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1 Introduction

In the 1980s V. Drinfel’d developed the theory of Drinfel’d associators; algebraic objects that
provide a natural generalization of the classical concept of exponential functions, which have long
played a fundamental role in many areas of mathematics. Drinfel’d associators have applications
in a wide range of fields, including algebraic geometry, topology, deformation quantization and
are closely related to the theory of quantum groups, which are a class of non-commutative
algebraic structures that arose in the context of mathematical physics and have since found
applications in many areas of mathematics. They also have deep connections to the theory of
operads, which provide a powerful language for studying algebraic structures with composition.
Drinfel’d himself introduced two associators in [11] the Knizhnik-Zamolodchikov (KZ) associator
ΦKZ and the anti-KZ associator ΦKZ (see Section 2.5). In [1] Alekseev and Torossian introduced
another associator the eponymous Alekseev-Torossian (AT) associator ΦAT which was later
shown by Ševera and Willwacher to be a Drinfel’d associator. In [18] Rossi and Willwacher
constructed a family of Drinfel’d associators interpolating between the KZ-associator, the AT-
associator and the anti-KZ-associator that is they proved the following:

Theorem 1.1. There is a family of Drinfel’d associators Φt over C and odd degree elements
{τ3, τ5, . . .} of grt1, such that

Φ0 = ΦKZ Φ
1
2 = ΦAT Φ1 = ΦKZ

and
∂tΦt = τ t · Φt

where
τ t :=

∞∑
j=1

(t(1− t))2jτ2j+1 ∈ grt1.

Here grt1 denotes the Grothendieck-Teichmüller Lie algebra (see Section 2.5). The associators
Φt can then explicitly be given by

Φt = P exp
(∫ t

0
τ s ds

)
· ΦKZ

where P exp is the path ordered exponential, which is defined as a sum of iterated integrals:

P exp
(∫ t

0
τ s ds

)
:= 1 +

∫ t

0
τ s ds+

∫ t

0
τ s1

(∫ s1

0
τ s2 ds2

)
ds1

+
∫ t

0
τ s1

(∫ s1

0
τ s2

(∫ s2

0
τ s3 ds3

)
ds2

)
ds1 + . . .

Further, they give an explicit formula to calculate τ t via the Kontsevich graph complex GC (see
Section 4.1). That is,

τ2j+1 =
∑

Γ

cΓ
|Aut(Γ)|ϕ(Γ)

where the sum is over all isomorphism classes of graphs in GC with 2j + 2 vertices. Here, ϕ is a
map from ϕ : GC→ sder2 (see Section 4.5) with sderk being the space of special derivations (see
Section 4.3) and cΓ is given by

cΓ :=
∫
C2j

∑
e,e′∈E(Γ)
e̸=e′

(−1)o(e,e′) 1
πi

log
∣∣∣zs(e′) − zt(e′)

∣∣∣ ∧
e′′∈E(Γ)\{e,e′}

1
πi
d log

∣∣∣zs(e′′) − zt(e′′)

∣∣∣. (1)
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Here the product over the edges shall be taken in their order and o(e′, e) is e′ + e− 1 for e′ < e

and e′ +e else. Let us further denote by ψ the following element of the Grothendieck-Teichmüller
group GRT1 (see Section 2.5):

ψ := P exp
(∫ 1

0
τ s ds

)
.

In [7] Brown showed the following result, whose implications for the above construction have
not been studied until now:

Theorem 2.13.
Φsv
KZ = L(1) = ψ

Here L(1) denotes the generating series of the single-valued polylogarithms evaluated at 1 and
Φsv
KZ denotes the single-valued KZ-associator (see Section 2.3). From this it follows that all

coefficients in the series expansion of ψ are single-valued multiple zeta values (MZVs). This, for
example, instantly answers the question of the irrationality of the AT-associator as shown in a
lengthy computation by M. Felder in [12]. The argument using single-valuedness goes as follows:
As all coefficients of ψ are single-valued MZVs we know that all non-single-valued MZVs, for
example ζ(5, 3), do not appear in any of those coefficients. However, as ζ(5, 3) appears in ΦKZ

it follows that ζ(5, 3) also appears in ΦAT as

ΦAT = P exp
(∫ 1

2

0
τ sds

)
· ΦKZ .

From this the irrationality follows as ζ(5,3)
π8 is, conjecturally, irrational. On a side note, from

either [2] by Banks, Panzer and Pym, [8] by Brown and Dupont or [21] by Vanhove and Zerbini
it also follows that the cΓ have single-valued MZV coefficients and thus that the coefficients of
ψ are single-valued MZVs. Using the single-valued integration as described in [2] we calculate
the coefficients cΓ for the wheel graphs in Section 2.4 and find:

Theorem 2.16. Let V ∈ N and denote by Γ the wheel graph on V + 1 vertices as described in
Figure 2. Then for even V , cΓ = 0 and for V = 2k + 1 odd it holds that

cΓ = 2(4k + 1)
(

4k
2k

)
ζ(2k + 1)
(2πi)2k+1 .

In principle, this result was already known by M. Felder’s calculations of c2n in [12] or Merkulov’s
calculations in [17, Appendix 1] and using the various connections between deformation quanti-
zation, Drinfel’d associators and GC. However, the specific calculation of the cΓ via its integral
definition has, to the best of our knowledge, not been done before.
Afterward we turn to the calculation of the τ2j+1. Using the Lyndon basis expansion we find
for the τ2j+1 up to depth 3:

τ2j+1 = c2j ad2j
x (y) +

∑
0≤α<β

α+β=2j−1

cα,β
[
adαx(y), adβx(y)

]
+

∑
β<γ,α≤γ

α+β+γ=2j−2

cα,β,γ
[
adαx(y),

[
adβx(y), adγx(y)

]]

Picking up on the idea by M. Felder in [12] to consider the equation ψ ·ΦKZ = ΦKZ we recover
the coefficients c2n, cα,β and cα,β,γ . For the first two explicit formulas can be given

c2n = 2(4n+ 1)
(

4n
2n

)
ζ(2n+ 1)
(2πi)2n+1

as shown by M. Felder in [12] and for depth 2 we find
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Theorem 3.5. Let n ∈ N and let α ∈ {0, . . . , n − 1} and β = 2n − 1 − α. Then the following
holds:

cα,β = −(4n+ 1)!
((2n)!)2

((
2n
α

)
−
(

2n
α+ 1

)
+ (−1)α+1

)
ζ(2n+ 1)
(2πi)2n+1 .

For depth 3 we found an implicit formula as described in Theorem 3.14 and implemented it in
Python as described in Appendix C. For small weights, tables of the coefficients cα,β,γ can be
found at the end of the work in Appendix D. Using the above formulas, we implemented the
calculation of ΦAT as well as all other associators Φt from Theorem 1.1 up to depth 3 and give
the coefficients of ΦAT for depth 3 for the smallest weights at the end of Section 3.3. Formulas
for the coefficients of ΦAT for depth 1 and 2 can be found in [12]. Moreover, we show the
following for ΦAT :

Theorem 3.15. Let w = xk1y . . . yxkn. Then if |w| is odd ΦAT (w) = 0, that is ΦAT vanishes
on odd words.

Using Theorem 2.13 and Theorem 3.5 we find the following explicit formulas for the single-valued
MZVs in depth 2:

Theorem 2.14. Let w = xayxbyxc be a word of depth 2 of odd length |w| = 2n + 1. Then we
have that

ζsv(w)
(2πi)|w| =

(
(−1)a+1

(
2n
a

)
+ (−1)b

(
2n
b

)
+ (−1)c+1

(
2n
c

))
ζ(2n+ 1)
(2πi)2n+1 .

as well as

Theorem 2.15. Let w = xayxbyxc be a word of depth 2 of even length |w| = 2n. Then we have

ζsv(w)
(2πi)|w| = 4

∑
l+m=n−1

(
(−1)a+c

(
2l
a

)(
2m
c

)
+ (−1)a+b

(
2l
b

)(
2m
a

)

−(−1)b+c
(

2l
b

)(
2m
c

))
ζ(2l + 1)ζ(2m+ 1)

(2πi)2n .

Taking a detour, we turn to the map ϕ : GC → sder2 which descends to an isomorphism from
H0(GC) to grt1 as introduced by Willwacher in [22] and improved upon by Rossi and Willwacher
in [18]. In Section 4 we introduce the necessary theory behind the map and give a detailed
explanation of its working. We also implemented this map in Python and could thus calculate
the grt1 elements corresponding to the cocycles in degree 3, 5 and 7. For degree 3 the cocycle is

1

2 3

4 5

6

Figure 1: The cocycle in degree 3.

given by the 3-wheel as seen in Figure 1 and the corresponding grt1 element is then

σ3 := −24[X, [X,Y ]] + 24[[X,Y ], Y ]

For the 5 and 7 cocycle the results can be found in Appendix A and B. Importantly this gives
explicit descriptions of generators of grt1 in degree 3, 5 and 7.
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Finally, we can combine the calculation of the coefficients c2n, cα,β, cα,β,γ and the map ϕ to
completely calculate τ3, τ5 and τ7 as well as give concise descriptions of τ9, τ11 and τ13 (up to
depth 3). They are given as follows:

τ3 = −5
2 · σ3

ζ(3)
(2πi)3 = 60 ζ(3)

(2πi)3 ([X, [X,Y ]]− [[X,Y ], Y ])

τ5 = 126 · σ5
ζ(5)

(2πi)5 = 630 ζ(5)
(2πi)5 (−2 · [Y, [Y, [Y, [Y,X]]]] + 4 · [Y, [Y, [[Y,X], X]]]

− 3 · [[Y, [Y,X]], [Y,X]]− 4 · [Y, [[[Y,X], X], X]]
− [[Y,X], [[Y,X], X]] + 2 · [[[[Y,X], X], X], X])

τ7 = −1716 · σ7
ζ(7)

(2πi)7

τ9 = 437580 · σ9
ζ(9)

(2πi)9

τ11 = ζ(11)
(2πi)11 · (7759752 · σ11) +

(
ζsv(5, 3, 3)

(2πi)11 + 22020
3553

ζ(3)2ζ(5)
(2πi)11

)(
−323323

2400 · [σ3, [σ3, σ5]Ih]Ih
)

and

τ13 = ζ(13)
(2πi)13 · (135207800 · σ13)

+
(
ζsv(7, 3, 3)

(2πi)13 − 244740
5681

ζ(5)2ζ(3)
(2πi)13 + 123508

7429
ζ(7)ζ(3)2

(2πi)13

)(2414425
4032 · [σ3, [σ3, σ7]Ih]Ih

)

+
(
ζsv(5, 5, 3)

(2πi)13 − 203950
5681

ζ(5)2ζ(3)
(2πi)13

)(
−676039

600 · [σ5, [σ5, σ3]Ih]Ih −
482885

672 · [σ3, [σ3, σ7]Ih]Ih
)

where σi ∈ grt1 and σ3 is defined as above, σ5 and σ7 are defined in Appendix A and B and σ9,
σ11 and σ13 are defined up to depth 3 in Section 4.6.
Before proceeding, we would like to highlight two interesting aspects of further study. On one
hand, our calculation of the coefficient cΓ of the wheel graph shows that single-valued integration
is well-suited for computing the integrals in the definition of cΓ. Moreover, it can produce closed
form results for infinite families. A natural next step would be to extend the results to other
graphs. This, combined with with the implementation of the map ϕ : GC → sder2, would give
more information about elements of grt1 as well as graph cocycles in GC.
On the other hand, in [3] Brown defined another kind of integrals for graphs in GC. These, so
called canonical integrals, are defined via invariant differential forms and their evaluation can,
in principle, give much more complicated transcendental numbers than multiple zeta values.
However, if we compare our value cΓ of the 2n+1-wheel from Theorem 2.16 with the conjectured
value of the canonical integral of the 2n+ 1-wheel

IW2n+1(ω4n+1) ?= 2(4n+ 1)
(

4n
2n

)
ζ(2n+ 1)

we notice that they are equal (up to the (2πi)2n+1 factor). This leads to the following conjecture:

Conjecture 1.2. The integrals cΓ for graphs on 2n vertices are equal to the canonical integrals
of the invariant differential form ω4n+1 as defined in [3].

If one now succeeds in calculating more coefficients cΓ of graphs in GC this could give further
insights into the connection between cΓ and the canonical integrals.
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Notation, conventions and binomial Identities

We denote by N the natural numbers {1, 2, 3, . . .} and by N0 = N ∪ {0}. Further δij is the
Kronecker delta i.e. δij = 1 if i = j and 0 else. Moreover, the symmetric groups will be denoted
by Sn and an element of Sn which would normally be written in cycle notation as (i1i2 . . . ik)
will be denoted by (i1; i2; . . . ; ik).
We write FLie for the free Lie algebra in two generators and FLie(x, y)n the subspace spanned by
Lie words with n−1 brackets. Then we denote the completed free Lie algebra in two generators
by

F̂Lie(x, y) :=
∏
n≥1

FLie(x, y)n.

