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1. Describe the θ-method for the numerical solution of the heat equation ut = auxx on
0 < x < 1, t > 0, given the values of u(x, 0), 0 ≤ x ≤ 1, and u(0, t), u(1, t), t > 0. Explain
how the method is implemented, and give in terms of J an estimate of the number of
arithmetical operations to calculate the values Un+1

j , j = 1, 2, . . . J − 1. Here Unj is the
numerical approximation to u(xj , tn), where xj = j∆x, tn = n∆t.

What is meant by the truncation error of the method? Explain briefly why the choice
θ = 1

2 affects the leading terms of the truncation error.

Show that
|Unj − u(xj , tn)| ≤ n∆t T

where T is an upper bound for the truncation error, provided that 2(1− θ)a∆t ≤ (∆x)2.
Comment on this restriction on the size of ∆t, in relation to the stability of the method.

2. Define the Lax–Wendroff method for the solution of ut + aux = 0, where a is a positive
constant; use Fourier analysis to determine the leading terms in the amplitude and phase
errors. [Note that if q ∼ C1ξ + C2ξ

2 + C3ξ
3 + . . . then tan−1 q ∼ C1ξ + C2ξ

2 + (C3 −
1
3C

3
1 )ξ3 + . . . .]

Explain what is meant by the practical stability of a difference scheme for the solution of
ut + aux = buxx, where a and b are positive constants. Show that for the explicit scheme
using the upwind approximation to ux the condition for practical stability is(

a∆t
∆x

)2

≤ a∆t
∆x

+ 2
b∆t

(∆x)2
≤ 1.
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3. Find the order of the truncation errors for the following methods of approximating the
boundary value problem y′′ + f(x, y) = 0 in [0, 1], y(0) = y(1) = 0.

(a) h−2(yr+1 − 2yr + yr−1) + f(xr, yr) = 0, r = 1, · · · , N − 1;

(b) h−2(yr+1 − 2yr + yr−1) + 1
12(f(xr+1, yr+1) + 10f(xr, yr) + f(xr−1, yr−1)) = 0,

r = 1, · · · , N − 1;

where xr = rh with Nh = 1 and y0 = yN = 0.

Show that if

yr =
N−1∑
s=1

grsvs, r = 0, · · · , N,

where

grs =
{
r(N − s)/N, 0 ≤ r ≤ s ≤ N,
(N − r)s/N, 0 ≤ s ≤ r ≤ N,

then
yr+1 − 2yr + yr−1 = −vr, r = 1, · · · , N − 1,

for arbitrary v1 · · · , vN−1.

Show also that
N−1∑
s=1

grs = 1
2r(N − r), r = 1, · · · , N − 1.

Suppose that f(x, y) has Lipschitz constant L with respect to y. Show that the solution
error er = y(xr)− yr in method (a) satisfies

|er| ≤ h2
N−1∑
s=1

grs(L|es|+ |τs|), r = 1, · · · , N − 1,

where τs is truncation error at xs.

Deduce that, provided L < 8,

max
r
|er| ≤ (8− L)−1 max

r
|τr|

and hence that method (a) is second order.

Find the corresponding result for method (b).
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4. (a) What is a Householder matrix H(w)? Prove that if u, v ∈ Rn satisfy uTu = vT v,
then there exists w ∈ Rn such that H(w)u = v and show how this may be used in
computing a QR factorisation of a matrix A ∈ Rm×n.
Let b ∈ Rm be given.
If A is square and non singular, show briefly how the QR factorisation may be used
in computing the solution x of Ax = b. What factorisation is more usually used for
the solution of linear equations?

If A = QR is not square with m > n and QT b =
[
c
d

]
with c ∈ Rn,d ∈ Rm−n

prove that

min
x∈Rn

‖Ax− b‖2 = ‖d‖2.

(You may assume that the columns of R are linearly independent.) Using the QR
factorisation, how could you calculate the minimising vector x?

(b) If A,M ∈ Rn×n are non-singular, show that if the iteration

Mx(k) = (M −A)x(k−1) + b, k = 1, 2, . . .

converges for some starting value x(0), then it converges to x∗ which satisfies Ax∗ =
b. If M−1A is diagonalisable, establish a condition on the eigenvalues of M−1A
which guarantees convergence for any x(0). What governs the rate of convergence?
Show how a second sequence of vectors {y(k)} can be constructed from the sequence
{x(k)} so that

x∗ − y(k) = pk(T )(x∗ − x(0))

where pk is a real polynomial of degree k which satisfies pk(1) = 1 and T = I −
M−1A. If T = T T , what is ‖pk(T )‖2 and how should the polynomials {pk} ideally
be chosen so that ‖x∗ − y(k)‖2 reduces most rapidly?
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5. Solutions of the form w(x, t) = eiωtu(x), with boundary conditions u(0) = 0 = u′(1), are
sought for the motion of a vibrating system described by

wtt = (pwx)x − qw, 0 < x < 1, t > 0,

where p(x) ≥ p0 > 0 and q(x) ≥ 0. Derive the weak form of the eigenvalue problem for
the vibration frequencies ω(l) and continuous eigenmodes u(l)(x), defining the relevant
function space H1

E0
. Using a finite element space Sh0 ⊂ H1

E0
, containing piecewise linear

finite elements on a uniform mesh with spacing 1/N , deduce the Rayleigh-Ritz equations
giving approximate frequencies Ω(l) and eigenmodes U (l)(x).

Define the Rayleigh Quotient, and state the Courant minimax principle characterising
the eigenvalues λl ≡ (ω(l))2 of the system, written in the form a(u(l), v) = λl(u(l), v) ∀v ∈
H1
E0

.

Let Bm = span{u(1), u(2), . . . u(m)} where u(1), , u(2), . . . u(m) are the first m eigenvectors,
corresponding to λ1 < λ2 < . . . < λm; and suppose that PBm has dimension m, where
P : H1

E0
→ Sh0 is the projection onto the finite element space defined by

a(v − Pv,W ) = 0 ∀W ∈ Sh0 .

Show that if Λm ≡ (Ω(m))2 is the finite element approximation to λm, then

λm ≤ Λm ≤ λm max
v∈Bm

(‖v‖2L2
/‖Pv‖2L2

).

6. Irrotational, incompressible flow in a curved two dimensional channel is to be approxi-
mated on a mesh of (straight-sided) quadrilateral finite elements. If the velocity poten-
tial is given by ∇2Φ = 0, explain the physical significance of the boundary conditions
∂Φ/∂n = 0 on the channel walls, ∂Φ/∂n given at inlet and Φ = 0 across a parallel-sided
outlet, and state the variational formulation of the problem. (∂/∂n denotes differentia-
tion in the outward normal direction.)

Derive the mapping from local to global co-ordinates for a quadrilateral and describe
briefly how this is used to calculate the stiffness matrix obtained from setting up the
discrete variational problem for the finite element approximation U(x, y) of Φ.

Derive the tensor product local basis functions for both a bilinear and a biquadratic ap-
proximation U(x, y). Comment briefly on (i) the need for Gaussian quadrature formulae;
and (ii) how the curved boundaries might be better approximated.
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