
Degree Master of Science in Mathematical Modelling and Scientific Computing

Numerical Solution of Differential Equations & Numerical Linear Algebra

Friday 16th January 2015, 9:30 a.m. – 11:30 a.m.

Candidates should submit answers to a maximum of four questions that include an answer to at

least one question in each section.

Please start the answer to each question on a new page.

All questions will carry equal marks.

Do not turn over until told that you may do so.
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Section A —Numerical Solution of Differential Equations

Question 1

The function u(t), t ≥ 0, with u(0) = u0, u′(0) = v0,is determined for t > 0 by

u′′ = f(u),

where f is a uniformly continuous function of its argument satisfying a Lipshitz condition

|f(u1)− f(u2)| ≤ L|u1 − u1|, ∀u1, u2 ∈ R.

(a) A discrete solution is determined by writing:

u′ = v,

v′ = f(u),

with u(0) = u0, v(0) = v0 and discretising on a uniform mesh tn = n∆t, n = 0, 1, 2, . . . according to
the Explicit Euler method: for n = 0, 1, 2, . . . ,

Un+1 = Un + ∆tVn,

Vn+1 = Vn + ∆tf(Un),

with U0 = u0 and V0 = v0. Use the notation that un = u(tn), vn = v(tn).

Determine the truncation error

Tn =

[ un+1 − un
∆t

− vn
vn+1 − vn

∆t
− f(un)

]
.

Hence show that the scheme is consistent and first order accurate. [5 marks]
Let

en =

[
un − Un
vn − Vn

]
.

Determine a matrix Bn such that

en+1 = (I + Bn)en + ∆tTn.

Hence deduce that ||en||∞ → 0 as ∆t→ 0 with n∆t→ t > 0.

[10 marks]

(b) Show that when ∆t > 0 is fixed and f(u) = −u, then the method in (a) gives a solution which becomes
unbounded. Show that the method

Un+1 = Un + ∆tVn,

Vn+1 = Vn + ∆tf(Un+1),

when applied to f = −u with fixed ∆t > 0 gives a solution which remains bounded.

[10 marks]
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Question 2

The function u(t), t ≥ 0 with u(0) = u0, is determined for t > 0 by

du

dt
= f(u),

where f is a uniformly differentiable function of u.

A linear multistep method for numerical approximation of this equation at the points tr = r∆t, r =
0, 1, 2, . . . , with ∆t > 0 is defined for integer k > 0 by

k∑
r=0

αrUn+r = ∆t

k∑
r=0

βrFn+r, n = 0, 1, . . . ,

where Un is an approximation to un = u(tn), Fn = f(tn, Un), αk 6= 0 and β0 6= 0. The polynomials ρ(z)
and σ(z) are given by

ρ(z) =

k∑
r=0

αrz
r, σ(z) =

k∑
r=0

βrz
r.

a) Define zero stability and the root condition for a linear multistep method.

[4 marks]

b) Prove that the root condition is a necessary condition for convergence. [6 marks]

c) Determine constants a and b such that the

Un+2 − (1 + a)Un+1 + aUn = b∆tFn+2

is a second order multistep method. [5 marks]

d) Define absolute stability for the case f(u) = λu and determine the interval of absolute stability for the
method in (c). [5 marks]

e) Show that the method is A-stable. [5 marks]

[You may use without proof that the order p − 1 error constant of this linear k-step method is given by
Cp/σ(1), p = 0, 1, 2, . . ., where

C0 =

k∑
j=0

αj , C1 =

k∑
j=1

jαj −
k∑
j=0

βj ,

Cp =

k∑
j=1

jp

p!
αj −

k∑
j=1

jp−1

(p− 1)!
βj for p ≥ 2.]
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Question 3

The function u(x, t), defined for x ∈ R and t ≥ 0, satisfies

∂u

∂t
=
∂2u

∂x2
, t > 0,

with initial data u(x, 0) = u0(x) ≥ 0 where |u0| → 0 as |x| → ∞.

The partial differential equation is discretised on a uniform mesh xr = rh, r = 0,±1,±2, · · · , and tn =
n∆t, n = 1, 2, · · · with h > 0 and ∆t > 0 such that Unr is an approximation for unr = u(xr, tn) and
U0
r = u0(xr). Denote un = {unr } and Un = {Unr }. For data {Ur} let δ2Ur = Ur+1 − 2Ur + Ur−1 and

define a semi-discrete Fourier transform by

Û(k) = h

∞∑
r=−∞

eikrhUr.

Let µ = ∆t/h2. It is given that the contunous function u(x, t), when restricted to the mesh, satisfies

ûn+1 = Λ(k)ûn, Λ(k) = e−µ(kh)
2
.

a) Define von Neumann stability and practical stability. [2 marks]

b) A discrete approximation is found for n = 0, 1, . . ., r = 0,±1,±2, . . ., using:

U∗r = Unr + µδ2Unr ,

Un+1
r = Unr +

1

2
µ(δ2U∗r + δ2Unr ).

i) Determine λ(k) such that Ûn+1 = λ(k)Ûn. [5 marks]
ii) Determine the range of µ for which this scheme is practically stable in the l2-norm. [4 marks]

c) The scheme is replaced by

U∗r = Unr +
1

2
µδ2Unr ,

Un+1
r = Unr + µδ2U∗r .