Moreover, its topological universal enveloping algebra is K⟨⟨x, y⟩⟩ that is the space of formal
power series in the non-commuting variables x and y.
We also follow classical conventions for binomial coefficients that is

(n
k

)
= 0 if k > n or k < 0.

Furthermore, over the course of this work we are often going to need and refer to the following
classical binomial identities:

Lemma 1.3. The following identities hold:
1. Let n, k ∈ N0 then (

n

h

)(
n− h
k

)
=
(
n

k

)(
n− k
h

)
=
(

n

h+ k

)(
h+ k

h

)
.

2. Let m, r, s, t ∈ N0 then

r∑
k=0

(
r − k
m

)(
s

k − t

)
(−1)k−t =

(
r − t− s
r − t−m

)
.

3. Let n ∈ N0 then
n∑
j=0

(−1)j
(
n

j

)
= 0.

4. Let n ≥ k ≥ 0. Then the Hockey-stick identity is

n∑
m=k

(
m

k

)
=
(
n+ 1
k + 1

)
.

5. Let r ≥ 1 and k ≥ 0. Then (
−r
k

)
= (−1)k

(
r + k + 1

k

)
.

6. Let m,n, r, s ∈ N0 such that n ≥ s. Then

r∑
k=0

(
r − k
m

)(
s+ k

n

)
=
(
r + s+ 1
m+ n+ 1

)
.

We acknowledge that this notation with the n is rather ugly. However, it is needed to distinguish
these variables from the often similarly named variables appearing in the proofs. With this out
of the way we can start by introducing multiple zeta values.
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2 Prerequisites

2.1 Multiple zeta values

In this section we mostly follow [12] and [4]. The multiple zeta functions are a generalisation of
the Riemann zeta function and are defined as follows:

Definition 2.1. Let k ∈ N, n1 ≥ 2 and ni ≥ 1 for i ∈ {2, . . . , k}. Then the multiple zeta
functions are given by

ζ(n1, . . . , nk) :=
∑

j1>j2>...>jk≥1

1
jn1

1 jn2
2 . . . jnk

k

and we call a value ζ(n1, . . . , nk) a multiple zeta value (MZV). For k = 1 this reduces to the
Riemann zeta function.

Let Z denote the Q-algebra spanned by all multiple zeta values over Q. Let further ZN denote
the Q-vector space spanned by the MZVs of total weight N = n1 + . . .+ nr. Then Z is the sum
of the vector spaces ZN .
We can extend this definition of MZVs to words w in x, y. We say that a word w is admissible
if it starts with an x and ends in a y. For such words w = xn1yxn2y . . . xnky for n1 ≥ 2 and
ni ≥ 1 for i > 1 we define

ζ(w) = ζ(n1 + 1, . . . , nk + 1).

Moreover, we define ζ(∅) := 1 where ∅ denotes the empty word. Further, let B be the Q-vector
space of words in x, y and let Badm ⊆ B be the subspace of admissible words. By linearity the
above definition can be extended to B. On B the following product can be defined:

Definition 2.2. Let w,w′ ∈ B and α, α′ ∈ {x, y} a letter. Then we define the shuffle product
� of αw and α′w′ recursively by

αw� α′w′ = α(w� α′w′) + α′(αw� w′),

and w� 1 = 1� w = w.

The shuffle product is associative and commutative and corresponds to the sum of all possibilities
of interlacing the two words. Moreover, the map ζ : (Badm,�) → R is a homomorphism of
commutative algebras and extends uniquely to a morphism of algebras ζ : (B,�) → R such
that ζ(x) = ζ(y) = 0. The MZVs obtained like this, for non-admissible words, are being called
shuffle regularized multiple zeta values. The process of regularization is described by the following
lemma for n1 ≥ 1:

Lemma 2.3. Let w = xn1yxn2y . . . xnr−1yxnr with n1 ≥ 1 then

ζ(w) = (−1)nr
∑
ki≥ni∑
ki=
∑

ni

r∏
i=i

(
ki
ni

)
ζ(k1 + 1, . . . , kr + 1).

In particular, for the case of r = 4 we find for a word w = xayxbyxcyxd with a ̸= 0

ζ(w) = (−1)d
∑

0≤j+k≤d

(
a+ k

a

)(
b+ j

b

)(
c+ d− j − k

c

)
ζ(a+ k + 1, b+ j + 1, c+ d− j − k + 1)
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and in the case of r = 3 we find for w = xayxbyxc with a ̸= 0

ζ(xayxbyxc) = (−1)c
c∑
i=0

(
a+ i

a

)(
b+ c− i

b

)
ζ(a+ i+ 1, b+ c− i+ 1).

For a proof of this theorem see Lemma 2.3 in [19]. In the case of a word where n1 is not ≥ 1 we
can also apply the above formula to remove the xnr from the end. However, some terms of the
form ζ(1, . . .) will appear. These correspond to words yxm1yxm2y . . . yxmr−2y. For these words
we then apply the same idea as above, however now, to the y on the left. That is we expand
the shuffle product ζ(y � xm1y . . . xmk−2y) and then use the fact that this equals 0 to deduce
the formula. In the case that n1 to ni are all 0 this regularization with y needs to be applied
repeatedly until for all terms of ζ the leading argument is unequal 1. This procedure is best
demonstrated by an example:

Example 2.4. Consider the word y3x. To compute ζ(y3x) we need to apply shuffle regulariza-
tion as explained above. We get

0 = ζ(y3
� x) = ζ(xy3) + ζ(yxy2) + ζ(y2xy) + ζ(y3x)

and thus ζ(y3x) = −ζ(xy3) − ζ(yxy2) − ζ(y2xy). The first term on the left after the equality
is in admissible form and evaluates to ζ(2, 1, 1). The second and third term however still need
more work. We compute

0 = ζ(y� xy2) = ζ(yxy2) + 3 · ζ(xy3)⇒ ζ(yxy2) = −3 · ζ(xy3)

as well as

0 = ζ(y� yxy) = 2ζ(y2xy) + 2ζ(yxy2)⇒ ζ(y2xy) = −ζ(yxy2) = 3 · ζ(xy3),

where in the second equality after the implication we used the result from the previous equation.
This is necessary as ζ(yxy2) is not in admissible form and therefore the procedure needs to be
applied to it again. Finally, we get

ζ(y3x) = −ζ(xy3) + 3 · ζ(xy3)− 3 · ζ(xy3) = −ζ(2, 1, 1).

The relations ζ(w)ζ(w′) = ζ(w�w′) for w,w′ ∈ {x, y}∗ are called shuffle relations. Apart from
the shuffle relations there are two more types of relations between MZVs which we will now
present.

Definition 2.5. Let vi = xi−1y. The stuffle product ⋆ : B ×B → B is defined inductively by:

w ⋆ 1 = 1 ⋆ w = w for all w ∈ {x, y}∗

viw ⋆ vjw
′ = vi(w ⋆ vjw′) + vj(viw ⋆ w′) + vi+j(w ⋆ w′)

for all i, j ≥ 1 and w,w′ ∈ {x, y}∗. The stuffle relation is then:

ζ(w)ζ(w′) = ζ(w ⋆ w′).

Intuitively, this product comes from the representation of MZVs as nested sums. For example
it holds that ∑

k≥1

1
km

∑
l≥1

1
ln

=
∑
k<l

1
kmln

+
∑
l<k

1
kmln

+
∑
k=l

1
kmln

from which the following relation for MZVs follows ζ(m)ζ(n) = ζ(n,m) + ζ(m,n) + ζ(m+ n).
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Lastly, we have the regularization relation. Let w ∈ Badm, then it can be shown that y ⋆ w −
y � w ∈ Badm is also a linear combination of admissible words. The regularization relation (or
Hoffman relation) is then given by

ζ(y ⋆ w − y� w) = 0.

This is best illustrated by a simple example:

Example 2.6. Let w = xy. Then we have

y ⋆ xy = v1 ⋆ v2 = v1(1 ⋆ v2) + v2(v1 ⋆ 1) + v3(1 ⋆ 1) = yxy + xyy + xxy

as well as y� xy = yxy + 2xyy. The regularization relation is then

ζ(y ⋆ xy − y� xy) = ζ(xxy + xyy) = 0

which gives ζ(3) = ζ(2, 1).

Further, for odd MZVs of depth two and odd weight by applying the above described relations
the following parity theorem can be shown:

Theorem 2.7. The double zeta value ζ(n,m) (n ≥ 1, m ≥ 2) of weight n+m = k = 2K + 1 is
given in terms of products ζ(2s)ζ(k − 2s) (0 ≤ s ≤ K − 1) by

ζ(n,m) = (−1)m
K−1∑
s=0

[(
k − 2s− 1
m− 1

)
+
(
k − 2s− 1
n− 1

)
− δn,2s + (−1)mδs,0

]
ζ(2s)ζ(k − 2s).

A proof of this theorem can be found in [23, Section 5, Prop. 7].
It is conjectured that all algebraic relations over Q satisfied by the multiple zeta values are gen-
erated by the three types of relations given above (shuffle, stuffle, regularization). A conjectured
minimal basis of the MZVs for small weights is then given as in the table below.

Weight 1 2 3 4 5 6 7 8
ζ(2) ζ(3) ζ(4) ζ(5) ζ(6) ζ(7) ζ(8)

ζ(2)ζ(3) ζ(3)2 ζ(2)ζ(5) ζ(3)ζ(5)
ζ(3)ζ(4) ζ(3)2ζ(2)

ζ(5, 3)

Notice that up to weight 7 only single zetas appear. Then in weight 8 a new irreducible quantity
ζ(5, 3) appears. There are multiple conjectures on the dimension of the vector space spanned
by the ζ(w) ∈ R. This is best summarized by the reformulation in a specific Hopf algebra. Let
L denote the free Lie algebra generated by one element σ2n+1 in every odd degree −2n− 1 for
n ≥ 1 and no generators in the even degrees. Then, in decreasing weight, the underlying vector
space is generated by

σ3, σ5, σ7, [σ5, σ3], σ9, [σ7, σ3], σ11, [σ3, [σ3, σ5]], . . . .

Let M′ be the graded dual of the universal enveloping algebra of L, that is M′ is the set of all
non-commutative words in f2n+1 in degree 2n + 1 such that f2n+1 are dual to σ2n+1 equipped
with the shuffle product. Let f2 be a new generator in degree 2 which commutes with all the
other generators and define

M = Q[f2]⊗Q (Q ⟨f3, f5, f7, . . .⟩ ,�).
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The generators in each weight then match exactly with the table of MZVs above. Goncharov’s
conjecture from [14] is then:

Conjecture 2.8. The algebra spanned by the multiple zeta values over Q is isomorphic to M.

This for example implies, as M is graded by weight, that no algebraic relations between MZVs
of different weights should exist. On a side note, in [5] Brown introduced the motivic multiple
zeta values, that are period integrals over a specific pro-algebraic variety. For these the above
conjecture is a known theorem and motivic MZVs are a helpful tool to better understand the
relations between MZVs. To continue our exposition of MZVs we first need to digress and
introduce multiple polylogarithms and explain their connection to the MZVs. Then we are in a
place to define a subset of the MZVs known as single-valued multiple zeta values.

2.2 Polylogarithms

In this section we closely follow [4]. Let M be a smooth manifold and γ : [0, 1]→ M a smooth
curve on M . For smooth 1-forms ωi on M we denote the pullback γ∗(ωi) by fi(t) dt. Analogously
to the definition of a line integral on M we have:

Definition 2.9. The iterated integral of ω1, . . . , ωn along γ is defined by∫
γ
ω1 . . . ωn =

∫
0≤t1≤...≤tn≤1

f1(t1) . . . fn(tn) dt1 . . . dtn .

We can extend this definition by linearity and define the empty iterated integral (n = 0) to be
the constant function 1.

The following properties hold for iterated integrals:

Proposition 2.10. 1. The iterated integral
∫
γ ω1 . . . ωn is invariant under reparametrization

of γ.
2. Let γ−1(t) denote the inverse path γ(1− t) of γ then∫

γ−1
ω1 . . . ωn = (−1)n

∫
γ
ωn . . . ω1.

3. If α, β : I →M are two paths such that β(0) = α(1) and αβ denotes the path obtained by
first traversing α and then β. Then the iterated integral along αβ can be expressed as∫

αβ
ω1 . . . ωn =

n∑
i=0

∫
α
ω1 . . . ωi

∫
β
ωi+1 . . . ωn.

