Characteristic IBVP's and Magneto-Hydrodynamics

Paolo Secchi

18, 19 March, 2024, Oxford UK

Plan

(1) Introduction, DEFINITIONS
(2) Characteristic IBVP for hyperbolic systems

- Examples: Euler equations, MHD
- Anisotropic Sobolev spaces and MHD
(3) Kreiss-Lopatinskii COndition
- Analysis of Majda's example

Kreiss-Lopatinskii condition

Consider the BVP

$$
\left\{\begin{array}{l}
L u=F, \quad \text { in }\left\{x_{1}>0\right\} \tag{9}\\
M u=G, \quad \text { on }\left\{x_{1}=0\right\}
\end{array}\right.
$$

- $L:=\partial_{t}+\sum_{j=1}^{n} A_{j} \partial_{x_{j}}$, hyperbolic operator (with eigenvalues of constant multiplicity);
- $A_{j} \in \mathbf{M}_{N \times N}, j=1, \ldots, n$, and $\operatorname{det} A_{1} \neq 0$ (i.e.
non characteristic boundary);
- $M \in \mathbf{M}_{d \times N}, \quad \operatorname{rank}(M)=d=\#\left\{\right.$ positive eigenvalues of $\left.A_{1}\right\}$.
- Let $u=u\left(x_{1}, x^{\prime}, t\right)\left(x^{\prime}=\left(x_{2}, \ldots, x_{n}\right)\right)$ be a solution to (9) for $F=0$ and $G=0$.
- Let $\widehat{u}=\widehat{u}\left(x_{1}, \eta, \tau\right)$ be Fourier-Laplace transform of u w.r.t. x^{\prime} and t respectively (η and τ dual variables of x^{\prime} and t respectively).
- \widehat{u} solves the ODE problem

$$
\left\{\begin{array}{l}
\frac{d \widehat{u}}{d x_{1}}=\mathcal{A}(\eta, \tau) \widehat{u}, \quad x_{1}>0 \tag{10}\\
M \widehat{u}(0)=0
\end{array}\right.
$$

where $\mathcal{A}(\eta, \tau):=-\left(A_{1}\right)^{-1}\left(\tau I_{n}+i \sum_{j=2}^{n} A_{j} \eta_{j}\right)$.

Let $\mathcal{E}^{-}(\eta, \tau)$ be the stable subspace of (10).

- Kreiss-Lopatinskii condition (KL):

$$
\operatorname{ker} M \cap \mathcal{E}^{-}(\eta, \tau)=\{0\}, \quad \forall(\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \Re \tau>0
$$

\Uparrow

$$
\begin{aligned}
& \forall(\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \Re \tau>0, \exists C=C(\eta, \tau)>0: \\
& \left|A_{1} V\right| \leq C|M V| \quad \forall V \in \mathcal{E}^{-}(\eta, \tau) .
\end{aligned}
$$

- Uniform Kreiss-Lopatinskii condition (UKL):

$$
\begin{aligned}
& \exists C>0: \forall(\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \Re \tau>0: \\
& \left|A_{1} V\right| \leq C|M V| \quad \forall V \in \mathcal{E}^{-}(\eta, \tau)
\end{aligned}
$$

LOPATINSKII DETERMINANT

- For all $(\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \Re \tau>0$, let $\left\{X_{1}(\eta, \tau), \ldots, X_{d}(\eta, \tau)\right\}$ be an orthonormal basis of $\mathcal{E}^{-}(\eta, \tau)\left(\operatorname{dim} \mathcal{E}^{-}(\eta, \tau)=\operatorname{rank} M=d\right)$.
- Constant multiplicity of the eigenvalues $\Rightarrow X_{j}(\eta, \tau), j=1, \ldots, d$, and $\mathcal{E}^{-}(\eta, \tau)$ can be extended to all $(\eta, \tau) \neq(0,0)$ with $\Re \tau=0$.

