INTRODUCTION, DEFINITIONS CHARACTERISTIC IBVP FOR HYPERBOLIC SYSTEMS KREISS-LOPATINSKII CONDITION

# CHARACTERISTIC IBVP'S AND MAGNETO-HYDRODYNAMICS

# Paolo Secchi





18, 19 March, 2024, Oxford UK

### Plan

### **1** INTRODUCTION, DEFINITIONS

### **2** Characteristic IBVP for hyperbolic systems

- Examples: Euler equations, MHD
- Anisotropic Sobolev spaces and MHD

### **3** Kreiss-Lopatinskii condition

• Analysis of Majda's example

### KREISS-LOPATINSKII CONDITION

#### Consider the BVP

$$\begin{cases} Lu = F, & \text{in} \{x_1 > 0\}, \\ Mu = G, & \text{on} \{x_1 = 0\}. \end{cases}$$
(9)

- $L := \partial_t + \sum_{j=1}^n A_j \partial_{x_j}$ , hyperbolic operator (with eigenvalues of constant multiplicity);
- A<sub>j</sub> ∈ M<sub>N×N</sub>, j = 1,...,n, and det A<sub>1</sub> ≠ 0 (i.e. non characteristic boundary);
- $M \in \mathbf{M}_{d \times N}$ ,  $\operatorname{rank}(M) = d = \#\{\text{positive eigenvalues of } A_1\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Let  $u = u(x_1, x', t)$   $(x' = (x_2, \dots, x_n))$  be a solution to (9) for F = 0 and G = 0.
- Let û = û(x<sub>1</sub>, η, τ) be Fourier-Laplace transform of u w.r.t. x' and t respectively (η and τ dual variables of x' and t respectively).
- $\widehat{u}$  solves the ODE problem

$$\begin{cases} \frac{d\hat{u}}{dx_1} = \mathcal{A}(\eta, \tau)\hat{u}, & x_1 > 0, \\ M\hat{u}(0) = 0, \end{cases}$$
(10)

where 
$$\mathcal{A}(\eta, \tau) := -(A_1)^{-1} \left( \tau I_n + i \sum_{j=2}^n A_j \eta_j \right).$$

Introduction, definitions Characteristic IBVP for hyperbolic systems Kreiss-Lopatinskii condition

Let  $\mathcal{E}^{-}(\eta, \tau)$  be the stable subspace of (10).

• Kreiss-Lopatinskii condition (KL):

$$ker M \cap \mathcal{E}^{-}(\eta, \tau) = \{0\}, \quad \forall (\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \, \Re \tau > 0.$$

$$\begin{aligned} & & \downarrow \\ & \forall (\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \ \Re \tau > 0, \ \exists C = C(\eta, \tau) > 0 : \\ & |A_1 V| \le C |MV| \quad \forall V \in \mathcal{E}^-(\eta, \tau). \end{aligned}$$

ふ

• Uniform Kreiss-Lopatinskii condition (UKL):

$$\exists C > 0 : \ \forall (\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \ \Re \tau > 0 : |A_1 V| \le C |MV| \quad \forall V \in \mathcal{E}^-(\eta, \tau).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

### LOPATINSKII DETERMINANT

For all (η, τ) ∈ ℝ<sup>n-1</sup> × C, ℜτ > 0, let {X<sub>1</sub>(η, τ),...,X<sub>d</sub>(η, τ)} be an orthonormal basis of E<sup>-</sup>(η, τ) (dim E<sup>-</sup>(η, τ) = rank M = d).
Constant multiplicity of the eigenvalues ⇒ X<sub>j</sub>(η, τ), j = 1,...,d, and E<sup>-</sup>(η, τ) can be extended to all (η, τ) ≠ (0,0) with ℜτ = 0.

$$\Delta(\eta, \tau) := \det \left[ M \left( X_1(\eta, \tau), \dots, X_d(\eta, \tau) \right) \right] \forall (\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \ \Re \tau \ge 0.$$

$$(KL) \quad \Leftrightarrow \quad \Delta(\eta,\tau) \neq 0 \,, \quad \forall \Re \tau > 0, \forall \eta \in \mathbb{R}^{n-1} \,.$$