4. There is the shuffle product formula∫
γ
ω1 . . . ωr

∫
γ
ωr+1 . . . ωr+s =

∑
σ∈Σ(r,s)

∫
γ
ωσ(1) . . . ωσ(r+s),

where Σ(r, s) denotes the set of (r, s)-shuffles:

Σ(r, s) = {σ ∈ Σ(r + s) | σ−1(1) < . . . < σ−1(r) and σ−1(r + 1) < . . . < σ−1(r + s)}

that is all ways to interlace the sequences 1, . . . , r and r + 1, . . . , r + s and Σ(n) is the set
of all permutations of {1, . . . , n}.
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Classically, polylogarithms have been defined as the series

Lin(z) :=
∞∑
k=1

zk

kn

for n ≥ 1 which converges for |z| < 1 and thus defines a holomorphic function around the origin.
The polylogarithms are a generalization of Li1(z) = − log(1− z) and satisfy the differential
equations

d
dz Lin(z) = 1

z
Lin−1(z)

for n ≥ 2. Solving this differential equation we find that they can also be defined by

Lin(z) =
∫
γ

1
t

Lin−1(t) dt

where γ is a smooth path from 0 to z in C \ {0, 1}. This shows that the polylogarithms have an
analytic continuation to a multivalued function on C\{0, 1}. Let us define the following 1-forms

ω0 = dz
z

ω1 = dz
z − 1 .

Then by solving the recursion in the integral definition of Lin(z) we find that

Lin(z) = −
∫
γ
ω0 . . . ω0︸ ︷︷ ︸

n−1

ω1 = −
∫

1≥t1≥...≥tn≥0

dt1
t1

. . .
dtn−1
tn−1

z dtn
ztn − 1 .

This definition of polylogarithms can be extended to multiple polylogarithms:

Definition 2.11. Let n1, . . . , nr ∈ N. Then the multiple polylogarithms in one vairable are
defined by

Lin1,...,nr (z) =
∑

k1>...>kr≥1

zkr

kn1
1 . . . knr

r
.

These are often also referred to as hyperlogarithms.

Similarly to the case of classical polylogarithms, one finds that

d
dz Lin1,...,nr (z) =

1
z Lin1,...,nr−1(z) for nr > 1

1
z−1 Lin1,...,nr−1(z) for nr = 1.

as well as that the multiple polylogarithms can be written as iterated integrals

Lin1,...,nr (z) = (−1)r
∫
γ
ωn1−1

0 ω1 . . . ω
nr−1
0 ω1

where again γ is a smooth path in C \ {0, 1} from 0 to z. This defines an analytic continuation
of Lin1,...,nr on C \ {0, 1}. Finally, notice that all these integrals end with ω1. Therefore, it is
natural to define the integrals ending with ω0. This can be done more generally by considering
again the vector space B of words in x, y over Q. Then for a word w = xn1−1y . . . xnr−1y we let

Liw(z) = (−1)r
∫ z

0
ωn1−1

0 ω1 . . . ω
nr−1ω1.

and extend this definition by linearity over words. By the shuffle product formula for iterated
integrals we have

Liu(z) Liv(z) = Liu�v(z).
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Finally, as every word in B can be written as a unique sum of shuffles

w =
k∑
i=0

wi � xi.

where wi ∈ Badm we can extend this definition of Liw to all words w ∈ B by setting

Lixn(z) =
∫
γ
ω0 . . . ω0︸ ︷︷ ︸

n

= 1
n! logn(z)

and then defining Liw(z) = ∑k
i=0 Liwi(z) Lixi(z). With this definition the multiple polyloga-

rithms can be described as the unique solution to the differential equations

d Liw0 (z) = ω0 Liw(z) and d Liw1 (z) = ω1 Liw(z)

with the constraints limz→0 Liw(z) = 0 for all words w ̸= xn and Lixn(z) = 1
n! logn(z). We can

also consider the generating series of the Liw(z) :

L(z) :=
∑

w∈{x,y}∗

Liw(z)
(2πi)|w|w.

That is L(z) defines a multivalued function on M taking values in C⟨⟨x, y⟩⟩ and satisfies the
differential equation

d
dzL(z) = 1

2πi

(
x

z
+ y

z − 1

)
L(z).

This equation is also known as the Knizhnik-Zamolodchikov equation (short KZ-equation).
The above constraints can then be written as L(z) ∼ exp(x log(z)) as z → 0, this means
that there exists a C⟨⟨x, y⟩⟩-valued function h(z), holomorphic around the origin, such that
L(z) = h(z) exp(x log(z)) for z near 0 and h(0) = 1. This condition uniquely determines the
solution L(z) to the KZ-equation. Similarly, one finds another solution L1(z) to the KZ-equation
satisfying

L1(z) ∼ exp(y log(1− z)) as z → 1.

This series has leading term 1 and is thus invertible. It is custom to then consider the parallel
transport:

Φ(z) = (L1(z))−1L(z).

From differentiating L1(z)Φ(z) = L(z) one finds that dΦ(z) = 0 and thus Φ(z) is a constant
series denoted by ΦKZ(x, y) ∈ C⟨⟨x, y⟩⟩ called the KZ-associator. This series is a Drinfel’d
associator as defined in Section 2.5 and we will come back to it there. For now notice that this
series can be written as

ΦKZ(x, y) = lim
z→1−

exp(−y log(1− z))L(z).

From the constraint for L1(z) it follows that every multiple polylogarithm Liw(z) has a canonical
branch for z ∈ (0, 1), which can be written as

Liw(z) = a0(z) + a1(z) log(1− z) + . . .+ a|w|(z) log|w|(1− z)

where ai(z) is holomorphic in a neighbourhood of 1. We can then define the regularized value
at 1 as

Regz=1 Liw(z) = a0(1),

and find that ΦKZ(x, y) is the generating series of these regularized values (up to the (2πi)|w| ).
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This leads us back to the multiple zeta values, notice that for all words w ∈ Badm the Liw(z)
converge at the point z = 1 and we have ζ(w) = Liw(z). One can then further show that for all
words w ∈ B it holds that

ζ(w) = Regz=1 Liw(z),

and thus the multiple polylogarithms evaluated at 1 give an alternative definition of the MZVs.
In particular the KZ-associator can be written as

ΦKZ(x, y) =
∑

w∈{x,y}∗

ζ(w)
(2πi)|w|w.

2.3 Single-valued MZVs

In this section we mostly follow [7] and [6]. We can now turn to the definition of single-valued
MZVs. For this consider again ΦKZ . Then it was shown in [6] that there exists a unique element
y′ ∈ C⟨⟨x, y⟩⟩ satisfying the fixed-point equation

ΦKZ(−x,−y′)y′ΦKZ(−x,−y′)−1 = ΦKZ(x, y)yΦKZ(x, y)−1.

The generating series for single-valued multiple polylogarithms can then be given by

L(z) = L̃−x,−y′(z)−1Lx,y(z).

where ˜ denotes the reversal of words. We define Lw(z) to be the coefficients of the expansion
of the generating series

L(z) =
∑
w∈B

Lw(z)
(2πi)|w|w.

The Lw(z) are all single-valued functions of z, are linearly independent over C, and satisfy the
same shuffle relations and differential equations with respect to ∂

∂z as the Lw(z). The value at
1 of the generating series is given by

L(1) = ΦKZ(−x,−y′)−1ΦKZ(x, y).

The single-valued multiple zeta values ζsv(w) are then defined as the coefficients of this series

Φsv
KZ := L(1) =

∑
w∈B

ζsv(w)
(2πi)|w|w

which we also call the single-valued KZ-associator as it can also be obtained from ΦKZ by
replacing every ζ(w) by its single-valued counterpart ζsv(w). Let us denote by Zsv ⊆ Z the
subalgebra of Z spanned by the ζsv(w). The single-valued MZVs satisfy the same double shuffle
and associator relations as usual MZVs and many more: For example we have that ζsv(2) = 0
(and thus also ζsv(2n) = 0 for all n ≥ 1 ) as well as

ζsv(2n+ 1) = 2ζ(2n+ 1) for all n ≥ 1
ζsv(3, 5) = 14ζ(3)ζ(5)

ζsv(5, 3, 3) = 2ζ(5, 3, 3)− 5ζ(3)2ζ(5)
ζsv(5, 5, 3) = 2ζ(5, 5, 3) + 50ζ(3)ζ(5)2 + 10ζ(5, 3)ζ(5)
ζsv(7, 3, 3) = 2ζ(7, 3, 3)− 14ζ(3)2ζ(7) + 60ζ(3)ζ(5)2 + 12ζ(5, 3)ζ(5)

Remark 2.12. Later we are also going to need the following expansion of Lw(z) for words w =

13



0n10m in terms of Li’s:

L0n10m =
n∑
k=0

(−1)k+1
(
m+ k

m

)
ln(zz)n−k

(n− k)! Lim+k+1(z)

+
m∑
k=0

(−1)k+1
(
n+ k

n

)
ln(zz)m−k

(m− k)! Lin+k+1(z)

which was shown in [19, Example 2.10]. From this we deduce that L0n10m(z) = L0m10n(z) for
n,m ∈ N0.

In [7] Brown also gives algebra generators of Zsv for small weights:

N 3 5 7 9 11 13
Generators ζsv(3) ζsv(5) ζsv(7) ζsv(9) ζsv(11) ζsv(13)

of ζsv(5, 3, 3) ζsv(5, 5, 3)
Zsv ζsv(7, 3, 3)

Remember now the Hopf algebra M from the end of Section 2.1. Let U := Q ⟨f3, f5, f7, . . .⟩.
Then there is a map sv : M→ U that sends sv(w) = 0 for all w ∈ M such that f2 is a letter in
w and

sv(w) =
∑
uv=w

u� ṽ

for every other w ∈ U where ˜ denotes the reversal of words and extend this by linearity. One
can then show that Im(sv) = Zsv. Thus, under the assumption that Conjecture 2.8 holds this
gives a map from Z → Zsv which we will call the single-valued map. By way of example we
have

sv(fa) = 2fa, sv(fafb) = 2(fafb + fbfa)
sv(fafbfc) = 2(fafbfc + fafcfb + fcfafb + fcfbfa)

with odd a, b, c ≥ 3. In general sv can be computed via the recursion

sv(fawfb) = fa sv(wfb) + fb sv(faw)

for w ∈ {f2n+1}∗. From this, the above described relations between the single-valued MZVs can
easily be calculated. Coming back to the definition of L(z) Brown showed in [7] that y′ = ψyψ−1

and thus that

Theorem 2.13.
Φsv
KZ = L(1) = ψ

As an example we are interested in computing ζsv(w) for words of depth 2. For odd length words
we have:

Theorem 2.14. Let w = xayxbyxc be a word of depth 2 of odd length |w| = 2n + 1. Then we
have that

ζsv(w)
(2πi)|w| =

(
(−1)a+1

(
2n
a

)
+ (−1)b

(
2n
b

)
+ (−1)c+1

(
2n
c

))
ζ(2n+ 1)
(2πi)2n+1 .
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Proof. Let 2n+ 1 be the length of w. First assume that a ̸= 0. In this case we have

ΦKZ(w) = ζ(w)
(2πi)2n+1 = (−1)c

c∑
i=0

(
a+ i

a

)(
b+ c− i

b

)
ζ(a+ i+ 1, b+ c− i+ 1)

(2πi)2n+1

= (−1)c
c∑
i=0

n−1∑
s=0

(
a+ i

a

)(
b+ c− i

b

)
(−1)b+c−i+1

((
2n− 2s
b+ c− i

)
+
(

2n− 2s
a+ i

)
− δa+i+1,2s + (−1)b+c−i+1δs,0

)
ζ(2s)ζ(2n− 2s+ 1)

(2πi)2n+1

where we used the shuffle regularization Lemma 2.3 in the first equality and the parity theorem
2.7 in the second equality. If we consider Φsv

KZ notice that for s ̸= 0 the expression contains
ζ(2s) and thus vanishes. Therefore, we find

Φsv
KZ(w) =

c∑
i=0

(
a+ i

a

)(
b+ c− i

b

)
(−1)b−i

((
2n

b+ c− i

)
︸ ︷︷ ︸

(I)

+
(

2n
a+ i

)
︸ ︷︷ ︸

(II)

+ (−1)b+c−i+1︸ ︷︷ ︸
(III)

)
ζ(2n+ 1)
(2πi)2n+1

where we used that ζ(0) = −1
2 and ζsv(2n + 1) = 2ζ(2n + 1). Now we can consider the three

parts (I), (II), (III) of the sum separately. Moreover, in the following we are going to omit the
term ζ(2n+ 1)/(2πi)2n+1. We find for (II):

(−1)b
c∑
i=0

(−1)i
(
a+ i

a

)(
2n
a+ i

)(
b+ c− i

b

)
= (−1)b

(
2n
a

)
b+c∑
i=0

(
2n− a
i

)(
b+ c− i

b

)

= (−1)b
(

2n
a

)(
−1
c

)
= (−1)a+1

(
2n
a

)

where in the first equality we used the first identity from Lemma 1.3 with n = 2n, k = i and
h = a as well as that for i > c the sum vanishes. In the second equality we used the second
identity from Lemma 1.3 with m = b, k = i, r = b+ c, s = 2n− a and t = 0. Finally, in the last
equality we used the fifth identity from Lemma 1.3 as well as that c+ b = 2n− 1− a.
For (I) notice that by applying the substitution i 7→ c− j we get

(−1)a+1
c∑
i=0

(−1)i
(
b+ i

b

)(
2n
b

)(
a+ c− i

a

)
= (−1)b

(
2n
b

)

where we observed that the expression on the left is the same as the one for (I) (up to the sign)
with a and b exchanged and thus we get the result on the right.
Finally for (III) we have:

(−1)c+1
b∑
i=0

(
a+ i

a

)(
b+ c− i

b

)
= (−1)c+1

(
a+ b+ c+ 1
a+ b+ 1

)
= (−1)c+1

(
2n
c

)

where we used the sixth identity from Lemma 1.3 with b = a,m = a, r = b+ c, s = a as well as
that a+ b+ c+ 1 = 2n. Combining all the above this shows the result for the case of a ̸= 1.
In the case of a = 0 we also apply shuffle regularization however one term will appear with the
word ζ(yxb+cy). This term then also needs to be shuffle regularized from the left by y and gives
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the second sum in the below expression. In total we have:

ΦKZ(w) = (−1)c
c∑
i=1

(
0 + i

0

)(
b+ c− i

b

)
ζ(0 + i+ 1, b+ c− i+ 1)

(2πi)2n+1

− (−1)c
(
b+ c

b

)(
b+c∑
i=1

ζ(i+ 1, b+ c− i+ 1)
(2πi)2n+1 + ζ(b+ c+ 1, 1)

(2πi)2n+1

)
.

