occurring....



Austenite-to-martensite transition

If ξB > ξA austenite-to-martensite:

I In the small step we look at austenite transforms to TFM  
dissipation-free

I Additionally other portions of martensite may reorient
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Austenite-to-martensite transition

If ξB > ξA austenite-to-martensite:

I In the small step we look at austenite transforms to TFM  
dissipation-free

I Additionally other portions of martensite may reorient

⇓

but how much TFM is formed and how does this effect the
inelastic strain?

We adopt the assumption that the inelastic strain does not change
during the austenite-to-martensite transition
 this gives the following form of the dissipation distance:

δreo(εinA , ξA,TB , ε
in
B , ξB) = σreo(TB)‖εinB − εinA ‖.

σreo(TB) is the proportionality factor



Reorientation part - reverse transformation

I if martensite transforms to austenite (ξB < ξA), some portion
of the inelastic strain has to transform to TFM first (to allow
the transition)

I other portions of the inelastic strain may reorient
independently
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Reorientation part - reverse transformation

I if martensite transforms to austenite (ξB < ξA), some portion
of the inelastic strain has to transform to TFM first (to allow
the transition)

I other portions of the inelastic strain may reorient
independently

⇓

how big are the individual portions?

⇓

we assume that the fraction is given by the volume fraction of the
disappearing martensite



Reorientation part - reverse transformation

With this assumptions we arrive at

δreo(εinA , ξA,TB , ε
in
B , ξB) =σreo(TB)

∥∥ξA − ξB
ξA

εinA − 0
∥∥︸ ︷︷ ︸

trf. to TFM

+ σreo(TB)
∥∥εinB − ξB

ξA
εinA
∥∥︸ ︷︷ ︸

remaining reorient.



Reorientation part - reverse transformation

With this assumptions we arrive at

δreo(εinA , ξA,TB , ε
in
B , ξB) =σreo(TB)

∥∥ξA − ξB
ξA

εinA − 0
∥∥︸ ︷︷ ︸

trf. to TFM

+ σreo(TB)
∥∥εinB − ξB

ξA
εinA
∥∥︸ ︷︷ ︸

remaining reorient.

...or rewriting as

δreo(εinA , ξA,TB , ε
in
B , ξB) = σreo(TB)

[∥∥ξB
ξA
εinA − εinA

∥∥+
∥∥εinB − ξB

ξA
εinA
∥∥]



Comments

I In addition to the assumption on TFM we had to assume how
“big” the portion of inelastic strain is that is due to TFM  
complicated microstructure is represented by just one tensor

I During forward transformation the inelastic strain is
unchanged
 Heuristic idea: Material can accommodate the
transformation, the forward transformation is “preferred”

I During reverse transformation the assumption can be also
read as: no TFM is in the material, all has to be formed
 Heuristic idea: Reverse transformation requires more
adjustments on microstructure, “is harder”



Comments

I In addition to the assumption on TFM we had to assume how
“big” the portion of inelastic strain is that is due to TFM  
complicated microstructure is represented by just one tensor

I During forward transformation the inelastic strain is
unchanged
 Heuristic idea: Material can accommodate the
transformation, the forward transformation is “preferred”

I During reverse transformation the assumption can be also
read as: no TFM is in the material, all has to be formed
 Heuristic idea: Reverse transformation requires more
adjustments on microstructure, “is harder”

⇓

Nevertheless, also other settings would be compatible with the
TFM idea...



Summing up

Altogether, we have the following energy and dissipation distance
in one material point:

φ(T , ε, εin, ξ, η) =
1

2
K tr(ε)2 + G (ξ, η)‖dev(ε)− εin‖2

+ ∆sAM(T − T0)ξ

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]
,

δ(T , εinA , ξA, ε
in
B , ξB) =



c(ξA, ξb)|ξB − ξA| + σreo‖εinB − εinA ‖
if ξB ≥ ξA,

c(ξA, ξb)|ξB − ξA| + σreo
[
‖ ξBξA ε

in
A − εinA ‖

+‖εinB −
ξB
ξA
εinA ‖

]
if ξB < ξA.