 $(UKL) \quad \Leftrightarrow \quad \Delta(\eta, \tau) \neq 0, \quad \forall \underline{\Re\tau \ge 0}, \forall \eta \in \mathbb{R}^{n-1}.$ 

# Kreiss-Lopatinskii condition and well posedness

- 1.  $\det A_1 \neq 0$  (i.e. non characteristic boundary)
  - NOT (KL)  $\Rightarrow$  (9) is ill posed in Hadamard's sense;
  - (UKL)  $\Leftrightarrow L^2$ -strong well posedness of (9);
  - (KL) but NOT (UKL) ⇒ Weak well posedness of (9) (energy estimate with loss of regularity?).
- 2.  $\det A_1 = 0$  (i.e. characteristic boundary)
  - NOT (KL)  $\Rightarrow$  (9) is ill posed in Hadamard's sense;
  - (UKL) + structural assumptions on  $L \Rightarrow L^2$ -strong well posedness of (9).

### STRUCTURAL ASSUMPTIONS

- [Majda & Osher, 1975]:
  - **(**) L symmetric hyperbolic, with <u>variable coefficients</u> +
  - Oniformly characteristic boundary +
  - (UKL) +
  - **(**) Several structural assumptions on L and M, among which that:

$$A(\eta) := \sum_{j=2}^{n} A_{j} \eta_{j} = \begin{pmatrix} a_{1}(\eta) & a_{2,1}(\eta)^{T} \\ a_{2,1}(\eta) & a_{2}(\eta) \end{pmatrix}$$

where  $a_1(\eta)$  has only simple eigenvalues for  $|\eta| = 1$ . Satisfied by: strictly hyperbolic systems, MHD, Maxwell's equations, linearized shallow water equations. NOT satisfied by: 3D isotropic elasticity  $(a_1(\eta) = 0_3)$ .

- [Benzoni-Gavage & Serre, 2003]:
  - $\textcircled{O} L \text{ symmetric hyperbolic, with } \underline{\text{constant coefficients, }} M \text{ constant } +$
  - **2** (Uniformly) characteristic boundary,  $ker A_{\nu} \subset ker M +$

(UKL) +

$$A(\boldsymbol{\eta}) = \begin{pmatrix} \mathbf{0} & a_{2,1}(\boldsymbol{\eta})^T \\ a_{2,1}(\boldsymbol{\eta}) & a_{2}(\boldsymbol{\eta}) \end{pmatrix}$$

with  $a_2(\eta) = 0$ .

<u>Satisfied</u> by: Maxwell's equations, linearized acoustics. NOT satisfied by: isotropic elasticity  $(a_2(\eta) \neq 0)$ .

• [Morando & Serre, 2005]: 2D, 3D linear isotropic elasticity.

- 4 目 ト - 4 日 ト

## Majda's example

Initial-boundary value problem for the scalar wave equation:

$$\begin{cases} U_{tt} - U_{xx} - U_{yy} = 0 & \text{for } t > 0, \ x \in \mathbb{R}, \ y > 0, \\ \Gamma U_t + U_y = 0 & \text{for } y = 0, \\ i.c. & \text{for } t = 0, \end{cases}$$
(1)

where  $\Gamma \in \mathbb{R}$  is a parameter.

Problem (1) was first introduced by A. Majda<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>Compressible fluid flow and systems of conservation laws in several space variables, vol. 53 Appl. Math. Sciences, Springer-Verlag, NY 1984.

# Energy method

Total energy

$$E(t):=\frac{1}{2}\int_{\mathbb{R}}\int_{0}^{\infty}\left(U_{t}^{2}+U_{x}^{2}+U_{y}^{2}\right)\,dxdy$$

Multiply  $(1)_1$  by  $U_t$  and integrate:

$$\frac{d}{dt}E(t) = -\int_{y=0}^{\infty} U_t U_y \, dx = \Gamma \int_{y=0}^{\infty} U_t^2 \, dx$$

Then

- $\Gamma < 0$ : the boundary condition removes energy (stabilizing effect)
- $\Gamma > 0$ : the boundary condition adds energy (instability ???)