Notice that the first sum is the same as in the case of a ̸= 0 with the only difference being the
lower bound for i. We can thus consider Φsv

KZ and then replace this by the expression found
above minus the terms corresponding to i = 0. This yields

Φsv
KZ(w) =

(
(−1)0+1

(
2n
0

)
+ (−1)b

(
2n
b

)
+ (−1)c+1

(
2n
c

))
ζ(2n+ 1)
(2πi)2n+1

− (−1)b
(
b+ c

b

)((
2n
b+ c

)
︸ ︷︷ ︸

(I)

+ 1 + (−1)b+c+1︸ ︷︷ ︸
(II)

)
ζ(2n+ 1)
(2πi)2n+1

− (−1)c
(
b+ c

b

)
b+c∑
i=1

ζsv(i+ 1, b+ c− i+ 1)
(2πi)2n+1︸ ︷︷ ︸

(III)

+ ζsv(b+ c+ 1, 1)
(2πi)2n+1︸ ︷︷ ︸

(IV )

.

Let us first simplify the term (IV ) by applying the parity theorem and using that ζsv(2s) = 0
for s > 0. We get:

(−1)c
(
b+ c

b

)
ζsv(b+ c+ 1, 1)

(2πi)2n+1 = (−1)c
(
b+ c

b

)(
1 +

(
2n
b+ c

)
− 1

)
ζ(2n+ 1)
(2πi)2n+1 .

which as c = 2n− 1− b cancels (I). Next let us investigate (III). Applying the parity theorem
and once again noticing that only the terms for s = 0 contribute due to the single-valuedness
we find for (III):

(−1)c
(
b+ c

b

)
b+c∑
i=1

ζsv(i+ 1, b+ c− i+ 1)
(2πi)2n+1

= (−1)b
(
b+ c

b

)
b+c∑
i=1

(−1)i
((

2n
b+ c− i

)
+
(

2n
i

)
+ (−1)b+c−i+1

)
ζ(2n+ 1)
(2πi)2n+1

= (−1)b
(
b+ c

b

)(
2n− 1 +

2n−1∑
i=1

(−1)i
(

2n+ 1
i+ 1

))
ζ(2n+ 1)
(2πi)2n+1

= (−1)b
(
b+ c

b

)(
2n− 1− (−1)2n+1

(
2n+ 1
2n+ 1

)
−
(

2n+ 1
2n

)
−
(

2n+ 1
0

))
ζ(2n+ 1)
(2πi)2n+1

= 2 · (−1)b+1
(
b+ c

b

)
ζ(2n+ 1)
(2πi)2n+1

where in the second equality we used that b+ c = 2n− 1 as well as that
( 2n
i+1
)

+
(2n
i

)
=
(2n+1
i+1

)
.

In the third equality we used the third identity from Lemma 1.3 and as the sum is not from 0
to 2n+ 1 we got the three extra binomial coefficients. Now noticing that for (II) we have

(−1)b
(
b+ c

b

)
(1 + (−1)b+c+1)ζ(2n+ 1)

(2πi)2n+1 = 2 · (−1)b
(
b+ c

b

)
ζ(2n+ 1)
(2πi)2n+1
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as b+ c+ 1 = 2n, we see that (III) cancels with (II). Thus, what remains is

ζsv(w)
(2πi)|w| =

(
(−1)a+1

(
2n
a

)
+ (−1)b

(
2n
b

)
+ (−1)c+1

(
2n
c

))
ζ(2n+ 1)
(2πi)2n+1

for a = 0 which proves the theorem.

For even length words in depth 2 the parity theorem cannot be used. However, in Theorem 3.5
we describe a formula for calculating the depth 2 coefficients of ψ. From this and Theorem 2.13
a formula can easily be deducted:

Theorem 2.15. Let w = xayxbyxc be a word of depth 2 of even length |w| = 2n. Then we have

ζsv(w)
(2πi)|w| = 4

∑
l+m=n−1

(
(−1)a+c

(
2l
a

)(
2m
c

)
+ (−1)a+b

(
2l
b

)(
2m
a

)

−(−1)b+c
(

2l
b

)(
2m
c

))
ζ(2l + 1)ζ(2m+ 1)

(2πi)2n .

In Proposition 3.7 we are also explicitly going to compute the depth 2 coefficients of ψ for odd
length words thus showing Theorem 2.13 by example for the case of odd length depth 2 words.

2.4 Integrating the wheel graph

To apply the above introduced concepts of (single-valued) polylogarithms and MZVs we can
now integrate the wheel graph as given in Figure 2 via equation (1) introduced by Rossi and
Willwacher in [18] to obtain the corresponding coefficient in τ t. For the definition of an order
on the edges of a graph see Section 4. We denote by |e| the order number of the edge e.

1

235

7

4

6

2V

2V
−

1

2V − 2

2V
−

3

0
1

z1z2

z3

zVzV −1

Figure 2: The V -wheel graph embedded into C fixed at 0 and 1

Theorem 2.16. Let V ∈ N and denote by Γ the wheel graph on V + 1 vertices as described in
Figure 2. Then for even V , cΓ = 0 and for V = 2k + 1 odd it holds that

cΓ = 2(4k + 1)
(

4k
2k

)
ζ(2k + 1)
(2πi)2k+1 .

Proof. Let V ∈ N denote the number of vertices of G minus 1 as in the theorem. We need to
compute the integral from equation (1) for the wheel as shown in Figure 2. We can use the
section of ConfV+1 → CV+1/S

1 which identifies CV+1/S
1 with ConfV−1(C \ {0, 1}) by fixing
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the first point of the configuration at z0 = 0 and the second at z1 = 1 for us this corresponds to
the center vertex and the most right vertex respectively. Denote all other points by z2, . . . , zV
corresponding to vertices as shown in Figure 2. Considering the integrand for the sum over
edges e only the term with e = (0, 1) contributes, as we fixed the position of those two points.
With this we find that o(e, e′) = (−1)e′−1.
Further let us denote by wx(z) the 1-form dz

z−x and let us call the edge e′ the special edge. Since
ConfV−1(C\{0, 1}) is a complex manifold only terms with an equal number of holomorphic and
antiholomorphic form components contribute (cf. [16], Section 6.6.1) and we can replace the
d log’s with d arg’s. Moreover,

d arg(|z − y|) = wy(z) + wz(y)− wy(z)− wz(y).

Then our expression reduces to

cΓ = 4V−1

22V−2

∫
CV

∑
e′ ̸=(0,1)

(−1)e−1 1
2πi log

(∣∣∣zs(e′) − zt(e′)

∣∣∣2) ∧
e∈E\{e′,(0,1)}

1
2πid arg

(∣∣∣zs(e) − zt(e)∣∣∣2) .
The idea of the integration is now as follows. We define two functions f(k) and f̃(k). Here f(k)
describes the result of integrating out the first k vertices in the case that the special edge does
not appear as any of those edges. That is, f(0) is defined as the 1-form

f(0)(z2) = d arg(|z2 − 1|2) = w1(z2)− w1(z2)

and f(k) can recursively be defined by

f(k)(zk+2) = 1
2πi

∫
zk+1

f(k − 1)(zk+1) ∧ d arg(|zk+1|2) ∧ d arg(|zk+1 − zk+2|2)

where the integration domain is C \ {0, 1, zk+2} with zk+2 ̸= 0, 1. However, by standard argu-
ments we can integrate over C. This will be done throughout this proof and for the conciseness
of the text not be mentioned anymore.
The function f̃(k) describes the result of integrating out the first k − 1 vertices for all ways
that the special edge e′ can appear as an edge between those vertices. That is, f̃ is recursively
defined by

f̃(1)(z2) = − log
(
|z2 − 1|2

)
= −L1(z2)

and

f̃(k)(zk+1) = 1
2πi

∫
zk∈C

f̃(k − 1)(zk) ∧ d arg(|zk|2) ∧ d arg(|zk − zk+1|2)

+ log
(
|zk|2

)
f(k − 2)(zk) ∧ d arg(|zk − zk+1|2)

− log
(
|zk − zk+1|2

)
f(k − 2)(zk) ∧ d arg(|zk|2),

where the first term represents the case that the special edge already occurred before this vertex,
the second term describes the situation where the special edge is the edge (zk, 0) and the final
term describes the situation where the special edge is (zk, zk+1). We find the following two
formulas for these functions:
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Claim 2.17.

f(k)(zk+2) = L0k(zk+2)w1(zk+2) + (−1)k+1L0k(zk+2)w1(zk+2)

+
∑

n+m=k−1
L0n10m(zk+2)(−1)m+1

((
k

m

)
w0(zk+2) +

(
k

n

)
w0(zk+2)

)
.

Claim 2.18.

f̃(k)(zk+1) = (2k − 1)
∑

n+m=k−1
(−1)m+1

(
k − 1
n

)
L0n10m(zk+1).

Before we prove these claims we finish the main proof. Notice that the integrand can be expressed
by

1
(2πi)V f̃(V )(1).

For even wheels i.e. V is even this is 0 as L(0n10m)(1) = ζsv(0n10m) which means that f̃(V )(1) =
0 as only even single-valued zetas appear which are all 0. In the case of odd wheels i.e. V = 2k+1
for k ∈ N the expression is

(4k + 1)
∑

n+m=2k
(−1)n

(
2k
n

)
ζsv(0n10m)
(2πi)2k+1 = (4k + 1)

2k∑
n=0

(
2k
n

)2
ζsv(2k + 1)
(2πi2k+1 ,

where we applied shuffle regularization. Using the special case of the Chu-Vandermonde identity∑m
j=0

(m
j

)2 =
(2m
m

)
we find that this equals

(4k + 1)
(

4k
2k

)
ζsv(2k + 1)
(2πi)2k+1

now from ζsv(2k + 1) = 2ζ(2k + 1) the result follows.

Before we start with the proofs of the claims we are going to need the following identity:

Lemma 2.19. Let z, a, b ∈ C. Then

d log(z − a) ∧ d log(z − b) = d log
(
z − a
z − b

)
∧ d log(a− b).

Proof. First observe by partial fraction decomposition that

1
(z − u)(z − v) = 1

(z − u)(u− v) + 1
(z − v)(v − u) .

If we now expand the left side d log(z − a) ∧ d log(z − b) we get

(wa(z) + wz(a)) ∧ (wb(z) + wz(b)) = wa(z) ∧ wz(b) + wz(a) ∧ wb(z) + wz(a) ∧ wz(b).

Now

wa(z) ∧ wz(b) = 1
(z − a)(b− z)dz ∧ db = −

( 1
(z − a)(a− b) + 1

(z − b)(b− a)

)
dz ∧ db

= wa(z) ∧ wa(b)− wb(z) ∧ wa(b) = (wa(z)− wb(z)− wz(b)) ∧ wa(b)

where in the second equality we used the observation from above and in the last equality we
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Figure 3: The boundary curve η = Γ ∪ γ1 ∪ γ2.

subtracted the vanishing term wz(b) on the left. Similarly, we find

wz(a) ∧ wb(z) = (wa(z) + wz(a)− wb(z)) ∧ wb(a)
wz(a) ∧ wz(b) = wz(a) ∧ wa(b)− wz(b) ∧ wb(a).

Adding up all the terms we get

(wa(z) + wz(a)− wb(z)− wz(b)) ∧ (wa(b) + wb(a)) = (d log(z − a)− d log(z − b)) ∧ d log(a− b)

which shows the desired result.