Thermodynamical consistency

Notice that the proposed dissipation distance

δ(T , εinA , ξA, ε
in
B , ξB) =



c(ξA, ξb)|ξB − ξA| + σreo‖εinB − εinA ‖
if ξB ≥ ξA,

c(ξA, ξb)|ξB − ξA| + σreo
[
‖ ξBξA ε

in
A − εinA ‖

+‖εinB −
ξB
ξA
εinA ‖

]
if ξB < ξA.

I is non-negative (and zero if no change of state occurs)

I is convex in the B-variables

I satisfies the triangle inequality



Global formulation

The derived energy and dissipation distance hold for one material
point. For the whole specimen (Ω) we have to integrate (here u is
the underlying deformation and α := (εin, ξ) are the dissipative
variables):

E(t, u, α) :=

∫
Ω
φ(t, ε(u), α) + ν‖∇α(t)‖2︸ ︷︷ ︸

regularization term

− Fvol(t) · u︸ ︷︷ ︸
volume force

dx

−
∫

ΓN

Fsurf · u︸ ︷︷ ︸
surface force

(t)dS ,

D(t, α, α̃) := Dtr(t, α, α̃) +Dreo(t, α, α̃)

=

∫
Ω
δtr(t, α, α̃)dx +

∫
Ω
δreo(t, α, α̃)dx .



Global formulation

The variables are limited to the following sets:

Q :=
{

(u, α) ∈ U × V × Z with α = (εin, ξ)
}

where

U := {u ∈W 1,2(Ω,R3) : u = 0 on ΓD}
V := {(εin, ξ) ∈W 1,2(Ω,R3×3)×W 1,2(Ω) :

εin is a traceless, symmetric matrix,

〈εin(x)〉 ≤ ξ(x) for a.a.x ∈ Ω

and 0 ≤ ξ(x) ≤ 1 for a.a. x ∈ Ω}



Global formulation

The variables are limited to the following sets:

Q :=
{

(u, α) ∈ U × V × Z with α = (εin, ξ)
}

where

U := {u ∈W 1,2(Ω,R3) : u = 0 on ΓD}
V := {(εin, ξ) ∈W 1,2(Ω,R3×3)×W 1,2(Ω) :

εin is a traceless, symmetric matrix,

〈εin(x)〉 ≤ ξ(x) for a.a.x ∈ Ω

and 0 ≤ ξ(x) ≤ 1 for a.a. x ∈ Ω}
⇓

the triple (Q, E ,D) defines the rate-independent system under
consideration



Energetic solution

With the energy and dissipation distance given, we can define an
an energetic solution for the problem:

I ideally fitted for rate-independent processes

I a global, derivative-free solution concept (avoids
subdifferential calculation)

I based on energy conservation and the idea that for any time
instant the found state is “the best possible”



Energetic solution

With the energy and dissipation distance given, we can define an
an energetic solution for the problem:

I ideally fitted for rate-independent processes

I a global, derivative-free solution concept (avoids
subdifferential calculation)

I based on energy conservation and the idea that for any time
instant the found state is “the best possible”

⇓

In other words, as soon as a process is admissible from the
thermodynamic point of view, it will happen immediately



Energetic solution

Definition of an energetic solution

Let E ,D be given as above and let (u0, α0) ∈ Q. Then triplet
(u(t), α(t), η(t)) : [0, T ] 7→ Q is called an energetic solution to the
rate-independent system (Q, E ,D) if ∂tE(t, u(t)) ∈ L1([0, T ]) and
if the following conditions are satisfied:

I Stability condition: (for all (ũ, α̃, η̃) ∈ Q)

E(t, u(t), α(t), η(t)) ≤ E(t, ũ, α̃, η̃) +D(t, α(t), α̃)

I Energy balance:

E(t, u(t), α(t), η(t)) + DissD(α, [0, T ])

=E(0, u(0), α(0), η(0))+

∫ T
0
∂tE(s, u(s))ds.