$$
\begin{aligned}
& \Delta(\eta, \tau):=\operatorname{det}\left[M\left(X_{1}(\eta, \tau), \ldots, X_{d}(\eta, \tau)\right)\right] \\
& \forall(\eta, \tau) \in \mathbb{R}^{n-1} \times \mathbb{C}, \Re \tau \geq 0
\end{aligned}
$$

$(K L) \Leftrightarrow \Delta(\eta, \tau) \neq 0, \quad \forall \Re \tau>0, \forall \eta \in \mathbb{R}^{n-1}$.
$(U K L) \Leftrightarrow \Delta(\eta, \tau) \neq 0, \quad \forall \Re \tau \geq 0, \forall \eta \in \mathbb{R}^{n-1}$.

KREISS-LOPATINSKII CONDITION AND WELL POSEDNESS

1. $\operatorname{det} A_{1} \neq 0$ (i.e. non characteristic boundary)

- NOT $(\mathrm{KL}) \Rightarrow(9)$ is ill posed in Hadamard's sense;
- (UKL) $\Leftrightarrow L^{2}$-strong well posedness of (9);
- (KL) but NOT (UKL) \Rightarrow Weak well posedness of (9) (energy estimate with loss of regularity?).

2. $\operatorname{det} A_{1}=0$ (i.e. characteristic boundary)

- NOT $(\mathrm{KL}) \Rightarrow(9)$ is ill posed in Hadamard's sense;
- (UKL) + structural assumptions on $L \Rightarrow L^{2}$-strong well posedness of (9).

STRUCTURAL ASSUMPTIONS

- [Majda \& Osher, 1975]:
(1) L symmetric hyperbolic, with variable coefficients +
(2) Uniformly characteristic boundary +
(3) (UKL) +
(1) Several structural assumptions on L and M, among which that:

$$
A(\eta):=\sum_{j=2}^{n} A_{j} \eta_{j}=\left(\begin{array}{cc}
a_{1}(\eta) & a_{2,1}(\eta)^{T} \\
a_{2,1}(\eta) & a_{2}(\eta)
\end{array}\right)
$$

where $a_{1}(\eta)$ has only simple eigenvalues for $|\eta|=1$.
Satisfied by: strictly hyperbolic systems, MHD, Maxwell's equations, linearized shallow water equations. NOT satisfied by: 3D isotropic elasticity $\left(a_{1}(\eta)=0_{3}\right)$.

- [Benzoni-Gavage \& Serre, 2003]:
(1) L symmetric hyperbolic, with constant coefficients, M constant +
(2) (Uniformly) characteristic boundary, $\operatorname{ker} A_{\nu} \subset \operatorname{ker} M+$
(3) (UKL) +

4)

$$
A(\eta)=\left(\begin{array}{cc}
0 & a_{2,1}(\eta)^{T} \\
a_{2,1}(\eta) & a_{2}(\eta)
\end{array}\right)
$$

with $a_{2}(\eta)=0$.
Satisfied by: Maxwell's equations, linearized acoustics.
NOT satisfied by: isotropic elasticity $\left(a_{2}(\eta) \neq 0\right)$.

- [Morando \& Serre, 2005]: $2 D, 3 D$ linear isotropic elasticity.

Majda's example

Initial-boundary value problem for the scalar wave equation:

$$
\begin{cases}U_{t t}-U_{x x}-U_{y y}=0 & \text { for } t>0, x \in \mathbb{R}, y>0 \tag{1}\\ \Gamma U_{t}+U_{y}=0 & \text { for } y=0 \\ \text { i.c. } & \text { for } t=0\end{cases}
$$

where $\Gamma \in \mathbb{R}$ is a parameter.

Problem (1) was first introduced by A. Majda ${ }^{1}$.

[^0]
Energy method

Total energy

$$
E(t):=\frac{1}{2} \int_{\mathbb{R}} \int_{0}^{\infty}\left(U_{t}^{2}+U_{x}^{2}+U_{y}^{2}\right) d x d y
$$

Multiply (1) $)_{1}$ by U_{t} and integrate:

$$
\frac{d}{d t} E(t)=-\int_{y=0} U_{t} U_{y} d x=\Gamma \int_{y=0} U_{t}^{2} d x
$$

Then

- $\Gamma<0$: the boundary condition removes energy (stabilizing effect)
- $\Gamma>0$: the boundary condition adds energy (instability ???)