Proof of the first claim. We are going to proof the claim by induction. The base case of k = 0
follows trivially as we only get the contribution from the edge (z2, 1) which is given by

f(0) = w1(z2)− w1(z2).

For the induction step assume the formula holds for k. Let us write z := zk+1 and y := zk+2.
Let w ∈ {0, 1}∗ containing at most one 1 and a ∈ {0, 1}. Then

1
2πi

∫
z∈C
Lw(z)wa(z) ∧ d arg(|z|2) ∧ d arg(|z − y|2)

= 1
2πi

∫
z∈C
Lw(z)

wa(z) ∧ w0(z) ∧ wz(y)︸ ︷︷ ︸
(I)

+w0(z) ∧ wa(z) ∧ wz(y)︸ ︷︷ ︸
(II)

 .
Let us consider the first term (I). We apply Stokes’ theorem as well as Lemma 2.19 to obtain

1
2πi

∫
η
Lwa(z)w0(z) ∧ wz(y) = 1

2πi

∫
η
Lwa(z)(w0(z)− wy(z)) ∧ w0(y)

where we use the curve η as shown in Figure 3 consisting of Γ a circle of radius R and little
circles of radius r cutting out the problematic points. Now:

lim
r→0

1
2πi

∫
γ1
Lwa(z)w0(z) ∧ w0(y) = lim

r→0

−1
2πi

∫ 2π

0
Lwa(reiφ) 1

re−iφ (−ire−iφ)dφ ∧ w0(y)

= Lwa(0)w0(y) = 0,

where we used the substitution to polar coordinates z = re−iφ and the minus in front of the
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integral comes from the orientation. In the last equality we just used the fact that Lwa(0) = 0.
Similarly, we obtain

lim
r→0

1
2πi

∫
γ2
−Lwa(z)wy(z) ∧ w0(y) = −Lwa(y)w0(y).

As r → 0 the first term w0(z) integrated around γ2 and the second term wy(z) integrated around
γ1 give 0; basically as rLwa(r)→ 0 as r → 0. What remains is to calculate the integral around
Γ as R→∞ which in a similar fashion as to above gives:

lim
R→∞

1
2πi

∫
Γ
Lwa(z)(w0(z)− wy(z)) ∧ w0(y) = lim

R→∞

1
2πi

∫
Γ
−Lwa(z)

y

z(z − y)dz ∧ ω0(y)

= lim
R→0

1
2πi

∫
Γ
Lwa

( 1
w

)
y

1− ywdw ∧ w0(y)

= lim
R→0

i

2πi

∫ 2π

0
Lwa

( 1
Reiφ

)
Re−iφy

1− yRe−iφdφ ∧ w0(y)

= 0,

where we used the substitution z 7→ 1
w in the second equality and the substitution w 7→ Re−iφ

in the third equality. The last equality now follows as Lwa
(
R−1e−iφ) behaves at worst like

log
(
R−1e−iφ)k for small R and k ∈ N0. Then, as for R → 0, R log

(
Reiφ

)k → 0 for any k, it
follows that the expression vanishes.
Collecting all terms we find that the integral (I) gives in total −Lwa(y)w0(y). In the following,
we are not going to write out the precise calculations after applying Stokes’ theorem anymore
as they are rather repetitive. In an abuse of notation we are suggestively going to write γ in the
integral boundaries for an appropriate curve cutting out the problematic points of each term
and going once around everything. With this we find for the integral of (II):

1
2πi

∫
z∈C
Lw(z)w0(z) ∧ wa(z) ∧ wz(y) = 1

2πi

∫
γ
L0w(z)wa(z) ∧ wz(y) = L0w(y)wa(y).

where in the first equality we used Remark 2.12 as well as the defining differential equation for
single-valued polylogarithms. Combining all the above we have:

1
2πi

∫
z∈C
Lw(z)wa(z) ∧ d arg(|z|2) ∧ d arg(|z − y|2) = −Lwa(y)w0(y) + L0w(y)wa(y).

Similarly to this, one finds that

1
2πi

∫
zk∈C

Lw(z)wa(z) ∧ d arg(|z|2) ∧ d arg(|z − y|2) = −Lw0(y)wa(y) + Law(y)w0(y).

By using the definition of f(k + 1) and integrating using the above we find

f(k + 1)(y) = 1
2πi

∫
z∈C

f(k)(z) ∧ d arg(|z|2) ∧ d arg(|z − y|2)

= L0k+1(y)w1(y)− L0k1(y)w0(y) + (−1)k+2L0k+1(y)w1(y) + (−1)k+1L10k(y)w0(y)

+
∑

n+m=k−1
L0n10m+1(y)w0(y)(−1)m+2

((
n+m+ 1

n

)
+
(
n+m+ 1

m

))

+L0n+110m(y)w0(y)(−1)m+1
((

n+m+ 1
n

)
+
(
n+m+ 1

m

))
.

Let us only consider the first part of the sum and the term L0k1(y) then by substituting m 7→
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m− 1 we have

−L0k1(y)w0(y) +
∑

n+m=k−1
L0n10m+1(y)w0(y)(−1)m+2

((
n+m+ 1

n

)
+
(
n+m+ 1

m

))

= −L0k1w0(y) +
∑

n+m−1=k−1
m>0

L0n10m(y)w0(y)(−1)m+1
(
n+m+ 1

m

)

=
∑

n+m=k
L0n10m(y)w0(y)(−1)m+1

(
n+m+ 1

m

)

where we used the substitution as well as
(n+m

n

)
+
(n+m
m−1

)
=
(n+m+1

m

)
in the first equality. Similarly,

by substituting n 7→ n− 1 one shows for the second part of the sum and the term with L10k(y)
that

(−1)k+1L10k(y)w0(y) +
∑

n+m=k−1
L0n+110m(y)w0(y)(−1)m+1

((
n+m+ 1

n

)
+
(
n+m+ 1

m

))

=
∑

n+m=k
L0n10m(y)w0(y)(−1)m+1

(
n+m+ 1

n

)

Combining these two results and plugging them in shows the formula for the case of f(k + 1)
and thus concludes the induction.

Prof of the second claim. The base case for k = 1 is trivial as in this case the only possibility is
that the edge (z2, 1) is the special edge and thus we have

f̃(1)(z2) = −L1(z2).

For the induction step assume the formula holds for k. Let us write z := zk+1 and y := zk+2.
We will first compute the integrals for the separate terms. Let w ∈ {0, 1}∗ containing precisely
one 1. We find for the integral

1
2πi

∫
z∈C
Lw(z)d arg(|z|2) ∧ d arg(|z − y|2) = 1

2πi

∫
z∈C
Lw(z)(w0(z)− w0(z)) ∧ (wy(z)− wy(z))

= 1
2πi

∫
γ
−Lw0(z)wy(z)− L0w(z)wy(z) = L0w(y)− Lw0(y).

In the induction step this integral can be used for the part where f̃ is integrated over the next
vertex and the special edge has already appeared before. Consider now the case where the
special edge appears at this vertex going to 0. The integrals in question are then

1
2πi

∫
z∈C
Lw(z)w0(z) log

(
|z|2

)
d arg(|z − y|2) = 1

2πi

∫
z∈C
−Lw(z)L0(z)w0(z) ∧ wy(z)

= 1
2πi

∫
z∈C
−Lw�0(z)w0(z) ∧ wy(z)

= 1
2πi

∫
z∈C

(−(n+ 1)L0n+110m(z)− (m+ 1)L0n10m+1(z))w0(z) ∧ wy(z)

= −(n+ 1)L0n+110m+1(y)− (m+ 1)L0n10m+2(y).
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Similarly, one obtains

1
2πi

∫
z∈C
Lw(z)w0(z) log

(
|z|2

)
d arg(|z − y|2) = −(n+ 1)L0n+210m(y)− (m+ 1)L0n+110m+1(y)

1
2πi

∫
z∈C
L0k(z)w1(z) log

(
|z|2

)
d arg(|z − y|2) = −(k + 1)L0k+11(y)

1
2πi

∫
z∈C
L0k(z)w1(z) log

(
|z|2

)
d arg(|z − y|2) = −(k + 1)L10k+1(y).

Finally, the last integral we need to compute is the case of the special edge appearing at this
vertex and going to the next vertex which has not been integrated yet. Let w ∈ {0, 1}∗ with at
most one 1 and a ∈ {0, 1}. Then the integral we consider is

1
2πi

∫
z∈C
Lw(z)wa(z) log

(
|z − y|2

)
d arg(|z|2) = 1

2πi

∫
z∈C
−Lw(z)L0(z − y)wa(z) ∧ w0(z)

= 1
2πi

∫
γ
−Lwa(z)L0(z − y)w0(z)︸ ︷︷ ︸

=0

+ 1
2πi

∫
z∈C
Lwa(z)wy(z) ∧ w0(z)

= 1
2πi

∫
γ
L0wa(z)wy(z) = L0wa(y).

where we used partial integration in the second equality and the marked term vanishes as
Lwa(0) = 0. Similarly, one finds

1
2πi

∫
z∈C
Lw(z)wa(z) log

(
|z − y|2

)
d arg(|z|2) = Law0(y).

With these integrals now pre-computed we find for f̃ :

f̃(k + 1)(y) =
∫
z∈C

f̃(k)(z) ∧ d arg(|z|2) ∧ d arg(|z − y|2)

+ log
(
|z|2

)
f(k − 1)(z) ∧ d arg(|z − y|2)− log

(
|z − y|2

)
f(k − 1)(z) ∧ d arg(|z|2)

= (2k − 1)
∑

n+m=k−1
(L0n+110m(y)− L0n10m+1(y))(−1)m+1

(
k − 1
n

)
− kL0k1(y)− (−1)kkL10k(y)

+
∑

n+m=k−2
(−1)m+2

(
(n+ 1)

(
k − 1
m

)
L0n+210m(y)

+
(

(n+ 1)
(
k − 1
n

)
+ (m+ 1)

(
k − 1
m

))
L0n+110m+1(y) + (m+ 1)

(
k − 1
n

)
L0n10m+2(y)

)

− L0k1(y)− (−1)kL10k(y) +
∑

n+m=k−2
L0n+110m+1(y)(−1)m+2

((
k − 1
n

)
+
(
k − 1
m

))
.

Substituting n and m such that everywhere the word L0n+i10m+j (y) becomes L0n10m(y) and then
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separating out the terms for m = 0 and n = 0 where they appear we obtain

(2k − 1)
∑

n+m=k
n≥1,m≥1

(−1)m+1L0n10m(y)
(
k

n

)
− (2k + 1)(L0k1(y)− (−1)k+1L10k(y))

+
∑

n+m=k
n≥1,m≥1

L0n10m(y)(−1)m+1
(

(n+ 1)
(
k − 1
n− 1

)
+ (m+ 1)

(
k − 1
m− 1

))

+
∑

n+m=k
n≥2,m≥1

L0n10m(y)(−1)m+2(n− 1)
(
k − 1
n− 1

)
+

∑
n+m=k
n≥1,m≥2

L0n10m(y)(−1)m+2(m− 1)
(
k − 1
m− 1

)
.

Notice that both sums in the last line can be extended to n = 1 and m = 1 respectively as these
terms are 0. Thus, gathering together the second and third line we obtain

(2k − 1)
∑

n+m=k
n≥1,m≥1

(−1)m+1L0n10m(y)
(
k

n

)
− (2k + 1)(L0k1(y)− (−1)k+1L10k(y))

+
∑

n+m=k
n≥1,m≥1

L0n10m(y)(−1)m+1
(

2
(
k − 1
n− 1

)
+ 2

(
k − 1
m− 1

))

= (2k + 1)
∑

n+m=k
n≥1,m≥1

(−1)m+1L0n10m(y)
(
k

n

)
− (2k + 1)(L0k1(y)− (−1)k+1L10k(y))

= (2k + 1)
∑

n+m=k
(−1)m+1L0n10m(y)

(
k

n

)
.

where we used
(k−1
n−1

)
+
( k−1
m−1

)
=
(k
n

)
in the first equality. This concludes the proof.

2.5 Drinfel’d associators and the Grothendieck-Teichmüller Lie algebra

In the 1980s Drinfel’d develeoped most of the following notions in [11]. Here we mostly follow
M. Felder’s exposition in [12].

Definition 2.20. A Drinfel’d associator is a pair (µ,Φ) ∈ K× ×K⟨⟨x, y⟩⟩ such that Φ is group-
like, that is ∆(Φ) = Φ⊗̂Φ and satisfies the following equations

Φ(x, y) = ϕ(x, y)−1

e
µ
2AΦ(x, y)e

µ
2BΦ(y, z)e

µ
2CΦ(z, x) = 1

Φ(t23, t34)Φ(t12 + t13, t24 + t34)Φ(t12, t23) = Φ(t12, t23 + t24)Φ(t13 + t23, t34).

where A+ B + C = 0 and the last equation takes values in the universal enveloping algebra of
the Drinfel’d-Kohno Lie algebra t4. We denote the set of these associators by DAss and write
Φ(w) for the coefficient of w in the series expansion of Φ.