### Boundary value problem

Reduce (1) to the boundary value problem for the scalar wave equation:

$$\begin{cases} U_{tt} - U_{xx} - U_{yy} = 0 & \text{for } t \in \mathbb{R}, \ x \in \mathbb{R}, \ y > 0, \\ \Gamma U_t + U_y = g & \text{for } y = 0. \end{cases}$$
(2)

Introduce the new unknowns:

$$v := U_t, \quad w := -U_x, \quad z := -U_y.$$

In terms of (v, w, z) problem (2) gives the **Euler-type system** 

$$\begin{cases} v_t + w_x + z_y = 0, \\ w_t + v_x = 0, \\ z_t + v_y = 0, \\ \Gamma v - z = g, \\ y = 0. \end{cases}$$
(3)

In fact, we can write the system (3)

$$\begin{cases} v_t + w_x + z_y = 0, \\ w_t + v_x = 0, \\ z_t + v_y = 0, \\ \Gamma v - z = g, \\ y = 0. \end{cases}$$

in vector form as the "acoustic system"

$$\begin{cases} v_t + \operatorname{div}_{x,y} \cdot \begin{pmatrix} w \\ z \end{pmatrix} = 0, \\ \partial_t \begin{pmatrix} w \\ z \end{pmatrix} + \nabla v = 0, \quad y > 0, \\ \Gamma v - z = g \quad y = 0. \end{cases}$$

### Second formulation of the problem

Let us introduce the new unknown  $u = (u_1, u_2, u_3)^T$  defined by

$$u_1 = w, \quad u_2 = \frac{1}{2}(z - v), \quad u_3 = \frac{1}{2}(z + v),$$

that is

$$u_1 = -U_x, \quad u_2 = -\frac{1}{2}(U_t + U_y), \quad u_3 = \frac{1}{2}(U_t - U_y).$$

In terms of u the Euler-type problem (3) reads

$$\begin{pmatrix} \partial_t & -\partial_x & \partial_x \\ -\partial_x & 2(\partial_t - \partial_y) & 0 \\ \partial_x & 0 & 2(\partial_t + \partial_y) \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \\ u_3 \end{pmatrix} = 0 \quad \text{if } y > 0 \,,$$
(4)

$$-(\Gamma+1)u_2 + (\Gamma-1)u_3 = g$$
 if  $y = 0$ 

Denote by  $\hat{u}$  the Laplace-Fourier transforms of u in (t, x), with dual variables  $\tau = \gamma + i\delta$  and  $\eta$ , for  $\gamma \ge 1$  and  $\delta, \eta \in \mathbb{R}$ . We obtain from (4)

$$\begin{pmatrix} \tau & -i\eta & i\eta \\ i\eta & 2(\frac{d}{dy} - \tau) & 0 \\ i\eta & 0 & 2(\frac{d}{dy} + \tau) \end{pmatrix} \widehat{u} = 0 \quad \text{if } y > 0 \,, \tag{5a}$$
$$\beta \widehat{u^{\text{nc}}} = \widehat{g} \quad \text{if } y = 0 \,, \tag{5b}$$

where

$$\beta = (-(\Gamma + 1), \Gamma - 1), \qquad u^{\mathrm{nc}} = (u_2, u_3)^{\mathsf{T}}.$$

From the first (algebric) equation of (5a) we express  $\hat{u}_1$  in terms of  $\hat{u}_2$ ,  $\hat{u}_3$  and plug the resulting expression into the other two equations of (5a).