I Initial condition: (u(0), α(0), η(0)) = (u0, α0, η0) a.e. in Ω.
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Energetic solution

DissD(α, [0, T ]) is the overall dissipated energy

I For smooth processes it is given by

DissD(α; [0, T ]) =

∫ T
0

∫
Ω
d(t, α(t), α̇(t))dxdt,

 δ is the dissipation potential.

I For processes with jumps, we have that

Disstr(α; [0, T ]) := sup
{ N∑

i=1

Dtr(α(ti−1), α(ti )) :

a.p.p. 0 = t0 ≤ t1 ≤ . . . ≤ tN = T
}
,

I If the dissipation distance depends on time (as the
reorientation part through temperature) in has to be defined
via a suitable Radon measure
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Existence of an energetic solution

Theorem (MF, BB, PS, ’14)

Let E ,D be defined by as above, let the prescribed forces be
“sufficiently smooth” and let initial conditions (u0, α0, η0) ∈ Q
satisfy the stability condition. Then there exists an energetic
solution of the rate-independent system (Q, E ,D).



Existence of an energetic solution

Theorem (MF, BB, PS, ’14)

Let E ,D be defined by as above, let the prescribed forces be
“sufficiently smooth” and let initial conditions (u0, α0, η0) ∈ Q
satisfy the stability condition. Then there exists an energetic
solution of the rate-independent system (Q, E ,D).

⇓

For the proof, we highlight just some steps...



Time-incremental minimization

Discrete level

We call (ukτ , α
k
τ ) ∈ Q a discrete energetic solution to

rate-independent system (Q, E ,D) at time-level k = 1, . . . ,N(τ) if
it solves

Minimize E(tk , u, α) +D(tk , α
k−1
τ , α)

subject to (u, α) ∈ Q (TIP)

with (u0
τ , α

0
τ ) = (u0, α0) ∈ Q defined through the initial condition.



Time-incremental minimization

Discrete level

We call (ukτ , α
k
τ ) ∈ Q a discrete energetic solution to

rate-independent system (Q, E ,D) at time-level k = 1, . . . ,N(τ) if
it solves

Minimize E(tk , u, α) +D(tk , α
k−1
τ , α)

subject to (u, α) ∈ Q (TIP)

with (u0
τ , α

0
τ ) = (u0, α0) ∈ Q defined through the initial condition.

⇓

at every time-step we minimize the energy + dissipation from the
last step



Convexity of the energy

I to assure existence of solutions to (TIP) it is important that E
and D are convex

I for the dissipation distance this comes directly from
thermodynamical consistency (convexity in the second
variable)

I for the energy this is due to the choice of variables
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Convexity of the energy

Recall the energy function

φ(T , ε, εin, ξ) =
1

2
K tr(ε)2 + G (ξ)‖dev(ε)− εin‖2

+ ∆sAM(T − T0)ξ

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]
,
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Recall the energy function

φ(T , ε, εin, ξ) =
1

2
K tr(ε)2 + G (ξ)‖dev(ε)− εin‖2

+ ∆sAM(T − T0)ξ

+ uA0 − sA0 T + cA
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,

⇓
if we used the transformation strain instead of the inelastic one, we
would have

φ(T , ε, εin, ξ) =
1

2
K tr(ε)2 + G (ξ)‖dev(ε)− ξεtr‖2

+ ∆sAM(T − T0)ξ

+ uA0 − sA0 T + cA
[

(T − T0)− T ln

(
T

T0

)]
,

which is no longer convex...
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(T − T0)− T ln
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,

I The explicit dependence G = G (ξ) affects the overall
convexity of the energy.

