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Section A: Numerical Solution of Differential Equations

1. Suppose that for t > 0, the function u(t) satisfies the differential equation

u′(t) = f(t, u(t)), u(0) = 0. (1)

Suppose further that f is Lipschitz continuous.

(a) [2 marks] Consider the general Runge-Kutta method of order R, as given by the Butcher
table:

a1 0
a2 b2,1 0
...

...
. . .

aR bR,1 · · · bR,R−1 0

c1 · · · cR−1 cR

=:
a B

cT

Write this as a one-step method of the form

Un+1 = Un + hΦ(Un, tn;h),

where you should explicitly identify the function Φ(Un, tn;h).

(b) [13 marks] If T = maxn |Tn|, where Tn is the truncation error at step n, and LΦ is the
Lipshitz constant for the function Φ, show that the global error of such a method satisfies

|en| 6
T

LΦ

(
eLΦtn − 1

)
.

[You may use without proof the facts that the associated function Φ(u, t;h) is Lipschitz
continuous in the first argument provided that f is Lipschitz continuous, and that
1 + x 6 ex.]

(c) [5 marks] Consider (1) with
f(t, u) = u+ tl−1, (2)

where l > 0 is an integer. Let ki, i = 1, . . . , R, denote the values of the function evaluations
in the Runge-Kutta method. Show that, for the first iterate of the Runge-Kutta method
above, the ki can be found by solving the matrix equation

(I − hB)k = hl−1Al−11,

where A = diag {a1, . . . , aR}, k = [k1, . . . , kR]T , B is as in the Butcher table in part (a),
and 1 = [1, . . . , 1]T .

(d) [5 marks] Using the result of the previous part show that, for h sufficiently small,

U1 = hlcT (I + hB + · · ·+ hkBk + · · · )Al−11.

Use the fact that the analytic solution of (1) with the function (2) is u(t) =
∫ t

0 et−ssl−1 ds
to show that a necessary condition for the method to be of order p is that

cTBkAl−11 =
(l − 1)!

(l + k)!
,

for a range of k which you should identify.

[You may use without proof the fact that u(l−j)(0) = 0, 1 6 j 6 l, and u(l+j)(0) = (l− 1)!
for j > 0.]
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2. Let tn = t0 + nh for some h > 0. For t ∈ [t0, tm], the function u(t) satisfies the ordinary
differential equation

u′(t) = f(t, u(t)), u(t0) = u0.

Recall that a linear multi-step method, which takes the form

k∑
j=0

αjUn+j = h
k∑
j=0

βjf(tn+j , Un+j), (3)

computes values Un ≈ u(tn).

(a) [4 marks] Define the truncation error of a linear multi-step method.

What does it mean for the method (3) to be consistent?

(b) [6 marks] Define ρ(z) and σ(z), the first and second characteristic polynomials of (3)
respectively.

What does it mean for the method (3) to be zero-stable?

Show that the multi-step method

Un+k = Un+k−2 +
k∑
j=0

βjf(tn+j , Un+j) (4)

(k > 2) is zero-stable for all values of βj , stating carefully any theorem that you use.

(c) [7 marks] Consider again the general method, (3). Show that, if u is sufficiently smooth,
the truncation error Tn for (3) can be expressed as

Tn =
1

σ(1)h

[
C0u(tn) + C1u

′(tn)h+ · · ·+ Cpu
(p)(tn)hp + · · ·

]
,

where C0 =
∑k

j=0 αj and Cq =
∑k

j=0
jq

q!αj −
∑k

j=0
jq−1

(q−1)!βj for q > 1.

(d) [8 marks] Show that in order to have a consistent method, we must have that

ρ(1) = 0 and ρ′(1) = σ(1).

Show further that the scheme (3) is of order p > 1 if and only if there exists a non-zero
constant K such that

ρ(z)− σ(z) log z = K(z − 1)p+1 +O(|z − 1|p+2).
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3. (a) [6 marks] Let λ ∈ C be a constant with Re(λ) < 0. By considering directly the test
problem

y′ = λy (5)

where y is a function of t defined for t > t0, derive regions of absolute stability for

(i) Explicit Euler’s method, and

(ii) Implicit Euler’s method.

(b) [6 marks] Let K ∈ Rn×n be a symmetric matrix with entries that are constant with respect
to time. Show that the system of differential equations

y′ = Ky (6)

can be written as a series of decoupled scalar differential equations of the form

z′i = λizi,

for some functions zi(t) and scalars λi, which you should identify.

Using this result, derive a condition for absolute stability of both the explicit and implicit
versions of Euler’s method when applied to (6).

(c) [5 marks] Let u(x, t) be a function defined for x ∈ [−1, 1], t > 0, which satisfies the partial
differential equation

∂u

∂t
=
∂2u

∂x2

with boundary conditions u(−1, t) = a, u(1, t) = b, and initial condition u(x, 0) = u0(x).

Let N be a positive integer, and consider a uniform mesh xk = kh, where h = 1/N and
k = 0,±1, · · · ,±N . Let U(t) be the vector where Ui(t) ≈ u(xi, t) is the approximation
obtained by using central differences in the spatial dimension only.

Show that U(t) satisfies the system of differential equations

U ′ = AU + f (7)

where the matrix A ∈ R(2N−1)×(2N−1) and vector f ∈ R2N−1 should be identified.