We obtain a system of O.D.E.s:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}y}\widehat{u^{\mathrm{nc}}} = \mathcal{A}(\tau,\eta)\widehat{u^{\mathrm{nc}}} & \text{if } y > 0 \,, \\ \beta \widehat{u^{\mathrm{nc}}} = \widehat{g} & \text{if } y = 0 \,. \end{cases}$$
(6)

Here

$$\mathcal{A}(\tau,\eta) := \begin{pmatrix} \mu & -m \\ m & -\mu \end{pmatrix}, \qquad \mu := \tau + m, \qquad m := \frac{\eta^2}{2\tau}.$$

A(τ, η) is (positively) homogeneous of degree 1 in (τ, η). To take this homogeneity into account, we define the hemisphere:

$$\Xi_1 := \left\{ (\tau, \eta) \in \mathbb{C} \times \mathbb{R} : \operatorname{Re} \tau \ge 0, \, |\tau|^2 + \eta^2 = 1 \right\}.$$

- The poles of symbol A(τ, η) on Ξ<sub>1</sub> are the points (τ, η) = (0, ±1) ∈ Ξ<sub>1</sub> (where the coefficient of û<sub>1</sub> in the first equation of (5a) vanishes).
- We set

$$\Xi := (0, \infty) \cdot \Xi_1.$$

We obtain a system of O.D.E.s:

$$\begin{cases} \frac{\mathrm{d}}{\mathrm{d}y}\widehat{u^{\mathrm{nc}}} = \mathcal{A}(\tau,\eta)\widehat{u^{\mathrm{nc}}} & \text{if } y > 0 \,, \\ \beta \widehat{u^{\mathrm{nc}}} = \widehat{g} & \text{if } y = 0 \,. \end{cases}$$
(6)

Here

$$\mathcal{A}( au,\eta) := egin{pmatrix} \mu & -m \ m & -\mu \end{pmatrix}, \qquad \mu := au + m, \qquad m := rac{\eta^2}{2 au}\,.$$

A(τ, η) is (positively) homogeneous of degree 1 in (τ, η). To take this homogeneity into account, we define the hemisphere:

$$\Xi_1 := \left\{ (\tau, \eta) \in \mathbb{C} \times \mathbb{R} : \operatorname{Re} \tau \ge 0, \, |\tau|^2 + \eta^2 = 1 \right\}.$$

- The poles of symbol A(τ, η) on Ξ<sub>1</sub> are the points (τ, η) = (0, ±1) ∈ Ξ<sub>1</sub> (where the coefficient of û<sub>1</sub> in the first equation of (5a) vanishes).
- We set

$$\Xi := (0, \infty) \cdot \Xi_1.$$

# Lopatinskiĭ condition

Stability / instability of (6) is detected by the Lopatinskiĭ condition.

$$\omega := -\sqrt{\tau^2 + \eta^2} = \begin{cases} \text{eigenvalue of } \mathcal{A}(\tau, \eta) \text{ with } \text{negative} \\ \text{real part,} & \text{Re } \tau > 0, \\ \text{continuous extension,} & \text{Re } \tau = 0. \end{cases}$$
$$E(\tau, \eta) := \left(\frac{\eta^2}{2}, \tau(\mu - \omega)\right)^{\mathsf{T}} \text{eigenvector of } \mathcal{A}(\tau, \eta) \text{ corresponding to } \omega$$

#### Definition

• The Lopatinskii "determinant" associated to (6) is defined by

$$\Delta(\tau,\eta) := \det\left[\beta E(\tau,\eta)\right] = (\tau - \omega)(\Gamma \tau + \omega). \tag{7}$$

• We say that the Lopatinskiĭ condition holds if

 $\Delta(\tau,\eta) \neq 0$  for all  $(\tau,\eta) \in \Xi_1$  with  $\operatorname{Re} \tau > 0$ ;

We say that the uniform Lopatinskiĭ condition holds if
 Δ(τ, η) ≠ 0 for all (τ, η) ∈ Ξ<sub>1</sub>.

#### Definition

- If the Lopatinskii condition is not satisfied the problem is said violently unstable (Hadamard ill-posedness).
- If the uniform Lopatinskii condition holds then the problem is said uniformly stable.
- If the Lopatinskii condition holds but not uniformly the problem is said weakly stable.