Here the Drinfel’d-Kohno Lie algebra is defined as follows:

Definition 2.21. Let k ≥ 2. Then the Drinfel’d-Kohno Lie algebra tk is the free Lie algebra
spanned by generators tij with 1 ≤ i ̸= j ≤ k, modulo the following relations:

tij = tji [tij , tkl] = 0 for {i, j} ∩ {k, l} = ∅ [tij , tik + tjk] = 0 for k ̸= i, j.
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Remark 2.22. Initially the Drinfel’d associators were required to satisfy a fourth set of equations
known as hexagon equations

e
µ(t13+t23)

2 = Φ (t13, t12) e
µt13

2 Φ (t13, t23)−1 e
µt23

2 Φ (t12, t23)

e
µ(t12+t13)

2 = Φ (t23, t13)−1 e
µt13

2 Φ (t12, t13) e
µt12

2 Φ (t12, t23)−1 .

However, Furushu showed in [13] that the heptagon equation (that is the last equation in Defi-
nition 2.20) already implies the hexagon equations.

Importantly, in the above definition the µ is required to be unequal 0. The special elements for
the case of µ = 0 give the following group:

Definition 2.23. The Grothendieck-Teichmüller group GRT1 is the pro-unipotent group whose
elements are solutions Φ of the equations from Definition 2.20 for µ = 0. For Φ,Φ′ ∈ GRT1 the
group operation is given by

(Φ · Φ′)(x, y) = Φ(x, y)Φ′(x,Φ(x, y)−1yΦ(x, y)),

where the product on the right is the usual product in K⟨⟨x, y⟩⟩.

This group acts freely and transitively on the set of Drinfel’d associators DAss via the action

GRT1 ×DAss→ DAss
(Ψ, (µ,Φ)) 7→ (µ,Ψ · Φ)

where · is given in the same way as the group operation on GRT1.
Finally, there exists a pro-nilpotent Lie algebra grt1 such that GRT1 is the exponential of grt1,
that is GRT1 = exp(grt1) :

Definition 2.24. Let the Grothendieck-Teichmüller Lie algebra (grt1, {·, ·}) be the Lie algebra
of series ψ ∈ F̂(x, y) such that

ψ(x, y) = −ψ(y, x)
ψ(x, y) + ψ(y, z) + ψ(z, x) = 0

ψ(t12, t23) + ψ(t12 + t13, t24 + t34) + ψ(t23, t34) = ψ(t12, t23 + t24) + ψ(t13 + t23, t34).

where x+ y + z = 0 and as before the last equation takes values in t4. The Lie bracket on grt1
is given by the Ihara bracket:

[ψ,ψ′]Ih(x, y) = [ψ(x, y), ψ′(x, y)] +Dψψ
′(x, y)−Dψ′ψ(x, y).

Here Dψ is the derivation given by sending x to x and y to [y, ψ] where [·, ·] is the standard
bracket in F̂(x, y).

Definition 2.25. Moreover, grt1 also acts on DAss by

grt1 ×DAss→ DAss
(γ(x, y), (µ,Φ)) 7→ (µ, γ(x, y)Φ(x, y) + [y, γ]∂yΦ(x, y)).

Here the product is the usual product in K⟨⟨x, y⟩⟩ and [y, γ]∂y is the derivation sending x to 0
and y to [y, γ].

As we are going to need this action rather often we best illustrate the action of the derivation
by an example:
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Example 2.26. Let w ∈ {0, 1}∗. Consider the derivation [y, w]∂y acting on xyx2yx. Then

[y, w]∂y(xyx2yx) = x[y, w]x2yx+ xyx2[y, w]x = xywx2yx− xwyx2yx+ xyx2ywx− xyx2wyx.

Now we can again introduce the KZ-associator which was first defined by Drinfel’d in [11].

Definition 2.27. The KZ-associator is given by

ΦKZ(x, y) :=
∑

w∈{x,y}∗

ζ(w)
(2πi)|w|w.

Its counterpart the anti-KZ-associator is then given by

ΦKZ(x, y) := ΦKZ(−x,−y) =
∑

x∈{x,y}∗

(−1)|w| ζ(w)
(2πi)|w|w.

Both ΦKZ and ΦKZ are associators in the sense of Definition 2.20.

Remark 2.28. Remember that from Theorem 2.13 it follows that Φsv
KZ is an element of grt1.

This can easily be seen from the above definition as in a Drinfel’d associator µ only appears as
the coefficient of the term [x, y]. In the case of the KZ-associator the coefficient for this is given
by − ζ(2)

4π2 . However, as ζsv(2) = 0 it follows that the coefficient of [x, y] in Φsv
KZ is 0 and thus

that µ = 0 for Φsv
KZ . Therefore, Φsv

KZ is an element of grt1 as it fulfills the required equations by
virtue of ΦKZ being a Drinfel’d associator and as the single-valued MZVs (conjecturally) satisfy
the same relations as multiple zeta values.

3 Calculating τ t to depth 3

Let us write
adkx(y) = [x, [x, . . . , [x︸ ︷︷ ︸

k−times

, y]]].

The idea of this section is to use the defining equation

ΦKZ = ψ · ΦKZ (2)

to calculate the τ2j+1. For this we are going to show that the τ2j+1 up to depth 3 can be written
as follows

τ2j+1 = c2j ad2j
x (y) +

∑
0≤α<β

α+β=2j−1

cα,β
[
adαx(y), adβx(y)

]
+

∑
β<γ,α≤γ

α+β+γ=2j−2

cα,β,γ
[
adαx(y),

[
adβx(y), adγx(y)

]]
.

Then for every word w of depth 1, 2 or 3 we get an equation from (2) by only considering the
terms that contribute w. It turns out that by choosing the right words w this gives a system of
linear equations from which the c2n, cα,β, cα,β,γ can be recovered.
The case for depth 1 has been done by M. Felder in [12] (Lemma 5.6) and gives the following:

c2n = 2
In1

ζ(2n+ 1)
(2πi)2n+1 .

where we define
Int :=

∫ t

0
(x(x− 1))2n dx
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which for t = 1 equals ((2n)!)2

(4n+1)! . Moreover, we are going to need the following two definitions

J l,mt =
∫ t

0

∫ x

0
(x(x− 1))2l(y(y − 1))2m dy dx

and
K l,m,h
t =

∫ t

0

∫ x

0

∫ y

0
(x(x− 1))2l(y(y − 1))2m(z(z − 1))2h dz dy dx .

3.1 The depth 2 coefficients cα,β

In [12] it was shown that when considering the depth 2 part of the defining equation (2) for a
word w = xayxbyxc that is1 + In1

∑
α,β

cα,β
[
adαx(y), adβx(y)

]
+
∑
s∈N

Is1c2s ad2s
x (y) + . . .


·

1 + uxayxbyxcxayxbyxc +
∑

p,q∈N0

uxpyxqxpyxq + . . .

 = −uxayxbyxcxayxbyxc

the terms contributing the word w give the following equation:

Lemma 3.1. Fix n ≥ 1 and let a, b, c ∈ N0 such that a + b + c + 2 = 2n + 1. The coefficients
cα,β satisfy the following set of equations.

−2uxayxbyxc = In1
∑

0≤α<β
α+β+2=2n+1

cα,β

((
α

a

)(
β

c

)
(−1)a+β−c −

(
α

c

)(
β

a

)
(−1)a+α−c

)

+
∑

p∈N0,s∈N
2s=b+a−p

Is1c2s

((
2s
a

)
(−1)a −

(
2s
b

)
(−1)b

)
uxpyxc

+
∑

q∈N0,s∈N
2s=b+c−q

Is1c2s

(
2s
b

)
(−1)buxayxq .

This proof mostly relies on the application of the following identities, which we will heavily use
later on:
Remark 3.2. To pass from F̂Lie(x, y) to K⟨⟨x, y⟩⟩ one sets [x, y] = xy−yx. The following identities
hold:

adαx(y) = (−1)α
α∑
i=0

(
α

i

)
(−1)ixiyxα−i

[adαx(y), adβx(y)] = (−1)α+β
α∑
i=0

β∑
j=0

(
α

i

)(
β

j

)
(−1)i+j

(
xiyxα−i+jyxβ−j − xjyxβ−j+iyxα−j

)
[
adαx(y),

[
adβx(y), adγx

]]
= (−1)α+β+γ

α∑
i=0

β∑
j=0

γ∑
k=0

(
α

i

)(
β

j

)(
γ

k

)
(−1)i+j+k

(
xiyxα−i+jyxβ−j+kyxγ−k

−xjyxβ−j+kyxγ−k+iyxα−i − xiyxα−i+kyxγ−k+jyxβ−j + xkyxγ−k+jyxβ−j+iyxα−i
)

For the terms contributing the cα,β in the above Lemma we find:
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Lemma 3.3. Let n ∈ N. For a ∈ {0, . . . , n− 1} and c = 2n− 1− a the following holds

∑
0≤α<β

α+β+2=2n+1

cα,β

((
α

a

)(
β

c

)
(−1)a+β−c −

(
α

c

)(
β

a

)
(−1)a+α−c

)
= (−1)aca,c. (3)

Proof. By definition a+ c = 2n− 1. We can rewrite the first term of binomial coefficients as(
α

a

)(
β

c

)
=
(
α

a

)(
2n− 1− α
2n− 1− a

)

by using the definition of β and c. However, here if α < a the first factor is 0 and if α > a the
second factor vanishes. In the case of α = a clearly the expression equals 1. Thus, we have that(

α

a

)(
β

c

)
= δαaδβc.

Similarly, for the second term we have(
α

c

)(
β

a

)
=
(
α

c

)(
2n− 1− α
2n− 1− c

)

by using the definition of β and a. Through the same observation as above one finds(
α

c

)(
β

a

)
= δαcδβa.

Coming back to the initial equation (3) it reduces to∑
0≤α<β

a+β+2=2n+1

cα,β
(
δαaδβc(−1)α+β−c − δαcδβa(−1)a+α−c

)
.

Now notice that from our definition of a and c it follows that a < c paired with α < β this
results in the vanishing of the second summand. Therefore, we are left with∑

0≤α<β
a+β+2=2n+1

cα,βδαaδβc(−1)α+β−c = ca,c(−1)a+c−c = (−1)aca,c

which concludes the proof.

From the above result we immediately get the following formula for the cα,β:

Corollary 3.4. Let n ∈ N. For a ∈ {0, . . . , n− 1} and c = 2n− 1− a we have

ca,c = (−1)a+1

In1

(
2uxay2xc +

∑
p∈N0,s∈N
2s=a−p

Is1c2s

((
2s
a

)
(−1)a − 1

)
uxpyxc +

∑
q∈N0,s∈N
2s=c−q

Is1c2suxayxq

)
(4)

Our next goal is to simplify this expression. By plugging in the definitions of c2n, I
2n
1 and uxiyxj

as well as using the parity theorem for multiple zeta values we get the following final form:

Theorem 3.5. Let n ∈ N and let α ∈ {0, . . . , n − 1} and β = 2n − 1 − α. Then the following
holds:

cα,β = −(4n+ 1)!
((2n)!)2

((
2n
α

)
−
(

2n
α+ 1

)
+ (−1)α+1

)
ζ(2n+ 1)
(2πi)2n+1 .
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The proof of this theorem mostly relies on the parity theorem 2.7 and the binomial identities
given in Lemma 1.3.