(d) [8 marks] Show that the eigenvectors of the matrix A take the form wp, the jth component
of which is given by wp

j = sin(jpπh), and determine the corresponding eigenvalues.

Show that an implicit Euler scheme applied to (7) is unconditionally stable. Derive a
condition on the size of the time step required for an explicit Euler scheme applied to (7)
to be absolutely stable.

[You may use without proof the fact that sin(A±B) = sin(A) cos(B)± cos(A) sin(B)]
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4. Let u(x, t) be a function that satisfies the partial differential equation

∂u

∂t
=
∂2u

∂x2
− a(x)

∂u

∂x
, (8)

with boundary conditions u(−1, t) = u(1, t) = 0, initial condition u(x, 0) = u0(x), where u0

and a are continuous real-valued functions on [−1, 1].

Let N be a given integer, and consider a uniform mesh xj = j∆x, where ∆x = 1/N and
j = 0,±1, . . . ,±N , and tn = n∆t, n = 0, 1, 2, . . . . Let Unj ≈ u(xj , tn) be an approximation
obtained via the scheme

Un+1
j − Unj

∆t
=
Unj+1 − 2Unj + Unj−1

(∆x)2
− aj

Unj+1 − Unj−1

2∆x
,

where aj = a(xj).

(a) [8 marks] Consider the case where a(x) = 0. By using a semi-discrete Fourier transform,
show that this scheme is stable provided that ∆t/(∆x)2 6 1/2.

[You may use Parseval’s identity:

‖Un‖2`2 =
1

2π
‖Ûn‖2L2

.

(without proof).]

(b) [9 marks] Now consider the case where a(x) is a continuous function. Define the truncation
error of the scheme. If ∂2u/∂t2, ∂3u/∂x3 and ∂4u/∂x4 exist and are bounded in the
domain, show that |Tn| 6 C(∆t + ∆x2), where C is a constant independent of ∆t and
∆x.

(c) [8 marks] Show that the global error vanishes as ∆x → 0, ∆t → 0 provided that ∆t 6
1
2∆x2, and ∆x 6 λ, where λ is a constant you should identify.
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Section B: Numerical Linear Algebra

5. (a) [10 marks] What is an orthogonal matrix? Show that for any vector, x, ‖Qx‖2 = ‖x‖2
when Q is an orthogonal matrix. Prove also that ‖QAP‖2 = ‖A‖2 when Q and P are
orthogonal.

Explain what a QR factorisation is and, briefly, how it might be computed for an n × n
upper Hessenberg matrix with just n− 1 Givens rotations.

(b) [4 marks] Explain how a QR factorisation can be employed in the solution of a linear
least squares problem

min
x∈Rn

‖Ax− b‖2

where A ∈ Rm×n has rank n and b ∈ Rm with m > n.

(c) [5 marks] Define the Singular Value Decomposition (SVD) of a matrix A ∈ Rm×n. [You
do not need to prove that the SVD exists, but you may assume that it does for the rest of
this question.] How might an SVD be employed in the solution of a linear least squares
problem?

(d) [6 marks] Prove that for any A ∈ Rn×n, there exists an orthogonal matrix, Q, and a real
symmetric and positive semi-definite matrix, H, such that A = QH. Further prove that
if P is any orthogonal matrix and ‖A‖2 > 2, then

‖A− P‖2 > ‖A−Q‖2

.

Page 6 of 7



6. (a) [6 marks] What is a simple iteration for the solution of a (square) linear system of equa-
tions, Ax = b with starting vector x0? What is the associated iteration matrix? If the
iteration matrix is diagonalisable, state and prove a necessary and sufficient condition
for the simple iteration to generate a sequence of vectors which converge to x. [For the
remainder of this question, you may assume that the assumption of diagonalisability is
not necessary for this result to hold.]

(b) [10 marks] What is (i) the Jacobi iteration, (ii) the relaxed Jacobi iteration with relax-
ation parameter θ ∈ R, 0 < θ 6 1?

For any square matrix, B, let

ρ = max{|λ| : λ is an eigenvalue of B}.

Show that for the relaxed Jacobi iteration matrix, the value of ρ cannot be less than the
value of ρ for the Jacobi iteration matrix when Jacobi iteration converges. Are there any
circumstances in which the relaxed Jacobi iteration converges, but the Jacobi iteration
does not?

State briefly in words a context in which the relaxed Jacobi iteration might be preferable
to the Jacobi iteration.

(c) [9 marks] Let

A =



2 −2 0 · · · 0 0
−1 2 −1 0 · · · 0

0 −1
. . .

. . .
. . .

...
...

. . .
. . .

. . .
. . . 0

0 · · · 0
. . . 2 −1

0 0 · · · 0 −2 2


∈ R(n+2)×(n+2).

Show that

vr =


cos 0rπ

n+1

cos 1rπ
n+1

cos 2rπ
n+1
...

cos (n+1)rπ
n+1


is a right eigenvector of A for r = 0, 1, 2, . . . , n+ 1. Further show that the relaxed Jacobi
iteration matrix for A has eigenvalues all lying in the real interval [1−2θ, 1]. Deduce that
for 0 < θ < 1, the relaxed Jacobi iteration for A will generate a sequence of vectors which
will converge to a solution, x, whenever x− x0 has no component in the direction of v0.

Page 7 of 7 End of Last Page