Lemma [Lopatinskiĭ condition for (6)]

- (1)  $\Gamma < 0$ . Then  $\Delta(\tau, \eta) \neq 0$  for every  $(\tau, \eta) \in \Xi_1$ . Problem (6) is uniformly stable.
- (2)  $0 \leq \Gamma < 1$ . Let us define  $\Lambda := (1 \Gamma^2)^{-1/2}$ . Then, for any  $(\tau, \eta) \in \Xi_1$ ,

 $\Delta(\tau,\eta) = 0$  if and only if  $\tau = \pm i\Lambda\eta$ .

Problem (6) is **weakly stable**.

(3)  $\Gamma \geq 1$ . Problem (6) is **violently unstable**.

#### Definition

- If the Lopatinskii condition is not satisfied the problem is said violently unstable (Hadamard ill-posedness).
- If the uniform Lopatinskii condition holds then the problem is said uniformly stable.
- If the Lopatinskii condition holds but not uniformly the problem is said weakly stable.

Lemma [Lopatinskiĭ condition for (6)]

- (1)  $\Gamma < 0$ . Then  $\Delta(\tau, \eta) \neq 0$  for every  $(\tau, \eta) \in \Xi_1$ . Problem (6) is uniformly stable.
- (2)  $0 \leq \Gamma < 1$ . Let us define  $\Lambda := (1 \Gamma^2)^{-1/2}$ . Then, for any  $(\tau, \eta) \in \Xi_1$ ,

 $\Delta(\tau,\eta) = 0$  if and only if  $\tau = \pm i\Lambda\eta$ .

Problem (6) is weakly stable.

(3)  $\Gamma \geq 1$ . Problem (6) is violently unstable.

### The uniformly stable case $\Gamma < 0$

For  $\tau = \gamma + i\delta$ , where  $\gamma \ge 1$  and  $\delta, \eta \in \mathbb{R}$ , set

$$\lambda(\tau,\eta) := (|\tau|^2 + \eta^2)^{\frac{1}{2}} = (\gamma^2 + \delta^2 + \eta^2)^{\frac{1}{2}}.$$

Introduce the weighted Sobolev space

$$H^s_{\gamma}(\mathbb{R}^2) := \left\{ u \in \mathcal{D}'(\mathbb{R}^2) : e^{-\gamma t} u \in H^s(\mathbb{R}^2) \right\},$$
$$\|u\|_{H^s_{\gamma}(\mathbb{R}^2)} := \frac{1}{2\pi} \|\lambda^s \widehat{e^{-\gamma t} u}\|_{L^2(\mathbb{R}^2)}, \qquad L^2_{\gamma}(\mathbb{R}^2) = H^0_{\gamma}(\mathbb{R}^2).$$

#### Theorem

Assume  $\Gamma < 0$ . For all  $\gamma \ge 1$ , if  $u \in H^1(\mathbb{R}^3_+)$  is a solution to (4) the following estimate holds:

$$\gamma \|u\|_{L^{2}(\mathbb{R}^{+};L^{2}_{\gamma}(\mathbb{R}^{2}))}^{2} + \|u^{\mathrm{nc}}\|_{x_{2}=0}\|_{L^{2}_{\gamma}(\mathbb{R}^{2})}^{2} \lesssim \|g\|_{L^{2}_{\gamma}(\mathbb{R}^{2})}^{2}.$$

 $\implies$  **No loss of regularity** from the boundary datum.