Boundary value problem

Reduce (1) to the boundary value problem for the scalar wave equation:

$$
\begin{cases}U_{t t}-U_{x x}-U_{y y}=0 & \text { for } t \in \mathbb{R}, x \in \mathbb{R}, y>0 \tag{2}\\ \Gamma U_{t}+U_{y}=g & \text { for } y=0\end{cases}
$$

Introduce the new unknowns:

$$
v:=U_{t}, \quad w:=-U_{x}, \quad z:=-U_{y} .
$$

In terms of (v, w, z) problem (2) gives the Euler-type system

$$
\begin{cases}v_{t}+w_{x}+z_{y}=0, & \tag{3}\\ w_{t}+v_{x}=0, & y>0 \\ z_{t}+v_{y}=0 & y=0 \\ \Gamma v-z=g & \end{cases}
$$

In fact, we can write the system (3)

$$
\begin{cases}v_{t}+w_{x}+z_{y}=0, & \\ w_{t}+v_{x}=0, & y>0 \\ z_{t}+v_{y}=0 & y=0 \\ \Gamma v-z=g & \end{cases}
$$

in vector form as the "acoustic system"

$$
\begin{cases}v_{t}+\operatorname{div}_{x, y} \cdot\binom{w}{z}=0, \\ \partial_{t}\binom{w}{z}+\nabla v=0, & y>0 \\ \Gamma v-z=g & y=0\end{cases}
$$

Second formulation of the problem

Let us introduce the new unknown $u=\left(u_{1}, u_{2}, u_{3}\right)^{\top}$ defined by

$$
u_{1}=w, \quad u_{2}=\frac{1}{2}(z-v), \quad u_{3}=\frac{1}{2}(z+v),
$$

that is

$$
u_{1}=-U_{x}, \quad u_{2}=-\frac{1}{2}\left(U_{t}+U_{y}\right), \quad u_{3}=\frac{1}{2}\left(U_{t}-U_{y}\right) .
$$

In terms of u the Euler-type problem (3) reads

$$
\begin{align*}
& \left(\begin{array}{ccc}
\partial_{t} & -\partial_{x} & \partial_{x} \\
-\partial_{x} & 2\left(\partial_{t}-\partial_{y}\right) & 0 \\
\partial_{x} & 0 & 2\left(\partial_{t}+\partial_{y}\right)
\end{array}\right)\left(\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right)=0 \tag{4}
\end{align*} \quad \text { if } y>0, ~ \text { if } y=0 .
$$

Denote by \widehat{u} the Laplace-Fourier transforms of u in (t, x), with dual variables $\tau=\gamma+i \delta$ and η, for $\gamma \geq 1$ and $\delta, \eta \in \mathbb{R}$. We obtain from (4)

$$
\left(\begin{array}{ccc}
\tau & -i \eta & i \eta \\
i \eta & 2\left(\frac{\mathrm{~d}}{\mathrm{~d} y}-\tau\right) & 0 \tag{5b}\\
i \eta & 0 & 2\left(\frac{\mathrm{~d}}{\mathrm{~d} y}+\tau\right)
\end{array}\right) \widehat{u}=0 \quad \text { if } y>0,
$$

where

$$
\beta=(-(\Gamma+1), \Gamma-1), \quad u^{\mathrm{nc}}=\left(u_{2}, u_{3}\right)^{\top} .
$$

From the first (algebric) equation of (5a) we express \widehat{u}_{1} in terms of $\widehat{u}_{2}, \widehat{u}_{3}$ and plug the resulting expression into the other two equations of (5a).