I We use a form G (ξ) ∼ 1
ξ so that the overall energy is of the

form y2

x  convex for x ≥ 0.
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Aside: Notes on implementation

The time-incremental problem

Minimize E(tk , u, α) +D(tk , α
k−1
τ , α)

subject to (u, α) ∈ Q (TIP)

is also the basis for numerical implementation

[Bourdin; 2007], [Bourdin, Francfort, Marigo; 2008]
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is also the basis for numerical implementation

I The numerical implementation is based on alternating
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⇓

This will converge to a critical point (and due to convexity) a
minimizer.

[Bourdin; 2007], [Bourdin, Francfort, Marigo; 2008]



Aside: Notes on implementation

The time-incremental problem

Minimize E(tk , u, α) +D(tk , α
k−1
τ , α)

subject to (u, α) ∈ Q (TIP)

is also the basis for numerical implementation

Advantages of the split:

1. The elasticity problem (for u) can be solved by standard
packages in FEM

2. The problem for the inner variables actually splits and can be
solved individually for each material (Gauß) point  this
allows to use a derivative-free method like the Nelder-Mead
algorithm

[Bourdin; 2007], [Bourdin, Francfort, Marigo; 2008]



Discrete stability and two-sided energy inequality

Recall the time-incremental problem

Minimize E(tk , u, α, ) +D(tk , α
k−1
τ , α)

subject to (u, α) ∈ Q (TIP)



Discrete stability and two-sided energy inequality

From this we obtain the discrete stability condition

E(tk , uk , αk , ) ≤ E(tk , ũ, α̃, ) +D(tk , αk , α̃) ∀ (ũ, α̃) ∈ Q
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From this we obtain the discrete stability condition

E(tk , uk , αk , ) ≤ E(tk , ũ, α̃, ) +D(tk , αk , α̃) ∀ (ũ, α̃) ∈ Q

And the energy inequalities∫ tk

tk−1

∂Et(s, uk(s))ds ≤ E(tk , uk , αk , ) +D(tk , αk−1, αk)

− E(tk−1, uk−1, αk−1)

≤
∫ tk

tk−1

∂tE(s, uk−1(s))ds.

⇓

here it is important that the dissipation distance satisfies the
triangle inequality!



Aside: Using the two-sided energy inequality in non-convex
problems

In non-convex situations (with many local minima) it is
advantageous to verify the energy inequality∫ tk
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[B., 2009]
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tk−1

∂Et(s, uk(s))ds ≤ E(tk , uk , αk , ) +D(tk , αk−1, αk)

− E(tk−1, uk−1, αk−1)

≤
∫ tk

tk−1

∂tE(s, uk−1(s))ds.

in every step ( particularly the “first” inequality)

⇓

this helps to identify whether the found minimum would not have
been optimal already in the last time-step.

[B., 2009]



Aside: Using the two-sided energy inequality in non-convex
problems

[B., 2009]



Convergence

I Based on the a-priori estimates we choose convergent
sub-sequences for τ → 0

I The converges is pointwise for every time-step

I Here we additionaly have to cope with the fact that the
dissipation distance depends on time (through temperature)



Obtained result

Theorem (MF, BB, PS, ’14)

Let E ,D be defined by as above, let the prescribed forces be
“sufficiently smooth” and let initial conditions (u0, α0, η0) ∈ Q
satisfy the stability condition. Then there exists an energetic
solution of the rate-independent system (Q, E ,D), that is

I Stability condition: (for all (ũ, α̃, η̃) ∈ Q)

E(t, u(t), α(t)) ≤ E(t, ũ, α̃) +D(t, α(t), α̃)

I Energy balance:

E(t, u(t), α(t)) + DissD(α, [0, T ])

=E(0, u(0), α(0))+

∫ T
0
∂tE(s, u(s))ds.



A numerical calculation
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Thank you for your attention!