### PROOF

Because of the direct estimate

$$\gamma \|u\|_{L^2(\mathbb{R}^+;L^2_\gamma(\mathbb{R}^2))}^2 \lesssim \|u^{\mathrm{nc}}|_{x_2=0}\|_{L^2_\gamma(\mathbb{R}^2)}^2\,,$$

it's enough to show:

$$\|u^{\rm nc}|_{x_2=0}\|_{L^2_{\gamma}(\mathbb{R}^2)} \lesssim \|g\|_{L^2_{\gamma}(\mathbb{R}^2)}.$$
(8)

#### Lemma

For all  $(\tau_0, \eta_0) \in \Xi_1$ , there exist a neighborhood  $\mathscr{V}$  of  $(\tau_0, \eta_0)$  in  $\Xi_1$  and a continuous invertible matrix  $T(\tau, \eta)$  defined on  $\mathscr{V}$  such that

$$\forall \, (\tau,\eta) \in \mathscr{V} \setminus \underbrace{\{\tau=0\}}_{\text{pole of } \mathcal{A}}, \quad T^{-1}\mathcal{A}T(\tau,\eta) = \begin{pmatrix} \omega & z \\ 0 & -\omega \end{pmatrix}.$$

The first column of  $T(\tau, \eta)$  is  $E(\tau, \eta)$ .

Since  $\Xi_1$  is compact, there exists a finite covering  $\{\mathscr{V}_1, \ldots, \mathscr{V}_J\}$  of  $\Xi_1$  by such neighborhoods with corresponding matrices  $\{T_1, \ldots, T_J\}$ , and a smooth partition of unity  $\{\chi_j(\tau, \eta)\}_{j=1}^J \in C_c^{\infty}(\mathscr{V}_j)$  such that  $\sum_{j=1}^J \chi_j^2 = 1$  on  $\Xi_1$ .

Define  $\Pi_j := \{(\tau, \eta) \in \Xi : \exists s > 0, s \cdot (\tau, \eta) \in \mathscr{V}_j\}$  and  $W(\tau, \eta, y) := \chi_j T_j(\tau, \eta)^{-1} \widehat{u^{\mathrm{nc}}}(\tau, \eta, y), \quad \forall (\tau, \eta) \in \Pi_j.$ 

Assume that  $(\tau, \eta) \in \Pi_j$  and  $\operatorname{Re} \tau > 0$ . Then  $\frac{\mathrm{dW}}{\mathrm{dy}} = T_j^{-1} \mathcal{A} T_j W$ . Hence

$$\frac{\mathrm{d}\mathsf{W}_2}{\mathrm{d}y} = -\omega\mathsf{W}_2, \quad \Longrightarrow \ \mathsf{W}_2 = 0 \ (\operatorname{Re}\omega < \mathbf{0}).$$

Using the boundary equation (5b)  $(\beta \widehat{u^{nc}} = \widehat{g})$ , one has

$$\chi_j \widehat{g} = \beta T_j(\tau, \eta) \mathsf{W}(\tau, \eta, 0) = \underbrace{\beta E(\tau, \eta)}_{\Delta(\tau, \eta)} \mathsf{W}_1(\tau, \eta, 0).$$
(9)

Because ( $\Gamma < 0$ : uniform stability)

$$\Delta(\tau,\eta) \neq 0 \qquad \forall (\tau,\eta) \in \Xi_1,$$

 $\exists C_1, C_2 > 0: \quad C_1 \leq \Delta(\tau, \eta) \leq C_2 \qquad \forall (\tau, \eta) \in \Xi_1.$ 

Extend  $\Delta(\tau, \eta)$  as a homogeneous function of degree 0; then

$$C_1 \leq \Delta(\tau, \eta) \leq C_2 \qquad \forall (\tau, \eta) \in \Xi.$$

From (9)

$$\begin{split} |\mathsf{W}_1(\tau,\eta,0)| \lesssim \big|\chi_j\widehat{g}(\tau,\eta)\big|. \\ \text{Therefore, for all } (\tau,\eta) \in \Pi_j \text{ with } \gamma = \operatorname{Re} \tau > 0, \\ \big|\chi_j\widehat{u^{\operatorname{nc}}}(\tau,\eta,0)\big| \lesssim \big|\chi_j\widehat{g}(\tau,\eta)\big|. \end{split}$$

Applying Plancherel's theorem yields

$$||u^{\mathrm{nc}}|_{x_2=0}||_{L^2_{\gamma}(\mathbb{R}^2)} \lesssim ||g||_{L^2_{\gamma}(\mathbb{R}^2)},$$

that is (8).

