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Candidates may attempt as many questions as they wish. $hiobesolutions will count.
Solutions to questions 1, 2-5, and 6 should be handed in atghar

Please start the answer to each question on a new page.
All questions will carry equal marks.

Do not turn over until told that you may do so.






Question 1

In a model for the laying of an undersea cable, whose heighteathe seabed = 0 is given byy = h(x),
the angle between between the tangent to the cable and tlzeritat, 0, satisfies the equation

d26
EQF—sinH—i—(Fo—l—s)cosH:O, 0<s<L,
s

wheres is arclength measured from the origin, taken at the pointreviiee cable leaves the seabed. Here
0 < e < 1, andFy, L are unknown constants. The boundary conditions are

0 =0, ?:0 ats =0, 0 =0, (given)ats = L.
S

Assuming that there is a solution with a boundary layer at 0, in which s = O(e), find the leading order
terms in inner and outer expansions &) (rescalingd and F;, as necessary for the latter) and show that
Iy = —e. Show that the inner limit of the leading order outer solutagrees with the outer limit of the
leading order inner solution.

Verify from the outer solution that, when= O(1), h(x) = coshx — 1 + O(e).

Question 2

The temperaturé of a piece of coal is described by the equation

. E
T = —k(T — T, A -
c ( 0)+ eXp( RT>7

whereTj is the ambient atmospheric temperature. By scaling thebtas suitably, show that the equations
can be written in the dimensionless form

. 0
0:—9+uexp<1+60>,

and define the parameteisande.

Show that multiple steady states are possibledf 1, and if this is the case, that there are three solutions for
p— < p < pg, Where
ptr = fre” VO

)

and .
_ o 1/2
b = 5 [1—%;(1 4e) ]
Hence plot the steady state solutions as a function whene < %, and show that for smal, 6 ~ p for
small . Comment on the stability of the solutions.
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Question 3

The functionv(x) satisfies the equation
v +v—03=0.

By finding a first integral, or otherwise, show that oscilfgtsolutions are possible in which oscillates
between values_ andv, > v_, where

“l<v_<0<vy <1,

Show also that there are three constant solutions.

Now suppose thai(z, t) satisfies

3
U = Ugy +U — U,

with
u, =0 at x=0,I[.

By linearising the system, show thatif— v = U(z)e°?, thenU satisfies the Sturm-Liouville system
U’ +[s(x) —o]U =0, U(0)=U'(l)=0,

and deduce that the steady staies +1 are stable.

By consideration of a suitable variational principle, shinatv = 0 is unstable ifl > =. [Any results that
you use concerning variational principles need not be pipw® long as they are clearly statgd.

Question 4

Explain the Neumann iterative method for the solution offhedholm integral equation

1
o(x) = f(x) + A / K (2, 9)p(y) dy,

and give the form of the solution as an infinite power series. in
Find the solution of the integral equation

1
¢($)=1+/\/0 ¢(y) cos ay dy,

and show that the solution is uniquely defined except whtakes one particular valug , which you should
determine.

Find the solution of the integral equation

1
o(x) = F(z) + A / 6(y) cos ay dy,

providing A # A;. If A = Ay, show that no solution exists unless a certain integral itionds satisfied, and
find the general solution whenig satisfied.



Question 5
The functionu(z, t) satisfies the equation
2 _ 2
Ut + U Uy = 8(1 +u )ua:93>
with
u(z,0) = max[1 — |z|,0].

Solve the equation when= 0, and hence show that a shock will form whes= z. andt = ¢., and find the
values ofz. andt,.

If ¢ is small and positive, derive an approximate equation é@agrthe shock structure, and hence derive an
expression for the shock speedh terms of the values_ andu behind and ahead of the shock.

In the particular case (for large time) where = 0 andu_ is small, show that

u’.

C~

W=
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Question 6

(i) Show that, if D is a closed region with smooth boundady), the Euler-Lagrange equations for the

minimisations of ) )
ou ou
/], [(%) +(5) ]d”y

o%u  O%u 2
/ /D [T*@] e dy

areVZu = 0 andV*u = 0, respectively, and that the natural boundary condition8 Brare

and

ou
— =0
on
and
Vi = iv% =0
on ’
respectively.

1
(i) By varying y(z)toy(z) +em () + ena(z), show that when/  f(x,y,y’) dz is minimised subject to
0

1
/ g(z,y,y') dx = 0, then there is a constaitsuch that
0

A (OFN_9f 14 (99 _99]_,
dx \ Oy Oy dx \ 0y dy]
(iii) A processz(t) is governed by

dx
= et u®), 2(0)=x(1) =0,

1

whereu(t) is a control which is to be chosen to minimise the cfsth[t,:c(t),u(t)] dt. Assuming
0

of

— = 0, show that
ou

%(8h/8u> _Oh <ah/au> of

of jou) — oz  \Of/ou) 0z

Oh/ou

Deduce that, ip = 70
u

, then

de  9H dp OH

dat—  op’ dt oz’

whereH (z,p, t) is defined to be-h + pf.
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