We obtain a system of O.D.E.s:

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} y} \widehat{u^{\mathrm{nc}}}=\mathcal{A}(\tau, \eta) \widehat{u^{\mathrm{nc}}} & \text { if } y>0, \tag{6}\\ \beta \widehat{u^{\mathrm{nc}}}=\widehat{g} & \text { if } y=0 .\end{cases}
$$

Here

$$
\mathcal{A}(\tau, \eta):=\left(\begin{array}{cc}
\mu & -m \\
m & -\mu
\end{array}\right), \quad \mu:=\tau+m, \quad m:=\frac{\eta^{2}}{2 \tau}
$$

- $\mathcal{A}(\tau, \eta)$ is (positively) homogeneous of degree 1 in (τ, η). To take this homogeneity into account, we define the hemisphere:

$$
\Xi_{1}:=\left\{(\tau, \eta) \in \mathbb{C} \times \mathbb{R}: \operatorname{Re} \tau \geq 0,|\tau|^{2}+\eta^{2}=1\right\} .
$$

- The poles of symbol $\mathcal{A}(\tau, \eta)$ on Ξ_{1} are the points $(\tau, \eta)=(0, \pm 1) \in \Xi_{1}$ (where the coefficient of \widehat{u}_{1} in the first equation of (5a) vanishes).
- We set

$$
\Xi:=(0, \infty) \cdot \Xi_{1} .
$$

We obtain a system of O.D.E.s:

$$
\begin{cases}\frac{\mathrm{d}}{\mathrm{~d} y} \widehat{u^{\mathrm{nc}}}=\mathcal{A}(\tau, \eta) \widehat{u^{\mathrm{nc}}} & \text { if } y>0 \tag{6}\\ \beta \widehat{u^{\mathrm{nc}}}=\widehat{g} & \text { if } y=0\end{cases}
$$

Here

$$
\mathcal{A}(\tau, \eta):=\left(\begin{array}{cc}
\mu & -m \\
m & -\mu
\end{array}\right), \quad \mu:=\tau+m, \quad m:=\frac{\eta^{2}}{2 \tau} .
$$

- $\mathcal{A}(\tau, \eta)$ is (positively) homogeneous of degree 1 in (τ, η). To take this homogeneity into account, we define the hemisphere:

$$
\Xi_{1}:=\left\{(\tau, \eta) \in \mathbb{C} \times \mathbb{R}: \operatorname{Re} \tau \geq 0,|\tau|^{2}+\eta^{2}=1\right\} .
$$

- The poles of symbol $\mathcal{A}(\tau, \eta)$ on Ξ_{1} are the points $(\tau, \eta)=(0, \pm 1) \in \Xi_{1}$ (where the coefficient of \widehat{u}_{1} in the first equation of (5a) vanishes).
- We set

$$
\Xi:=(0, \infty) \cdot \Xi_{1} .
$$

Lopatinskiĭ condition

Stability / instability of (6) is detected by the Lopatinskiï condition.

$$
\begin{aligned}
& \omega:=-\sqrt{\tau^{2}+\eta^{2}}= \begin{cases}\text { eigenvalue of } \mathcal{A}(\tau, \eta) \text { with negative } \\
\text { real part, } & \operatorname{Re} \tau>0, \\
\text { continuous extension, } & \operatorname{Re} \tau=0\end{cases} \\
& E(\tau, \eta):=\left(\frac{\eta^{2}}{2}, \tau(\mu-\omega)\right)^{\top} \text { eigenvector of } \mathcal{A}(\tau, \eta) \text { corresponding to } \omega
\end{aligned}
$$

Definition

- The Lopatinskiï "determinant" associated to (6) is defined by

$$
\begin{equation*}
\Delta(\tau, \eta):=\operatorname{det}[\beta E(\tau, \eta)]=(\tau-\omega)(\Gamma \tau+\omega) . \tag{7}
\end{equation*}
$$

- We say that the Lopatinskiĭ condition holds if

$$
\Delta(\tau, \eta) \neq 0 \text { for all }(\tau, \eta) \in \Xi_{1} \text { with } \operatorname{Re} \tau>0 ;
$$

- We say that the uniform Lopatinskiï condition holds if

$$
\Delta(\tau, \eta) \neq 0 \text { for all }(\tau, \eta) \in \Xi_{1} .
$$

Definition

- If the Lopatinskiĭ condition is not satisfied the problem is said violently unstable (Hadamard ill-posedness).
- If the uniform Lopatinskiĭ condition holds then the problem is said uniformly stable.
- If the Lopatinskiĭ condition holds but not uniformly the problem is said weakly stable.