## The uniformly stable case $\Gamma < 0$ (ibvp)

More in general, for the problem

$$\begin{cases} U_{tt} - U_{xx} - U_{yy} = F & \text{for } t \in \mathbb{R}, \ x \in \mathbb{R}, \ y > 0, \\ \Gamma U_t + U_y = 0 & \text{for } y = 0, \\ U = 0 & \text{for } t < 0, \end{cases}$$
(10)

where F is a given source term such that F = 0 for t < 0, one can obtain

### Theorem

Assume  $\Gamma < 0$ . For all  $m \ge 0$  and for  $\gamma \ge 1$ , if  $u \in H^{m+1}_{\gamma}(\mathbb{R}^3_+)$  is a solution to (10) the following estimate holds:

$$\gamma \|u\|_{H^m_{\gamma}(\mathbb{R}^3_+)}^2 + \|u^{\mathrm{nc}}|_{x_2=0}\|_{H^m_{\gamma}(\mathbb{R}^2)}^2 \lesssim \|F\|_{H^m_{\gamma}(\mathbb{R}^3_+)}^2.$$

 $\implies$  No loss of regularity from the source term.

### The weakly stable case $0 < \Gamma < 1$

### Theorem

Assume  $0 < \Gamma < 1$ . For all  $\gamma \ge 1$ , if  $u \in H^2(\mathbb{R}^3_+)$  is a solution of (4) the following estimate holds:

$$\gamma \|u\|_{L^{2}(\mathbb{R}^{+};L^{2}_{\gamma}(\mathbb{R}^{2}))}^{2} + \|u^{\mathrm{nc}}\|_{x_{2}=0}\|_{L^{2}_{\gamma}(\mathbb{R}^{2})}^{2} \lesssim \|g\|_{H^{1}_{\gamma}(\mathbb{R}^{2})}^{2}.$$

 $\implies$  Loss of regularity from the boundary datum.

For the proof it's enough to show the estimate:

$$\|u^{\rm nc}|_{x_2=0}\|_{L^2_{\gamma}(\mathbb{R}^2)} \lesssim \|g\|_{H^1_{\gamma}(\mathbb{R}^2)}.$$
(11)

# PROOF

Recall that

$$\Delta(\tau,\eta) = 0$$
 if and only if  $\tau = \pm i\Lambda\eta, \ (\tau,\eta) \in \Xi_1,$ 

where  $\Lambda := (1 - \Gamma^2)^{-1/2}$ .

#### Lemma

When  $\tau = \pm i\Lambda\eta$ , the eigenvalue  $\omega$  is purely imaginary. Each of these roots is simple in the sense that, if  $q = \pm\Lambda$ , then there exists a neighborhood  $\mathscr{V}$  of  $(iq\eta, \eta)$  in  $\Xi_1$  and a  $C^{\infty}$ -function  $h_q$  defined on  $\mathscr{V}$  such that

$$\Delta(\tau,\eta) = (\tau - iq\eta)h_q(\tau,\eta), \quad h_q(\tau,\eta) \neq 0 \quad \text{for all } (\tau,\eta) \in \mathscr{V}.$$
(12)

Since  $\Xi_1$  is compact, there exists a finite covering  $\{\mathscr{V}_1, \ldots, \mathscr{V}_J\}$  of  $\Xi_1$  by such neighborhoods with corresponding matrices  $\{T_1, \ldots, T_J\}$ , and a smooth partition of unity  $\{\chi_j(\tau, \eta)\}_{j=1}^J \in C_c^{\infty}(\mathscr{V}_j)$  such that  $\sum_{i=1}^J \chi_i^2 = 1$  on  $\Xi_1$ .

