
Degree Master of Science in Mathematical Modelling and Scientific Computing

Mathematical Methods I

Thursday, 11th January 2007, 9:30 a.m. – 11:30 a.m.

Candidates may attempt as many questions as they wish. The best four solutions will count.
Solutions to questions 1, 2–5, and 6 should be handed in separately.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.
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Question 1

In a model for the laying of an undersea cable, whose height above the seabedy = 0 is given byy = h(x),
the angle between between the tangent to the cable and the horizontal,θ, satisfies the equation

ǫ2 d2θ

ds2
− sin θ + (F0 + s) cos θ = 0, 0 < s < L,

wheres is arclength measured from the origin, taken at the point where the cable leaves the seabed. Here
0 < ǫ ≪ 1, andF0, L are unknown constants. The boundary conditions are

θ = 0,
dθ

ds
= 0 at s = 0, θ = θ1 (given) ats = L.

Assuming that there is a solution with a boundary layer ats = 0, in which s = O(ǫ), find the leading order
terms in inner and outer expansions forθ(s) (rescalingθ andF0 as necessary for the latter) and show that
F0 = −ǫ. Show that the inner limit of the leading order outer solution agrees with the outer limit of the
leading order inner solution.

Verify from the outer solution that, whenx = O(1), h(x) = cosh x − 1 + O(ǫ).

Question 2

The temperatureT of a piece of coal is described by the equation

cṪ = −k(T − T0) + A exp

(

− E

RT

)

,

whereT0 is the ambient atmospheric temperature. By scaling the variables suitably, show that the equations
can be written in the dimensionless form

θ̇ = −θ + µ exp

(

θ

1 + εθ

)

,

and define the parametersµ andε.

Show that multiple steady states are possible ifε < 1

4
, and if this is the case, that there are three solutions for

µ− < µ < µ+, where

µ± = θ±e−
√

θ± ,

and

θ± =
1

2ε2

[

1 − 2ε ∓ (1 − 4ε)1/2
]

.

Hence plot the steady state solutions as a function ofµ whenε < 1

4
, and show that for smallε, θ ≈ µ for

smallµ. Comment on the stability of the solutions.
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Question 3

The functionv(x) satisfies the equation
v′′ + v − v3 = 0.

By finding a first integral, or otherwise, show that oscillatory solutions are possible in whichv oscillates
between valuesv− andv+ > v−, where

−1 < v− < 0 < v+ < 1.

Show also that there are three constant solutions.

Now suppose thatu(x, t) satisfies
ut = uxx + u − u3,

with
ux = 0 at x = 0, l.

By linearising the system, show that ifu − v = U(x)eσt, thenU satisfies the Sturm-Liouville system

U ′′ + [s(x) − σ]U = 0, U ′(0) = U ′(l) = 0,

and deduce that the steady statesv = ±1 are stable.

By consideration of a suitable variational principle, showthatv = 0 is unstable ifl > π. [Any results that
you use concerning variational principles need not be proved, so long as they are clearly stated.]

Question 4

Explain the Neumann iterative method for the solution of theFredholm integral equation

φ(x) = f(x) + λ

∫

1

0

K(x, y)φ(y) dy,

and give the form of the solution as an infinite power series inλ.

Find the solution of the integral equation

φ(x) = 1 + λ

∫

1

0

φ(y) cos αy dy,

and show that the solution is uniquely defined except whenλ takes one particular valueλ1, which you should
determine.

Find the solution of the integral equation

φ(x) = f(x) + λ

∫

1

0

φ(y) cos αy dy,

providingλ 6= λ1. If λ = λ1, show that no solution exists unless a certain integral condition is satisfied, and
find the general solution when itis satisfied.
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Question 5

The functionu(x, t) satisfies the equation

ut + u2ux = ε(1 + u2)uxx,

with
u(x, 0) = max[1 − |x|, 0].

Solve the equation whenε = 0, and hence show that a shock will form whenx = xc andt = tc, and find the
values ofxc andtc.

If ε is small and positive, derive an approximate equation describing the shock structure, and hence derive an
expression for the shock speedc in terms of the valuesu− andu+ behind and ahead of the shock.

In the particular case (for large time) whereu+ = 0 andu− is small, show that

c ≈ 1

3
u2
−.
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Question 6

(i) Show that, ifD is a closed region with smooth boundary∂D, the Euler-Lagrange equations for the
minimisations of

∫ ∫

D

[

(

∂u

∂x

)2

+

(

∂u

∂y

)2
]

dx dy

and
∫ ∫

D

[

∂2u

∂x2
+

∂2u

∂y2

]2

dx dy

are∇2u = 0 and∇4u = 0, respectively, and that the natural boundary conditions on∂D are

∂u

∂n
= 0

and

∇2u =
∂

∂n
∇2u = 0,

respectively.

(ii) By varying y(x) to y(x) + εη1(x) + εη2(x), show that when
∫

1

0

f(x, y, y′) dx is minimised subject to
∫

1

0

g(x, y, y′) dx = 0, then there is a constantλ such that

d

dx

(

∂f

∂y′

)

− ∂f

∂y
− λ

[

d

dx

(

∂g

∂y′

)

− ∂g

∂y

]

= 0.

(iii) A processx(t) is governed by

dx

dt
= f [t, x(t), u(t)], x(0) = x(1) = 0,

whereu(t) is a control which is to be chosen to minimise the cost
∫

1

0

h[t, x(t), u(t)] dt. Assuming

∂f

∂u
6= 0, show that

d

dt

(

∂h/∂u

∂f/∂u

)

=
∂h

∂x
−

(

∂h/∂u

∂f/∂u

)

∂f

∂x
.

Deduce that, ifp =
∂h/∂u

∂f/∂u
, then

dx

dt
= −∂H

∂p
,

dp

dt
=

∂H

∂x
,

whereH(x, p, t) is defined to be−h + pf .
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