Definition

- If the Lopatinskiĭ condition is not satisfied the problem is said violently unstable (Hadamard ill-posedness).
- If the uniform LopatinskiÏ condition holds then the problem is said uniformly stable.
- If the Lopatinskiĭ condition holds but not uniformly the problem is said weakly stable.

Lemma [Lopatinskiĭ condition for (6)]
(1) $\Gamma<0$. Then $\Delta(\tau, \eta) \neq 0$ for every $(\tau, \eta) \in \Xi_{1}$. Problem (6) is uniformly stable.
(2) $0 \leq \Gamma<1$. Let us define $\Lambda:=\left(1-\Gamma^{2}\right)^{-1 / 2}$. Then, for any $(\tau, \eta) \in \Xi_{1}$,

$$
\Delta(\tau, \eta)=0 \quad \text { if and only if } \quad \tau= \pm i \Lambda \eta
$$

Problem (6) is weakly stable.
(3) $\Gamma \geq 1$. Problem (6) is violently unstable.

The uniformly stable case $\Gamma<0$

For $\tau=\gamma+i \delta$, where $\gamma \geq 1$ and $\delta, \eta \in \mathbb{R}$, set

$$
\lambda(\tau, \eta):=\left(|\tau|^{2}+\eta^{2}\right)^{\frac{1}{2}}=\left(\gamma^{2}+\delta^{2}+\eta^{2}\right)^{\frac{1}{2}}
$$

Introduce the weighted Sobolev space

$$
\begin{aligned}
H_{\gamma}^{s}\left(\mathbb{R}^{2}\right) & :=\left\{u \in \mathcal{D}^{\prime}\left(\mathbb{R}^{2}\right): e^{-\gamma t} u \in H^{s}\left(\mathbb{R}^{2}\right)\right\}, \\
\|u\|_{H_{\gamma}^{s}\left(\mathbb{R}^{2}\right)} & :=\frac{1}{2 \pi}\left\|\lambda^{s} \widehat{e^{-\gamma t} u}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}, \quad L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)=H_{\gamma}^{0}\left(\mathbb{R}^{2}\right) .
\end{aligned}
$$

Theorem

Assume $\Gamma<0$. For all $\gamma \geq 1$, if $u \in H^{1}\left(\mathbb{R}_{+}^{3}\right)$ is a solution to (4) the following estimate holds:

$$
\gamma\|u\|_{L^{2}\left(\mathbb{R}^{+} ; L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)\right)}^{2}+\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)}^{2} \lesssim\|g\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)}^{2} .
$$

\Longrightarrow No loss of regularity from the boundary datum.

PROOF

Because of the direct estimate

$$
\gamma\|u\|_{L^{2}\left(\mathbb{R}^{+} ; L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)\right)}^{2} \lesssim\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)}^{2}
$$

it's enough to show:

$$
\begin{equation*}
\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)} \lesssim\|g\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)} . \tag{8}
\end{equation*}
$$

Lemma

For all $\left(\tau_{0}, \eta_{0}\right) \in \Xi_{1}$, there exist a neighborhood \mathscr{V} of $\left(\tau_{0}, \eta_{0}\right)$ in Ξ_{1} and a continuous invertible matrix $T(\tau, \eta)$ defined on \mathscr{V} such that

$$
\forall(\tau, \eta) \in \mathscr{V} \backslash \underbrace{\{\tau=0\}}_{\text {pole of } \mathcal{A}}, \quad T^{-1} \mathcal{A} T(\tau, \eta)=\left(\begin{array}{cc}
\omega & z \\
0 & -\omega
\end{array}\right) .
$$

