JMAT 7302 JACM 7C65 JACM 7C63

JMAT 7302

Degree Master of Science in Mathematical Modelling and Scientific Computing

Numerical Analysis

Friday, 25th April 2003, 9:30 a.m. – 12:30 p.m.

Candidates may attempt as many questions as they wish.

JACM 7C65

Degree Master of Science in Applied & Computational Mathematics

Numerical Solution of Differential Equations, Numerical Linear Algebra & Finite Element Methods

Friday, 25th April 2003, 9:30 a.m. – 12:30 p.m.

Candidates may attempt as many questions as they wish.

JACM 7C63

Degree Master of Science in Applied & Computational Mathematics Numerical Solution of Differential Equations & Numerical Linear Algebra Friday, 25th April 2003, 9:30 a.m. – 11:30 a.m.

Candidates may attempt questions 1,2,3 only.

Please start the answer to each question on a new page. All questions will carry equal marks.

Do not turn over until told that you may do so.

Numerical Solution of Differential Equations

Question 1

- (a) State the general form of a linear k-step method for the numerical solution of the initial value problem $y' = f(x, y), y(x_0) = y_0$ on the mesh $\{x_j : x_j = x_0 + jh\}$ of uniform spacing h > 0.
- (b) Define the *truncation error* of a linear k-step method. What is meant by saying that a linear k-step method is *consistent*?
- (c) What is meant by saying that a linear *k*-step method is *zero-stable*? Formulate an equivalent characterisation of zero-stability in terms of the roots of a certain polynomial of degree *k*.
- (d) Consider the two-parameter family of linear two-step methods defined by

$$ay_{n+2} - (1+a)y_{n+1} + y_n = bhf_{n+2}$$

where $f_j = f(x_j, y_j)$, and a and b are real numbers, $ab \neq 0$. Determine the set of all values of the parameters a and b such that the method is zero-stable.

(e) Show that there exists a unique choice of the parameters *a* and *b* such that the method is second-order accurate. Is the method convergent for these values of *a* and *b*? Justify your answer by using Dahlquist's Theorem which you should carefully state.

Question 2

Consider the initial boundary value problem

$$\rho(x)\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < 1, \quad 0 < t \le T,$$
$$u(x,0) = u_0(x), \qquad 0 < x < 1,$$
$$u(0,t) = A, \quad u(1,t) = B, \qquad t \in [0,T],$$

where A and B are given real numbers, T is a fixed positive real number, ρ is a continuous function of x, $\rho(x) \ge c_0 > 0$, and u_0 is a real-valued function defined and continuous on the closed real interval [0, 1].

- (a) Formulate the Crank-Nicolson scheme for the numerical solution of this initial value problem on a mesh with uniform spacings $\Delta x = 1/J$ and $\Delta t = T/M$ in the x and t co-ordinate directions, respectively, where J and M are positive integers.
- (b) Define the truncation error of the scheme and show that it is of size O((Δx)² + (Δt)²) as Δx, Δt → 0. [You may assume that u has as many bounded and continuous partial derivatives with respect to x and t as are required by your proof.]
- (c) Now, suppose that $\Delta t \leq c_0 (\Delta x)^2$. Show that

$$\max_{0 \le j \le J} |U_j^m| \le \max_{0 \le j \le J} |U_j^0|$$

for all $m, 1 \leq m \leq M$.

JMAT 7302

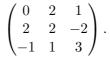
Numerical Linear Algebra

Question 3

(i) Describe a method for constructing the factorisation of $A \in \mathbb{R}^{m \times n}$ as QR where $Q \in \mathbb{R}^{m \times m}$ is orthogonal and $R \in \mathbb{R}^{m \times n}$ is upper triangular. Explain how this factorisation may be employed in solving the least squares problem:

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2, \quad m > n.$$

If m = n what other factorisation is more commonly employed to solve the linear system Ax = b? Demonstrate this other factorisation, carefully indicating any additional steps that are required, for the matrix



(ii) if $A = M - N \in \mathbb{R}^{n \times n}$ with A symmetric and positive definite and M symmetric and invertible, prove that the vector sequence generated by

$$Mx^{(k)} = Nx^{(k-1)} + b, \quad k = 1, 2, \dots$$

converges to the solution of Ax = b for any initial guess $x^{(0)}$ if and only if the eigenvalues of $I - M^{-1}A$ lie inside the unit disc.

(You may wish to note that a symmetric matrix is diagonalisable and that a symmetric and positive definite matrix has a Cholesky factorisation).

JMAT 7302

TURN OVER

Question 4

Let Π_k denote the set of real polynomials of degree at most k. Suppose that $A \in \mathbb{R}^{n \times n}$ is symmetric and positive definite.

Say why any vector in the Krylov subspace

$$\mathcal{K}_k(A,b) = \operatorname{span}\{b, Ab, A^2b, \dots, A^{k-1}b\}$$

can be written as p(A)b where p(A) is a polynomial in A. Prove that any iterative method for the solution of Ax = b with $x_0 = 0$ which has an update formula for the iterates x_i of the form

$$x_k = x_{k-1} + \alpha_{k-1} r_{k-1}$$

where $r_j = b - Ax_j$, necessarily has x_k in $\mathcal{K}_k(A, b)$. Deduce that $r_k = p(A)r_0$, $p \in \Pi_k$, p(0) = 1. Suppose in fact that the residuals satisfy the optimality property

$$||r_k||_{\star} = \min_{p \in \Pi_k, p(0)=1} ||p(A)r_0||_{\star}$$

for some norm $\|\cdot\|_{\star}$. Prove that $x_{\ell} = x$ if r_0 lies in a subspace spanned by ℓ eigenvectors of A which correspond to ℓ distinct eigenvalues. Is it a more or less favourable situation if the ℓ eigenvalues are not all distinct?

