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Section A: Nonlinear Systems

1. Consider the system

ẋ = x(3− x− 5y),

ẏ = y(−1 + x+ y).

with (x, y) ∈ R2.

(a) [5 marks] Show that both coordinate axes are invariant sets and that the line J = x +
3y − 3 = 0 is also an invariant set. Show that any intersection of these invariant sets
defines a fixed point.

(b) [5 marks] Use linear analysis to determine the stability of the origin and show that there
is a non-hyperbolic fixed point at (1/2, 1/2).

(c) [5 marks] Find a such that H = xy3Ja is a first integral of the system (that is, Ḣ = 0).

(d) [5 marks] Use the first integral H to determine the stability of the non-hyperbolic fixed
point.

(e) [5 marks] Given that the three fixed points computed in (a) are unstable and hyperbolic,
sketch the phase portrait of the system.
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2. Consider the tent map, mapping the unit interval [0, 1] into itself and defined by

xn+1 =

{
2xn 0 6 xn 6 1/2,

2(1− xn) 1/2 6 xn 6 1.
(1)

(a) [5 marks] Sketch the tent map and prove that it defines a map of the unit interval into
itself.

(b) [5 marks] Find all fixed points and determine their stability.

(c) [5 marks] Show that there is a single period-2 orbit and analyse its stability.

(d) [5 marks] Show that any initial rational value less than one ends up on a periodic orbit
and analyse the stability of this periodic orbit.

(e) [5 marks] The Lyapunov exponent for a map xn+1 = f(xn) is defined as

λ = lim
n→∞

1

n

n−1∑
k=0

|f ′(xk)|. (2)

Compute the Lyapunov exponent for the tent map and show that it is positive (hence,
the system is chaotic).
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Section B: Further Mathematical Methods

3. (a) [9 marks] Consider the equation

ẍ+ (1 + ε)x+ ε3x3 = cos t, x(0) = x(2π), ẋ(0) = ẋ(2π).

By formally writing

x ∼ x0
ε

+ x1 + · · · ,

show that
x0 = A cos t,

where A satisfies

A+
3A3

4
= 1.

(b) Consider the equation

y(x) = f(x) + λ

∫ 1

0
(x4 + t4)y(t) dt

where λ is a real constant.

(i) [7 marks] Show that there is a unique solution for y(x) providing λ 6= −15/2 and
λ 6= 15/8.

(ii) [9 marks] When λ = −15/2 what is the condition on f for a solution to exist? What
is the general solution in this case?

[You may use the identities∫ 2π

0
cos2 t dt =

∫ 2π

0
sin2 tdt = π,

∫ 2π

0
cos4 tdt =

∫ 2π

0
sin4 t dt =

3π

4
,

∫ 2π

0
cos t sin3 t dt =

∫ 2π

0
cos3 t sin tdt = 0,

∫ 2π

0
cos2 t sin2 tdt =

π

4
.

without proof.]
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4. Suppose the functions y and z minimise the functional

J [y, z] =

∫ 1

0
F (x, y, ẏ, z, ż) dx,

over all y, z ∈ C2[0, 1], subject to y(0) = a, z(0) = b, y(1) = c, z(1) = d, and the constraint

G(y, z) = 0,

where F and G are continuously differentiable, and a dot represents d/dx.

(a) [10 marks] Show that y and z satisfy the Euler equations

∂F

∂y
− d

dx

(
∂F

∂ẏ

)
− λ∂G

∂y
= 0,

∂F

∂z
− d

dx

(
∂F

∂ż

)
− λ∂G

∂z
= 0,

where λ is a Lagrange multiplier.

(b) [5 marks] The Hamiltonian, H, is given by

H = ẏ
∂F

∂ẏ
+ ż

∂F

∂ż
− F.

Show that
dH

dx
= −∂F

∂x
.

(c) An ant is crawling on the outside of the circular cylinder y2 + z2 = 1. It starts at the
point (x, y, z) = (0,−1, 0) and takes the shortest path to the point (x, y, z) = (1, 1, 0).

(i) [8 marks] Find the equation of the path taken, and thus show that it is a helix.

(ii) [2 marks] Find the length of the path.

Page 5 of 7 Turn Over



Section C: Further PDEs

5. (a) [8 marks] Show that an eigenfunction expansion gives the solution of

d2u

dx2
= x− π, u(0) = u(π) = 0,

as

u(x) =
∞∑
n=1

2

n3
sinnx.

[You may use without proof the identity
∫ π
0 sin2 nx dx = π/2.]

(b) The Mellin transform is given by

M[f(x); s] = F (s) =

∫ ∞
0

xs−1f(x) dx,

which exists in some strip s1 < Re(s) < s2. The inversion is given by

f(x) =
1

2πi

∫ c+i∞

c−i∞
x−sF (s) ds,

where s1 < c < s2.

(i) [5 marks] Show that for a > 0, M[f(ax); s] = a−sM[f(x); s]. Hence show that if

S(x) =
∞∑
k=1

λkg(µkx),

then

M[S(x); s] = Λ(s)M[g(x); s], where Λ(s) =
∞∑
k=1

λkµ
−s
k .

(ii) [12 marks] Using (b)(i) show that

∞∑
n=1

2

n3
sinnx = −π

2x

3
+
πx2

2
− x3

6
+ o(x3)

as x→ 0+.

[You may use without proof the fact that the gamma function

Γ(x) =

∫ ∞
0

tx−1e−t dt

has simple poles at x = −m, m = 0, 1, 2, . . . with residue (−1)m/m!. The Riemann zeta
function, defined by

ζ(x) =
∞∑
n=1

n−x

for Re(x) > 1, may be analytically continued to a meromorphic function which has a
single pole at x = 1 with residue 1. Note also that ζ(0) = −1/2, ζ(2) = π2/6, and that
M[sin(x); s] = sin

(
πs
2

)
Γ(s).]
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6. Let the operator L be given by

Lu = −d2u

dx2

on the interval 0 6 x <∞ with the conditions u′(0) = 0 and u ∈ L2[0,∞).

(a) [10 marks] Show that for µ not a positive real number the Green’s function for Lu− µu
is

G(x, ξ;µ) =


i
√
µ

cos (
√
µx) ei

√
µ ξ 0 6 x < ξ <∞,

i
√
µ

cos (
√
µ ξ) ei

√
µx 0 6 ξ < x <∞,

where you should define the branch of the square root.

(b) [10 marks] Use this to find the corresponding spectral representation of the delta function.
Show that the cases x > ξ and x < ξ both give the same result.

(c) [5 marks] The Fourier cosine integral transform is defined, for suitable functions f(x), by

F (t) =

∫ ∞
0

cos (tξ) f(ξ) dξ.

Deduce from (b) that the inversion formula is

f(x) =
2

π

∫ ∞
0

F (t) cos(tx) dt.
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