Proof. Let us first simplify the second term in the sum of equation (4):

∑
p∈N0,s∈N
2s=a−p

Is1c2s

((
2s
a

)
(−1)a − 1

)
uxpyxc

= 2
∑
s∈N,

p=a−2s≥0

ζ(2s+ 1)
(2πi)2s+1

((
2s
a

)
(−1)a − 1

)
(−1)c+1

(
p+ c

p

)
ζ(p+ c+ 1)
(2πi)p+c+1

= 2
∑
s∈N
a≥2s

(
δ2s,a − (−1)a

(
a+ c− 2s

c

))
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1 (†)

where for the second equality we used that
(2s
a

)
= 0 for a > 2s and 1 for a = 2s in which case

(−1)a = 1 as well as that
(a+c−2s

c

)
= 1 for a = 2s. Moreover,(

p+ c

p

)
=
(
a+ c− 2s
a− 2s

)
=
(
a+ c− 2s

c

)

by using that
(n
k

)
=
( n
n−k

)
. Finally, as a + c = 2n − 1 we have that (−1)c+1 = (−1)2n−1−a+1 =

(−1)a as well as ζ(p+ c+ 1) = ζ(a+ c− 2s+ 1) = ζ(2(n− s)).
For the third term in the sum of equation (4) we similarly get:

∑
q∈N0,s∈N
2s=c−q

Is1c2suxayxq = 2
∑
s∈N

q=c−2s≥0

ζ(2s+ 1)
(2πi)2s+1 (−1)q+1

(
a+ q

a

)
ζ(a+ q + 1)
(2πi)a+q+1

= 2(−1)a
∑
s∈N
c≥2s

(
a+ c− 2s

a

)
ζ(2s+ 1)ζ(2(n− s))

(2πi)2n+1 . (††)

Finally, we can investigate the term 2uxay2xc by using the parity Theorem 2.7 as well as Lemma
2.3 we find:

2uxay2xc = 2(−1)c ζ(x
ay2xc)

(2πi)a+c+2 = 2(−1)c
c∑

k=0

(
a+ c− k

a

)
ζ(a+ c− k + 1, k + 1)

(2πi)2n+1

= 2(−1)c
c∑

k=0

(
a+ c− k

a

)
(−1)k+1

n−1∑
s=0

[(
2n− 2s

k

)
+
(

2n− 2s
a+ c− k

)
− δa+c−k+1,2s + (−1)k+1δs,0

]
ζ(2s)ζ(2n+ 1− 2s)

(2πi)2n+1 = 2(−1)c
n∑
s=1

ζ(2(n− s))ζ(2s+ 1)
(2πi)2n+1

c∑
k=0

(−1)k+1
(
a+ c− k

a

)
[(

2s
a+ c− k

)
︸ ︷︷ ︸

(I)

+
(

2s
k

)
︸ ︷︷ ︸

(II)

− δ2s,k︸︷︷︸
(III)

−(−1)k+1δn,u

]
(♡)

where in the last equality we substituted s with n − s. Notice now that if s ̸= n − 1 then
ζ(2(n − s)) is an even zeta value unequal ζ(0). Thus, as all terms in (†) and (††) contain even
zeta values and we want to show that the terms for s ̸= n − 1 cancel those. We find for the
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terms (III) that

2(−1)c
n−1∑
s=1

c∑
k=0

(−1)k+1
(
a+ c− k

a

)
(−δ2s,k)

ζ(2(n− s))ζ(2s+ 1)
(2πi)2n+1

= 2(−1)c
n−1∑
s=1

(
a+ c− 2s

a

)
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1 .

Now as for 2s > c the binomial coefficient
(a+c−2s

a

)
is 0, the sum of s from 1 to n− 1 is equal to

the sum s ∈ N, c ≥ 2s. Moreover, as (−1)c = (−1)2n−1−a = −(−1)a the sign of this expression
is opposite to (††) and thus the two expressions cancel.
Let us next consider the terms (II). Here we have

c∑
k=0

(−1)k+1
(
a+ c− k

a

)(
2s
k

)
=
(
c+ a

k = 0

)
(−1)k+1

(
a+ c− k

a

)(
2s
k

)
= −

(
c+ a− 2s

c

)

where in the first equality we used that for k > c the binomial coefficient
(a+c−k

a

)
is 0 and in the

second equality we used the second identity from Lemma 1.3 with r = c, s = 2s, m = a, k = k

and t = 0. From this we get:

2(−1)c
n−1∑
s=1

c∑
k=0

(−1)k+1
(
a+ c− k

a

)(
2s
k

)
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1

= 2(−1)c+1
n−1∑
s=1

(
a+ c− 2s

c

)
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1 .

Once again for 2s > a the binomial coefficient
(a+c−2s

a

)
is 0 and the sum of s from 1 to n− 1 is

equal to the sum s ∈ N, a ≥ 2s. Moreover, as (−1)c+1 = (−1)2n−1−a+1 = (−1)a the sign of this
expression is opposite to the sign of the terms corresponding to the (−1)a in (†) and thus the
two expressions cancel.
Finally, we consider the terms (I). Here,

c∑
k=0

(−1)k+1
(
a+ c− k

a

)(
2s

a+ c− k

)
= (−1)c+1

c∑
k=0

(−1)k
(
a+ k

a

)(
2s

a+ k

)

= (−1)c+1
c∑

k=0
(−1)k

(
2s
a

)(
2s− a
k

)

where in the first equality we substituted c − k with k and in the second equality we used the
first identity from Lemma 1.3 with h = a, k = k and n = 2s. Notice that for s ≤ n− 1 we have
that 2s− a ≤ c as this is equal to 2s ≤ a+ c = 2n− 1. We distinguish the following cases:

(−1)c+1
c∑

k=0
(−1)k

(
2s
a

)(
2s− a
k

)
=


0 a > 2s
(−1)c+1 a = 2s
0 a < 2s

where the first case follows as for a > 2s,
(2s
a

)
= 0. In the second case a = 2s,

(2s−a
k

)
is 0 for

all k but k = 0 and in this case equals 1. In the last case a < 2s we used that for k > 2s − a,(2s−a
k

)
= 0 to change the upper bound of the summation and then used the third identity from

Lemma 1.3 with n = 2s− a and j = k to obtain that this vanishes. Using that c+ 1 = 2n− a
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we find that this reduces to (−1)aδ2s,a. From this we obtain:

2(−1)c
n−1∑
s=1

c∑
k=0

(−1)k+1
(
a+ c− k

a

)(
2s

a+ c− k

)
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1

= 2
n−1∑
s=1

(−1)c+aδ2s,a
ζ(2(n− s))ζ(2s+ 1)

(2πi)2n+1

which as a+ c = 2n− 1 is odd has exactly the opposite sign of the term in (†) corresponding to
δ2s,a and thus cancels.
Therefore, we have shown that in equation (4) the terms of (†) and (††) cancel with the terms
of (♡) for s ̸= n and we have that

ca,c = (−1)a
2I2n

1

(
2(−1)c

c∑
k=0

(−1)k+1
(

2n− 1− k
a

)((
2n

2n− 1− k

)
+
(

2n
k

)
+ (−1)k+1

))
ζ(2n+ 1)
(2πi)2n+1

= −(4n+ 1)!
((2n)!)2

(
c∑

k=0

(
2n− (k + 1)

a

)((
2n+ 1
k + 1

)
(−1)k − 1

))
ζ(2n+ 1)
(2πi)2n+1

where in the first equality we used that a+ c = 2n− 1 and ζ(0) = −1
2 . For the second equality

we plugged in the definition of I2n
1 , used that a+ c+ 1 = 2n and thus (−1)a+c+1 = 1 as well as

the following (
2n

2n− 1− k

)
+
(

2n
k

)
=
(

2n
k + 1

)
+
(

2n
k

)
=
(

2n+ 1
k + 1

)

where we use the identity
(n
k

)
=
( n
n−k

)
and

( n
k+1
)

+
(n
k

)
=
(n+1
k+1
)
. Going further we can use the

following two rearrangements to prove the result: We have that

c∑
k=0

(
2n− (k + 1)

a

)
=

c∑
k=0

(
a+ c− k
c− k

)
=

c∑
k=0

(
a+ k

k

)
=
(
a+ c+ 1

c

)
=
(

2n
c

)

where in the second to last equality we used the fourth identity from Lemma 1.3. For the
product of binomial coefficients we get:

c∑
k=0

(−1)k
(

2n− (k + 1)
a

)(
2n+ 1
k + 1

)
= −

2n∑
k=1

(−1)k
(

2n− k
a

)(
2n+ 1
k

)

= −
(

2n− (2n+ 1)
2n− a

)
+
(

2n
a

)
=
(

1 + 2n− a− 1
2n− a

)
(−1)a +

(
2n
a

)
=
(

2n
a

)
− (−1)a

where in the first equality we used that 2n− k = a+ c+ 1− k < a for k > c+ 1 and therefore
those terms vanish. In the second equality we used the second identity from Lemma 1.3 with
m = a, r = 2n, s = 2n + 1 and r = 0. Finally, in the third equality we used the sixth identity
from Lemma 1.3. Plugging those two rearrangements into the above equation and substituting
α = a and β = c yields the desired result.

Example 3.6. Calculating the values of cα,β for small n gives

c0,1 = 60 ζ(3)
(2πi)3

c1,2 = 630 ζ(5)
(2πi)5 c0,3 = 2520 ζ(5)

(2πi)5

c2,3 = 72072 ζ(7)
(2πi)7 c1,4 = 96096 ζ(7)

(2πi)7 c0,5 = 72072 ζ(7)
(2πi)7
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for n = 1, 2, 3 respectively. A full implementation of this can also be found in the code described
in Appendix C.

Finally with this expression we can find the coefficient of an odd-length depth 2 word w in τ t

as:

Proposition 3.7. Let w = xayxbyxc be an odd-length depth 2 word. Then

τ |w= (t(t− 1))|w|−1

I
|w|−1
1

(
(−1)a+1

(
2n
a

)
+ (−1)b

(
2n
b

)
+ (−1)c+1

(
2n
c

))
ζ(2n+ 1)
(2πi)2n+1 .

Proof. Let w = xayxbyxc and let 2n + 1 be the length of w. Then w only appears in τ2n+1.
From the proof of Lemma 3.3 we know that the coefficient of w in τ2n+1 is given by

∑
0≤α<β

α+β+2=2n+1

cα,β

((
α

a

)(
β

c

)
(−1)a+β−c −

(
α

c

)(
β

a

)
(−1)a+α−c

)
.

Plugging in the expression for ca,c we get

1
I2n

1

ζ(2n+ 1)
(2πi)2n+1

∑
0≤α<β

α+β+2=2n+1

((
2n
β

)
−
(

2n
α

)
+ (−1)α

)((
α

a

)(
β

c

)
(−1)a+β−c −

(
α

c

)(
β

a

)
(−1)a+α−c

)
.

We are now going to investigate the sum. First notice that we can substitute α with i and β

with 2n− 1− i to obtain

n−1∑
i=0

((
2n
i+ 1

)
−
(

2n
i

)
+ (−1)i

)
(−1)a−c+i+1

((
i

a

)(
2n− 1− i

c

)
+
(
i

c

)(
2n− 1− i

a

))
. (5)

Now if we apply the substitution i 7→ 2n− 1− j we obtain

2n−1∑
j=n

((
2n
j + 1

)
−
(

2n
j

)
+ (−1)j

)
(−1)a−c+j+1

((
j

a

)(
2n− 1− j

c

)
+
(
j

c

)(
2n− 1− j

a

))

and thus we have that equation (5) equals

1
2

2n−1∑
i=0

((
2n
i+ 1

)
−
(

2n
i

)
+ (−1)i

)
(−1)a−c+i+1

((
i

a

)(
2n− 1− i

c

)
︸ ︷︷ ︸

(I)

+
(
i

c

)(
2n− 1− i

a

)
︸ ︷︷ ︸

(II)

)
(6)

where importantly we now sum to 2n − 1. Observe now that (I) vanishes if not a ≤ i ≤ a + b

and (II) vanishes if not c ≤ i ≤ b + c. Thus, we can split the sum in the part containing (I)
summing from a to a+ b and the part containing (II) summing from c to b+ c. Moreover, we
apply the substitution i 7→ a+ j to the first and i 7→ b+ c− j to the second sum to obtain:

1
2(−1)a−c

b∑
j=0

((
2n

a+ j + 1

)
−
(

2n
a+ j

)
+ (−1)a+j

)
(−1)a+j+1

(
a+ j

a

)(
b+ c− j

c

)

+1
2(−1)a−c

b∑
j=0

((
2n

b+ c+ j + 1

)
−
(

2n
b+ c+ j

)
+ (−1)b+c−j

)
(−1)b+c−j+1

(
b+ c− j

c

)(
a− j
a

)
.

Using that b+ c = 2n− 1− a we find that the second sum equals the first and thus that (6) can
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be written as

(−1)a−c
b∑

j=0

((
2n

a+ j + 1

)
︸ ︷︷ ︸

(I)

−
(

2n
a+ j

)
︸ ︷︷ ︸

(II)

+ (−1)a+j︸ ︷︷ ︸
(III)

)
(−1)a+j+1

(
a+ j

a

)(
b+ c− j

c

)
.

Now we can consider the three parts (I), (II), (III) of the sum separately. We find for (II):

(−1)c
b∑
i=0

(−1)i
(

2n
a+ i

)(
a+ i

a

)(
b+ c− i

c

)
= (−1)c

(
2n
a

)
b+c∑
i=0

(−1)i
(
b+ c+ 1

i

)(
b+ c− i

c

)

= (−1)c
(

2n
a

)(
−1
b

)
= (−1)b+c

(
2n
a

)
= (−1)a+1

(
2n
a

)
,

where in the first equality we used the first identity from Lemma 1.3 with n = 2n, k = i and
h = a, the fact that 2n− a = b+ c+ 1 as well as that the sum vanishes for i > b. In the second
equality we used the second identity from Lemma 1.3 with r = b + c, k = i, t = 0, m = c and
s = b+ c+ 1. In the third equality we used the fifth identity from Lemma 1.3 and finally in the
fourth equality we again used that b+ c = 2n− a− 1.
For (I) notice that by applying the substitution i 7→ b− j we get

(−1)a
b∑

j=0
(−1)j

(
2n
c+ j

)(
c+ j

c

)(
a+ b− j

a

)
= (−1)c+1

(
2n
c

)

where we observed that the expression on the left is the same as the one for (I) just with a and
c exchanged and thus we get the result on the right.
Finally for (II) we have:

(−1)a+c+1
b∑
i=0

(
a+ i

a

)(
b+ c− i

c

)
= (−1)b

(
2n
b

)

where we used the sixth identity from Lemma 1.3 with n = a, m = c, r = b + c and s = a as
well as that a+ c+ 1 = 2n− b. Combining all the above we get the desired result.