For the matrix

$$A = \begin{pmatrix} 2I_n + H(\omega) & I_n \\ I_n & 2I_n \end{pmatrix}$$

where $I_n \in \mathbb{R}^{n \times n}$ is the identity matrix and $H(\omega)$ is a Householder matrix, show that $x_{\ell} = x$ where ℓ can be no greater than 4 whatever the vector b.

JMAT 7302

Finite Element Methods

Question 5

- (a) Given that (a, b) is a bounded nonempty open interval of the real line, define the Sobolev space $H^1(a, b)$ and the Sobolev norm $\|\cdot\|_{H^1(a,b)}$.
- (b) What is meant by saying that u is a weak solution in $H^1(a, b)$ of the boundary value problem

$$-u'' + (x^2 + 1)u = f(x), \quad x \in (a, b); \qquad u'(a) = 0, \quad u(b) + u'(b) = 1,$$

where $f \in L_2(a, b)$?

Show that the bilinear form associated with the weak formulation of this problem is coercive on $H^1(a, b)$.

- (c) Consider the continuous piecewise linear basis functions φ_i , i = 0, 1, ..., N, defined by $\varphi_i(x) = (1 |x x_i|/h)_+$, $x \in [a, b]$, on the uniform mesh of size h = (b a)/N, $N \ge 2$, with mesh-points $x_i = a + ih$, i = 0, 1, ..., N. Using the basis functions φ_i , i = 0, 1, ..., N, define the finite element approximation of the boundary value problem and show that it has a unique solution u_h .
- (d) Expand u_h in terms of the basis functions φ_i , i = 0, 1, ..., N, by writing

$$u_h(x) = \sum_{i=0}^N U_i \varphi_i(x)$$

where $\mathbf{U} = (U_0, U_1, \dots, U_N)^T \in \mathbb{R}^{N+1}$, to obtain a system of linear algebraic equations for the vector of unknowns U. Show that the matrix \mathcal{A} of this linear system is symmetric (*i.e.*, $\mathcal{A}^T = \mathcal{A}$) and positive definite (*i.e.*, $\mathbf{V}^T \mathcal{A} \mathbf{V} > 0$ for all $\mathbf{V} \in \mathbb{R}^{N+1}$, $\mathbf{V} \neq \mathbf{0}$).

Show also that $||u - u_h||_{\mathrm{H}^1(a,b)} = \mathcal{O}(h)$ as $h \to 0$.

[Any bound on the error between u and its finite element interpolant $\mathcal{I}_h u$ may be used without proof, but must be stated carefully.]

Question 6

Let u(x,t) denote the solution to the initial boundary value problem

$$\begin{aligned} \frac{\partial u}{\partial t} + q(x)u &= \frac{\partial^2 u}{\partial x^2}, \qquad 0 < x < 1, \quad 0 < t \le T, \\ \frac{\partial u}{\partial x}(0,t) &= 0, \quad u(1,t) = 0, \qquad 0 \le t \le T, \\ u(x,0) &= u_0(x), \qquad 0 < x < 1, \end{aligned}$$

where T > 0, $u_0 \in L_2(0, 1)$, and q is a continuous function defined on the closed interval [0, 1] of the real line, such that $q(x) \ge c_0 > 0$ for all $x \in [0, 1]$.

- (a) Construct a finite element method for the numerical solution of this problem, based on the backward Euler scheme with time step $\Delta t = T/M$, $M \ge 2$, and a piecewise linear approximation in x on a uniform subdivision of spacing h = 1/N, $N \ge 2$, of the interval [0, 1], denoting by u_h^m the finite element approximation to $u(\cdot, t^m)$ where $t^m = m\Delta t$, $0 \le m \le M$.
- (b) Show that, for $0 \le m \le M 1$,

$$(1+2c_0\Delta t)\|u_h^{m+1}\|_{L_2(0,1)}^2 \le \|u_h^m\|_{L_2(0,1)}^2,$$

where $\|\cdot\|_{L_2(0,1)}$ is the L₂-norm on the interval (0,1).

Hence deduce that the method is unconditionally stable in the L₂-norm in the sense that, for any Δt , independent of the choice of h,

$$\|u_h^m\|_{L_2(0,1)}^2 \le (1 + 2c_0\Delta t)^{-m} \|u_h^0\|_{L_2(0,1)}^2, \qquad 1 \le m \le M.$$

(c) Show that, for each $m, 0 \le m \le M - 1, u_h^{m+1}$ can be obtained from u_h^m by solving a system of linear algebraic equations with a symmetric tridiagonal matrix \mathcal{A} whose entries you should define in terms of the standard piecewise linear basis functions $\varphi_i, i = 0, 1, \ldots, N - 1$. Assuming that $q(x) \equiv 1$, compute the diagonal entries of the matrix \mathcal{A} .

JMAT 7302