The first column of $T(\tau, \eta)$ is $E(\tau, \eta)$.
Since Ξ_{1} is compact, there exists a finite covering $\left\{\mathscr{V}_{1}, \ldots, \mathscr{V}_{J}\right\}$ of Ξ_{1} by such neighborhoods with corresponding matrices $\left\{T_{1}, \ldots, T_{J}\right\}$, and a smooth partition of unity $\left\{\chi_{j}(\tau, \eta)\right\}_{j=1}^{J} \in C_{c}^{\infty}\left(\mathscr{V}_{j}\right)$ such that $\sum_{j=1}^{J} \chi_{j}^{2}=1$ on Ξ_{1}.

Define $\Pi_{j}:=\left\{(\tau, \eta) \in \Xi: \exists s>0, s \cdot(\tau, \eta) \in \mathscr{V}_{j}\right\}$ and

$$
\mathrm{W}(\tau, \eta, y):=\chi_{j} T_{j}(\tau, \eta)^{-1} \widehat{u^{\mathrm{nc}}}(\tau, \eta, y), \quad \forall(\tau, \eta) \in \Pi_{j} .
$$

Assume that $(\tau, \eta) \in \Pi_{j}$ and $\operatorname{Re} \tau>0$. Then $\frac{\mathrm{dW}}{\mathrm{d} y}=T_{j}^{-1} \mathcal{A} T_{j} \mathrm{~W}$. Hence

$$
\frac{\mathrm{d} \mathrm{~W}_{2}}{\mathrm{~d} y}=-\omega \mathrm{W}_{2}, \quad \Longrightarrow \mathrm{~W}_{2}=0 \quad(\operatorname{Re} \omega<0) .
$$

Using the boundary equation (5b) ($\beta \widehat{u^{\mathrm{nc}}}=\widehat{g}$), one has

$$
\begin{equation*}
\chi_{j} \widehat{g}=\beta T_{j}(\tau, \eta) \mathrm{W}(\tau, \eta, 0)=\underbrace{\beta E(\tau, \eta)}_{\Delta(\tau, \eta)} \mathrm{W}_{1}(\tau, \eta, 0) . \tag{9}
\end{equation*}
$$

Because ($\Gamma<0$: uniform stability)

$$
\begin{gathered}
\Delta(\tau, \eta) \neq 0 \quad \forall(\tau, \eta) \in \Xi_{1}, \\
\exists C_{1}, C_{2}>0: \quad C_{1} \leq \Delta(\tau, \eta) \leq C_{2} \quad \forall(\tau, \eta) \in \Xi_{1} .
\end{gathered}
$$

Extend $\Delta(\tau, \eta)$ as a homogeneous function of degree 0 ; then

$$
C_{1} \leq \Delta(\tau, \eta) \leq C_{2} \quad \forall(\tau, \eta) \in \Xi
$$

From (9)

$$
\left|\mathrm{W}_{1}(\tau, \eta, 0)\right| \lesssim\left|\chi_{j} \widehat{g}(\tau, \eta)\right| .
$$

Therefore, for all $(\tau, \eta) \in \Pi_{j}$ with $\gamma=\operatorname{Re} \tau>0$,

$$
\left|\chi_{j} \widehat{u^{\mathrm{nc} \mathrm{c}}}(\tau, \eta, 0)\right| \lesssim\left|\chi_{j} \widehat{g}(\tau, \eta)\right| .
$$

Applying Plancherel's theorem yields

$$
\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)} \lesssim\|g\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)},
$$

that is (8).

