8.1 Obtain the components of the vectors below where \(L \) is the magnitude and \(\theta \) the angle made with the positive direction of the \(x \) axis \((-180^\circ < \theta \leq 180^\circ)\).
 (a) \(L = 3, \theta = 60^\circ \);
 (b) \(L = 3, \theta = -150^\circ \).

8.2 Two ships, \(S_1 \) and \(S_2 \) set off from the same point \(Q \). Each follows a route given by successive displacement vectors. In axes pointing east and north, \(S_1 \) follows the path to \(B \) via \(\overrightarrow{QA} = (2, 4) \), and \(\overrightarrow{AB} = (4, 1) \). \(S_2 \) goes to \(E \) via \(\overrightarrow{QC} = (3, 3) \), \(\overrightarrow{CD} = (1, 1) \) and \(\overrightarrow{DE} = (2, -3) \). Find the displacement vector \(\overrightarrow{BE} \) in component form.

8.3 Sketch a diagram to show that if \(A, B, C \) are any three points, then \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0} \). Formulate a similar result for any number of points.

8.4 Sketch a diagram to show that if \(A, B, C, D \) are any four points, then \(\overrightarrow{CD} = \overrightarrow{CB} + \overrightarrow{BA} + \overrightarrow{AD} \). Formulate a similar result for any number of points.

8.5 Two points \(A \) and \(B \) have position vectors \(a \) and \(b \) respectively. In terms of \(a \) and \(b \) find the position vectors of the following points on the straight line passing through \(A \) and \(B \).
 (a) The mid-point \(C \) of \(AB \);
 (b) a point \(U \) between \(A \) and \(B \) for which \(AU/UB = 1/3 \).

8.6 Suppose that \(C \) has position vector \(r \) and \(r = \lambda a + (1 - \lambda)b \) where \(\lambda \) is a parameter, and \(A, B \) are points with \(a, b \) as position vectors. Show that \(C \) describes a straight line. Indicate on a diagram the relative positions of \(A, B, C \), when \(\lambda < 0, 0 < \lambda < 1 \), and \(\lambda > 1 \).

8.7 Find the shortest distance from the origin of the line given in vector parametric form by \(\overrightarrow{r} = a + t b \), where
 \[
 a = (1, 2, 3) \quad \text{and} \quad b = (1, 1, 1),
 \]
 and \(t \) is the parameter (Hint: use a calculus method, with \(t \) as the independent variable.)

8.8 \(ABCD \) is any quadrilateral in three dimensions. Prove that if \(P, Q, R, S \) are the mid-points of \(AB, BC, CD, DA \) respectively, then \(PQRS \) is a parallelogram.

8.9 \(ABC \) is a triangle, and \(P, Q, R \) are the mid-points of the respective sides \(BC, CA, AB \). Prove that the medians \(AP, BQ, CR \) meet at a single point \(G \) (called the centroid of \(ABC \); it is the centre of mass of a uniform triangular plate.)

8.10 Show that the vectors \(\overrightarrow{OA} = (1, 1, 2), \overrightarrow{OB} = (1, 1, 1), \) and \(\overrightarrow{OC} = (5, 5, 7) \) all lie in one plane.