Again, define  $\Pi_j := \{(\tau, \eta) \in \Xi : \exists s > 0, s \cdot (\tau, \eta) \in \mathscr{V}_j\}$  and

$$\mathsf{W}(\tau,\eta,y) := \chi_j T_j(\tau,\eta)^{-1} \widehat{u^{\mathrm{nc}}}(\tau,\eta,y), \quad \forall \ (\tau,\eta) \in \Pi_j.$$

Assume that  $(\tau, \eta) \in \Pi_j$  and  $\operatorname{Re} \tau > 0$ . Then  $\frac{\mathrm{d}W}{\mathrm{d}y} = T_j^{-1} \mathcal{A} T_j W$ . Hence

$$\frac{\mathrm{d}\mathsf{W}_2}{\mathrm{d}y} = -\omega\mathsf{W}_2, \quad \Longrightarrow \quad \mathsf{W}_2 = 0 \quad (\operatorname{Re}\omega < \mathbf{0}).$$

Using the boundary equation (5b), one has

$$\chi_j \widehat{g} = \beta T_j(\tau, \eta) \mathsf{W}(\tau, \eta, 0) = \underbrace{\beta E(\tau, \eta)}_{\Delta(\tau, \eta)} \mathsf{W}_1(\tau, \eta, 0).$$
(13)

• If  $\Delta(\tau, \eta) \neq 0$  for all  $(\tau, \eta) \in \mathscr{V}_j$ , then we proceed as in the previous regular case.

• If 
$$(iq\eta, \eta) \in \mathscr{V}_j$$
, with  $q = \pm \Lambda$ , from (12)

$$\Delta(\tau,\eta) = (\tau - iq\eta)h_q(\tau,\eta), \quad h_q(\tau,\eta) \neq 0.$$
(14)

Extending  $\Delta(\tau,\eta)$  to  $\Pi_j$  as a homogeneous function of degree 1, from (13), (14) we obtain

$$|(\tau - iq\eta)\mathsf{W}_1(\tau, \eta, 0)| \lesssim \lambda(\tau, \eta) |\chi_j \widehat{g}(\tau, \eta)|.$$

Therefore, for all  $(\tau, \eta) \in \Pi_j$  with  $\gamma = \operatorname{Re} \tau > 0$ ,

$$\gamma \left| \chi_j \widehat{u^{\mathrm{nc}}}(\tau, \eta, 0) \right| \lesssim \lambda(\tau, \eta) \left| \chi_j \widehat{g}(\tau, \eta) \right|.$$

Applying Plancherel's theorem yields

$$\gamma \| u^{\mathrm{nc}} \|_{x_2=0} \|_{L^2_{\gamma}(\mathbb{R}^2)} \lesssim \| g \|_{H^1_{\gamma}(\mathbb{R}^2)},$$

that is (11).

#### Calculations as in

- 2D compressible vortex sheets, linear stability: J.-F. Coulombel–P.S. Indiana Univ. Math. J., 53 (2004), 941–1012,
- 2D compressible elastic flows, linear stability: R.M.Chen–J.Hu–D.Wang, Adv. Math. 311 (2017), 18–60.

### The weakly stable case $0 < \Gamma < 1$ (ibvp)

More in general, for the problem

$$\begin{cases} U_{tt} - U_{xx} - U_{yy} = F & \text{for } t \in \mathbb{R}, \ x \in \mathbb{R}, \ y > 0, \\ \Gamma U_t + U_y = 0 & \text{for } y = 0, \\ U = 0 & \text{for } t < 0, \end{cases}$$
(15)

where F is a given source term such that F = 0 for t < 0, one can obtain

#### Theorem

Assume  $0 < \Gamma < 1$ . For all  $m \ge 0$  and for  $\gamma \ge 1$ , if  $u \in H^{m+2}_{\gamma}(\mathbb{R}^3_+)$  is a solution to (15) the following estimate holds:

$$\gamma \|u\|_{H^m_{\gamma}(\mathbb{R}^3_+)}^2 + \|u^{\mathrm{nc}}\|_{x_2=0}\|_{H^m_{\gamma}(\mathbb{R}^2)}^2 \lesssim \|F\|_{H^{m+1}_{\gamma}(\mathbb{R}^3_+)}^2.$$

 $\implies$  Loss of regularity from the source term.