The uniformly stable case $\Gamma<0$ (ibvp)

More in general, for the problem

$$
\begin{cases}U_{t t}-U_{x x}-U_{y y}=F & \text { for } t \in \mathbb{R}, x \in \mathbb{R}, y>0 \tag{10}\\ \Gamma U_{t}+U_{y}=0 & \text { for } y=0 \\ U=0 & \text { for } t<0\end{cases}
$$

where F is a given source term such that $F=0$ for $t<0$, one can obtain

Theorem

Assume $\Gamma<0$. For all $m \geq 0$ and for $\gamma \geq 1$, if $u \in H_{\gamma}^{m+1}\left(\mathbb{R}_{+}^{3}\right)$ is a solution to (10) the following estimate holds:

$$
\gamma\|u\|_{H_{\gamma}^{m}\left(\mathbb{R}_{+}^{3}\right)}^{2}+\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{H_{\gamma}^{m}\left(\mathbb{R}^{2}\right)}^{2} \lesssim\|F\|_{H_{\gamma}^{m}\left(\mathbb{R}_{+}^{3}\right)}^{2}
$$

\Longrightarrow No loss of regularity from the source term.

The weakly stable case $0<\Gamma<1$

Theorem

Assume $0<\Gamma<1$. For all $\gamma \geq 1$, if $u \in H^{2}\left(\mathbb{R}_{+}^{3}\right)$ is a solution of (4) the following estimate holds:

$$
\gamma\|u\|_{L^{2}\left(\mathbb{R}^{+} ; L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)\right)}^{2}+\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)}^{2} \lesssim\|g\|_{H_{\gamma}^{1}\left(\mathbb{R}^{2}\right)}^{2} .
$$

\Longrightarrow Loss of regularity from the boundary datum.

For the proof it's enough to show the estimate:

$$
\begin{equation*}
\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)} \lesssim\|g\|_{H_{\gamma}^{1}\left(\mathbb{R}^{2}\right)} . \tag{11}
\end{equation*}
$$

PROOF

Recall that

$$
\Delta(\tau, \eta)=0 \quad \text { if and only if } \quad \tau= \pm i \Lambda \eta, \quad(\tau, \eta) \in \Xi_{1}
$$

where $\Lambda:=\left(1-\Gamma^{2}\right)^{-1 / 2}$.

Lemma

When $\tau= \pm i \Lambda \eta$, the eigenvalue ω is purely imaginary.
Each of these roots is simple in the sense that, if $q= \pm \Lambda$, then there exists a neighborhood \mathscr{V} of $(i q \eta, \eta)$ in Ξ_{1} and a C^{∞}-function h_{q} defined on \mathscr{V} such that

$$
\begin{equation*}
\Delta(\tau, \eta)=(\tau-i q \eta) h_{q}(\tau, \eta), \quad h_{q}(\tau, \eta) \neq 0 \quad \text { for all }(\tau, \eta) \in \mathscr{V} \tag{12}
\end{equation*}
$$

Since Ξ_{1} is compact, there exists a finite covering $\left\{\mathscr{V}_{1}, \ldots, \mathscr{V}_{J}\right\}$ of Ξ_{1} by such neighborhoods with corresponding matrices $\left\{T_{1}, \ldots, T_{J}\right\}$, and a smooth partition of unity $\left\{\chi_{j}(\tau, \eta)\right\}_{j=1}^{J} \in C_{c}^{\infty}\left(\mathscr{V}_{j}\right)$ such that $\sum_{j=1}^{J} \chi_{j}^{2}=1$ on Ξ_{1}.

Again, define $\Pi_{j}:=\left\{(\tau, \eta) \in \Xi: \exists s>0, s \cdot(\tau, \eta) \in \mathscr{V}_{j}\right\}$ and

$$
\mathrm{W}(\tau, \eta, y):=\chi_{j} T_{j}(\tau, \eta)^{-1} \widehat{u^{\mathrm{nc}}}(\tau, \eta, y), \quad \forall(\tau, \eta) \in \Pi_{j} .
$$

Assume that $(\tau, \eta) \in \Pi_{j}$ and $\operatorname{Re} \tau>0$. Then $\frac{\mathrm{dW}}{\mathrm{d} y}=T_{j}^{-1} \mathcal{A} T_{j} \mathrm{~W}$. Hence

$$
\frac{\mathrm{d} \mathrm{~W}_{2}}{\mathrm{~d} y}=-\omega \mathrm{W}_{2}, \quad \Longrightarrow \mathrm{~W}_{2}=0 \quad(\operatorname{Re} \omega<0) .
$$