Deduce that this scheme has the same accuracy and stability constraint as the scheme in (b) and explain
how this is possible. [4 marks]

d) Show that for both schemes that
||un − Un||l2 ≤ Kn||u0||l2 ,

and estimate Kn when µ = 0.25. [10 marks]
You may use without proof Parseval’s Identity

||Un||l2 =
1√
2π
||Ûn||L2 .
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Question 4

The function u(x, t), defined for x ∈ R and t ≥ 0, satisfies

∂u

∂t
+ a

∂u

∂x
= 0, t > 0,

where a > 0 is constant. Assume initial data u(x, 0) = u0(x) where u0 is bounded on R.

This equation is discretised on a uniform mesh xr = rh, r = 0,±1,±2, · · · , and tn = n∆t, n = 1, 2, · · ·
with h > 0 and ∆t > 0 such that Unr is an approximation for unr = u(xr, tn). Let ν = a∆t/h.

a) A general form for an explicit finite difference scheme is written

Un+1
r =

s=γ∑
s=−α

βs(ν)Unr+s,

where α and γ are integers, n = 0, 1, . . ., and r = 0,±1,±2, . . ..

Define

c(z) =

s=γ∑
s=−α

βs(ν)zs.

Show that for the scheme to be consistent it is necessary that

c(1) = 1, and c′(1) = −ν.

Derive conditions on the coefficients βs for the truncation error to be order p. [8 marks]

b) Determine the order of the truncation error in the Lax–Freidrichs scheme

Un+1
r =

1

2
(1 + ν)Unr−1 +

1

2
(1− ν)Unr+1.

[4 marks]

c) Show that the truncation error for the Lax–Wendroff scheme

Un+1
r =

1

2
(ν2 + ν)Unr−1 + (1− ν2)Unr +

1

2
(ν2 − ν)Unr+1,

is second order. [4 marks]

d) Prove that there is no other second order scheme of this form with α = γ = 1. [3 marks]

d) Derive the third order scheme of this form when α = 2, γ = 1. [6 marks]
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Section B — Numerical Linear Algebra

Question 5

(a) Show that matrix matrix multiplication from the left is stable with bound

‖(A+ δA)B −AB‖
‖AB‖

≤ min(κ(A), κ(B))
‖δA‖
‖A‖

where κ(C) = ‖C‖ · ‖C−1‖ is the condition number of a matrix.

[5 marks]

(b) Let H be an m×m upper Hessenberg matrix; that is Hij = 0 for i > j + 1. State an algorithm using
Givens rotations to compute the QR decomposition of H . Determine, to leading order, the number of
floating point operations taken by the algorithm.

[10 marks]

(c) Orthomin(2) is given, as in lecture, by

Input: A ∈ Rn×n, b ∈ Rn, and estimate x(0) of Ax = b

Initialization: Set p(0) = r(0) = b − Ax(0), α0 = (r(0))∗Ar(0)

‖Ar(0)‖22
, x(1) = x(0) + α0r

(0), and r(1) =

b−Ax(1)

for k = 1 until termination (say ‖r(k)‖ ≤ ε‖b‖)

βk−1 = (Ar(k))∗Ap(k−1)

‖Ap(k−1)‖22

p(k) = r(k) − βk−1p(k−1)

αk = (r(k))∗Ap(k)

‖Ap(k)‖22

x(k+1) = x(k) + αkp
(k)

r(k+1) = b−Ax(k+1)

Show that if A is Hermitian, A∗ = A that

(r(k))∗Ap(j) = 0 and (Ap(k))∗Ap(j) = 0 for all j < k.

[10 marks]
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Question 6

(a) State the Householder reflector Hj(uj) with the property that for any m × m matrix A, the matrix
Hj(uj)A has its (i, j) entries are equal to zero for i > j. State an algorithm for computing the QR
factorization of a matrix using Householder reflections. Why is this algorithm preferable to Gram-
Schmidt both in terms of stability and floating point operations (be quantitative, but you don’t need to
prove these reasons are true).

[9 marks]

(b) Consider the iteration x(k+1) = x(k)+αkr
(k) where r(k) = b−Ax(k) andA is positive definite. Derive

a formula for αk so that ‖x(k+1) −A−1b‖A is minimized. Show that this algorithm converges to A−1b
at a linear rate; that is ‖x(k+1) − A−1b‖A ≤ γ‖x(k) − A−1b‖A for γ < 1, and state a formula of γ for
this algorithm.

[8 marks]

(c) The iterates for Conjugate gradient were defined in lecture as:

for k = 1 until termination

βk−1 = (r(k))∗Ap(k−1)

‖p(k−1)‖2A

p(k) = r(k) − βk−1p(k−1)

αk = (r(k))∗p(k)

‖p(k)‖2A

x(k+1) = x(k) + αkp
(k)

r(k+1) = b−Ax(k+1)

Show that alternatively αk and βk−1 are equal to

αk =
‖r(k)‖22
‖p(k)‖2A

.

βk−1 = − ‖r(k)‖22
‖r(k−1)‖22

You may assume that the residuals are orthogonal, (r(i))∗r(j) = 0 for i 6= j.

[8 marks]
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