Using the boundary equation (5b), one has

$$
\begin{equation*}
\chi_{j} \widehat{g}=\beta T_{j}(\tau, \eta) \mathrm{W}(\tau, \eta, 0)=\underbrace{\beta E(\tau, \eta)}_{\Delta(\tau, \eta)} \mathrm{W}_{1}(\tau, \eta, 0) . \tag{13}
\end{equation*}
$$

- If $\Delta(\tau, \eta) \neq 0$ for all $(\tau, \eta) \in \mathscr{V}_{j}$, then we proceed as in the previous regular case.
- If $(i q \eta, \eta) \in \mathscr{V}_{j}$, with $q= \pm \Lambda$, from (12)

$$
\begin{equation*}
\Delta(\tau, \eta)=(\tau-i q \eta) h_{q}(\tau, \eta), \quad h_{q}(\tau, \eta) \neq 0 \tag{14}
\end{equation*}
$$

Extending $\Delta(\tau, \eta)$ to Π_{j} as a homogeneous function of degree 1, from (13), (14) we obtain

$$
\left|(\tau-i q \eta) \mathrm{W}_{1}(\tau, \eta, 0)\right| \lesssim \lambda(\tau, \eta)\left|\chi_{j} \widehat{g}(\tau, \eta)\right|
$$

Therefore, for all $(\tau, \eta) \in \Pi_{j}$ with $\gamma=\operatorname{Re} \tau>0$,

$$
\gamma\left|\chi_{j} \widehat{u^{\mathrm{nc}}}(\tau, \eta, 0)\right| \lesssim \lambda(\tau, \eta)\left|\chi_{j} \widehat{g}(\tau, \eta)\right|
$$

Applying Plancherel's theorem yields

$$
\gamma\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{L_{\gamma}^{2}\left(\mathbb{R}^{2}\right)} \lesssim\|g\|_{H_{\gamma}^{1}\left(\mathbb{R}^{2}\right)}
$$

that is (11).

Calculations as in

- 2D compressible vortex sheets, linear stability: J.-F. Coulombel-P.S. Indiana Univ. Math. J., 53 (2004), 941-1012,
- 2D compressible elastic flows, linear stability: R.M.Chen-J.Hu-D.Wang, Adv. Math. 311 (2017), 18-60.

The weakly stable case $0<\Gamma<1$ (ibvp)

More in general, for the problem

$$
\begin{cases}U_{t t}-U_{x x}-U_{y y}=F & \text { for } t \in \mathbb{R}, x \in \mathbb{R}, y>0 \tag{15}\\ \Gamma U_{t}+U_{y}=0 & \text { for } y=0 \\ U=0 & \text { for } t<0\end{cases}
$$

where F is a given source term such that $F=0$ for $t<0$, one can obtain

Theorem

Assume $0<\Gamma<1$. For all $m \geq 0$ and for $\gamma \geq 1$, if $u \in H_{\gamma}^{m+2}\left(\mathbb{R}_{+}^{3}\right)$ is a solution to (15) the following estimate holds:

$$
\gamma\|u\|_{H_{\gamma}^{m}\left(\mathbb{R}_{+}^{3}\right)}^{2}+\left\|\left.u^{\mathrm{nc}}\right|_{x_{2}=0}\right\|_{H_{\gamma}^{m}\left(\mathbb{R}^{2}\right)}^{2} \lesssim\|F\|_{H_{\gamma}^{m+1}\left(\mathbb{R}_{+}^{3}\right)}^{2}
$$

\Longrightarrow Loss of regularity from the source term.

[^0]: ${ }^{1}$ Compressible fluid flow and systems of conservation laws in several space variables, vol. 53 Appl. Math. Sciences, Springer-Verlag, NY 1984.