Notice that the above result gives precisely the same as Theorem 2.14. This shows Theorem
2.13 by example for the case of odd depth 2 words. Similarly, we can find an expression for the
single-valued MZVs of even depth 2 words. Let w = xayxbyxc of even length 2n. Then the only
terms in τ t that can give w are

I l1c2l ad2l
x (y) ◦ (I1

mc2m ad2m
x (y) ◦ 1)

where ◦ denotes the action from Definition 2.25 and l+m = n− 1 Expanding this and plugging
in the definition for c2n we get

4ζ(2l + 1)ζ(2m+ 1)
(2πi)2n

l∑
i=1

m∑
j=1

(
2l
i

)(
2m
j

)
(−1)i+j

(
xiyx2l−i+jyx2m−j + xjyxiyx2l+2m−i−j

−xi+jyx2l−iyx2m−j
)

we then find that the first term contributes w if i = a and j = 2m − c. The second term
contributes if i = b and j = a and the third term contributes if i = 2l − b and j = 2m − c. In
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total this gives that the coefficient of w in τ t (up to the (t(1− t))2n ) is given by

4
∑

l+m=n−1

(
(−1)a+c

(
2l
a

)(
2m
c

)
+ (−1)a+b

(
2l
b

)(
2m
a

)
− (−1)b+c

(
2l
b

)(
2m
c

))
ζ(2l + 1)ζ(2m+ 1)

(2πi)2n .

This proves Theorem 2.15.

3.2 The depth 3 coefficients cα,β,γ

Let us now turn to the coefficients in depth 3. First we need to find a basis of FLie(x, y) in depth
3. For this we need the definition of a Lyndon word:

Definition 3.8. Let X be a totally ordered alphabet. Then a word w in X is called Lyndon
word if w is the unique minimal element in the lexicographical ordering of the set of all rotations
of w.

A general known fact is, that for FLie(X), the free Lie algebra with generating set X, there
exists a bijection γ between the Lyndon words in X and a basis of FLie(X). The bijection is
given as follows:

• If |w| = 1 then σ(w) = w.
• If |w| > 1 then write w = uv for u and v Lyndon words and with v having maximal length.

Then γ(w) = [γ(u), γ(v)].
We are going to use this bijection to find a basis of FLie(x, y) in depth 3. The Lyndon words of
depth 3 are given by w = yxαyxβyxγ with α ≤ β, α < γ. As, if α = γ we distinguish:

• If β = α then w is not a Lyndon word as there exist no unique minimal rotation of w.
• If β < α then yxγyxαyxβ would be smaller than w.

The image of w under γ is given as

γ(w) =


[
adαx(y),

[
adβx(y), adγx(y)

]]
for β < γ[[

adαx(y), adβx(y)
]
, adγx(y)

]
for β ≥ γ

.

Notice that the second term can be rearranged as follows:[[
adαx(y), adβx(y)

]
, adγx(y)

]
for α < γ ≤ β

= −
[
adγx(y),

[
adαx(y), adβx(y)

]]
for α < γ ≤ β

= −
[
adα′

x (y),
[
adβ′

x (y), adγ′
x (y)

]]
for β′ < α′ ≤ γ′

where in the last step we used the substitution α′ = γ, β′ = α and γ′ = β. Combining this we
find that a basis in depth 3 can be given by{[

adαx(y),
[
adβx(y), adγx(y)

]]}
β<γ,α≤γ

.

Let us now fix n ≥ 1 and consider τ2n+1 ∈ F̂Lie(x, y)2n+1 (the linear span of Lie words in 2n
brackets). Using the above basis, we may write τ2n+1 in depth 3 as follows,

τ2n+1 =
∑

β<γ,α≤γ
α+β+γ=2n−2

cα,β,γ
[
adαx(y),

[
adβx(y), adγx(y)

]]

The value for α + β + γ follows as every adkx(y) contains k Lie brackets and then bracketing
together the adkx(y) terms uses another 2 brackets. With this shown we can now come back to
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the defining equation (2) and only consider the terms that could give the word w = xayxbyxcyxd

where w is of length 2n+ 1. We get the following:

−uww =

1 +
∑
s∈N

Is1τ2s+1 +
∑
l,m∈N

J l,m1 τ2l+1τ2m+1 +
∑

l,m,h∈N
K l,m,h

1 τ2l+1(τ2m+1τ2h+1) + . . .


◦

1 + uww +
∑

p,q,r∈N0

uxpyxqyxrxpyxqyxr +
∑

p,q∈N0

uxpyxqxpyxq + . . .

 (7)

Let us now expand the right hand side. The action of 1 on ΦKZ only gives uww. From the
action of the single integrals ∑s∈N I

s
1τ2s+1 on ΦKZ we get∑

β<γ,α≤γ
α+β+γ+3=|w|

I
|w|−1
1 cα,β,γ

[
adαx(y),

[
adβx(y), adγx(y)

]]
◦ 1

+
∑

s∈N,0≤α<β
α+β=2s−1

Is1cα,β
[
adαx(y), adβx(y)

]
◦
∑

p,q∈N0

uxpyxqxpyxq

+
∑
s∈N

Is1c2s ad2s
x (y) ◦

∑
p,q,r∈N0

uxpyxqyxrxpyxqyxr.

Importantly, here the first term only contributes if |w| is odd as the τ2j and thus also the cα,β,γ
for α+β+γ+3 even are 0. Considering the action of the double integrals ∑l,m∈N J

l,m
1 τ2l+1τ2m+1

on ΦKZ we obtain∑
l,m∈N

J l,m1 c2lc2m ad2l
x ◦(ad2m

x ◦xpyxq)uxpyxq

+
∑
l,m∈N

∑
0≤α<β

α+β=2l−1

J l,m1 cα,βc2m
[
adαx(y), adβx(y)

]
◦
(
ad2m

x (y) ◦ 1
)

+
∑
l,m∈N

∑
0≤α<β

α+β=2m−1

J l,m1 c2lcα,β ad2l
x ◦

([
adαx(y), adβx(y)

]
◦ 1
)
.

Here, the second and third term only contribute in the case of |w| being even, as [adαx(y), adβx(y)]
is of odd length and so is ad2k

x (y) thus the action only gives words of even length.
Finally, the action of the triple integrals ∑l,m,h∈NK

l,m,h
1 τ2l+1(τ2m+1τ2h+1) on ΦKZ gives∑

l,m,h∈N
K l,m,h

1 c2lc2mc2h ad2l
x (y) ◦ (ad2m

x (y) ◦ (ad2h
x (y) ◦ 1)).

In the following we are now going to calculate the exact contribution to a word w for each of
these terms which will then give us an equation from which we can calculate the cα,β,γ . To later
also calculate the coefficients of the interpolating associators we will do these calculations for
arbitrary t and not just t = 1.

The cα,β,γ term

We start with the term ∑
β<γ,α≤γ

α+β+γ=2n−2

Int cα,β,γ
[
adαx(y),

[
adβx(y), adγx(y)

]]
◦ 1
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and are interested in finding the terms of this sum that give words of the form w = xayxbyxcyxd

with a + b + c + d = 2n − 2. From the expansion in Remark 3.2 we find that the coefficient of
the word w in the above sum is given by

∑
β<γ,α≤γ

α+β+γ=2n−2

cα,β,γ(−1)2a+b−d
((

α

a

)(
β

b+ a− α

)(
γ

d

)
(−1)γ−α −

(
α

d

)(
β

a

)(
γ

b+ a− β

)
(−1)α−β

−
(
α

a

)(
β

d

)(
γ

b+ a− α

)
(−1)β−α +

(
α

d

)(
β

b+ a− γ

)(
γ

a

)
(−1)α−γ

)
.

Our goal is to show that the system of equations for all different a, b, c, d has full rank. For
this we are considering the following order on the indices (α, β, γ) with α + β + γ = 2n − 2
Let (α′, β′, γ′) < (α, β, γ) if and only if γ′ < γ or γ′ = γ and β′ > β. Here, no inequality for
γ′ = γ, β′ = β needs to be defined as in this case α′, α are already fixed.
Then we can consider the subsystem of the above equations were we set c = 0 and a ≤ d, b < d.
By ordering the equations, that is the (a, b, d) and the summands of these equations i.e. the
(α, β, γ) by this order in ascending order we can consider the matrix of these coefficients. Let
us denote it by M , i.e.

m(a,b,d)(α,β,γ)) = (−1)2a+b−d
((

α

a

)(
β

b+ a− α

)(
γ

d

)
(−1)γ−α −

(
α

d

)(
β

a

)(
γ

b+ a− β

)
(−1)α−β

−
(
α

a

)(
β

d

)(
γ

b+ a− α

)
(−1)β−α +

(
α

d

)(
β

b+ a− γ

)(
γ

a

)
(−1)α−γ

)

with a ≤ d, b < d and β < γ, α ≤ γ.

Theorem 3.9. The above defined matrix M is in row echelon form with non-zero entries on
the diagonal. In particular M is of full rank.

Proof. Assume a, b, d with a+ b+ d = 2n− 2 and a ≤ c, b < d. Then let (α, β, γ) < (a, b, d). If
γ < d notice that as α ≤ γ < d and β < γ < d we have

(γ
d

)
=
(α
d

)
=
(β
d

)
= 0. Contrary if γ = d

we have β > b and then α = 2n − 2 − γ − β < m − d − b = a from which α < a ≤ d follows.
Thus,

(α
a

)
=
(α
d

)
= 0. In both cases all four terms in m(a,b,d)(α,β,γ) are 0 and thus m(a,b,d)(α,β,γ)

vanishes. We therefore have that M is in row echelon form. It remains to show that the diagonal
entries are non-zero.
If (α, β, γ) = (a, b, d) we distinguish a < d and a = d. If a < d then

(α
d

)
=
(β
d

)
= 0 and thus

the second, third and fourth term in m(a,b,d)(α,β,γ) are 0. In the first term however all binomial
coefficients are one and thus m(a,b,d)(α,β,γ) = (−1)2a+b+γ−α. If however a = d then

(β
a

)
=
(β
d

)
= 0

and thus the second and third terms vanish. The first and fourth term are then equal and all
binomial coefficients equal 1. Thus, m(a,b,d)(α,β,γ) = 2 · (−1)2a+b and we conclude the proof.

From this theorem it follows that by solving the system of linear equations we can fully recover
the cα,β,γ .

The remaining terms

The following lemmata cover the remaining terms. Proofs of these can be found in Section 5.
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Lemma 3.10. Let a, b, c, d ∈ N0 then the contribution of the word xayxbyxcyxd by the term

∆t
single(w) :=

∑
s∈N,0≤α<β
α+β=2s−1

Ist cα,β
[
adαx(y), adβx(y)

]
◦
∑

p,q∈N0

uxpyxqxpyxq

+
∑
s∈N

Ist c2s ad2s
x (y) ◦

∑
p,q,r∈N0

uxpyxqyxrxpyxqyxr.

is given by

∑
s∈N,p∈N0
α+β=2s−1

2s−1=a+b+c−p

cα,βI
s
t

((
α

a

)(
β

b+ a− α

)
(−1)2a+b−α −

(
α

b+ a− β

)(
β

a

)
(−1)2a+b−β

+
(

α

b+ c− β

)(
β

c

)
(−1)2c+b−β −

(
α

c

)(
β

b+ c− α

)
(−1)2c+b−α

)
uxpyxd

+
∑

s∈N,q∈N0
α+β=2s−1

2s−1=d+b+c−q

cα,βI
s
t

((
α

b

)(
β

b+ c− α

)
(−1)2b+c−α −

(
α

b+ c− β

)(
β

b

)
(−1)2b+c−β

)
uxayxq

+
∑

2s=a+b−p
I2s

1 c2s

((
2s
a

)
(−1)a −

(
2s
b

)
(−1)b

)
uxpyxcyxd +

∑
2s=c+d−r

I2s
1 c2s

(
2s
c

)
(−1)cuxayxbyxr

+
∑

2s=b+c−q
I2s

1 c2s

((
2s
b

)
(−1)b −

(
2s
c

)
(−1)c

)
uxayxqyxd

Lemma 3.11. Let a, b, c, d ∈ N0 then the contribution of the word xayxbyxcyxd by the term

∆t
double(w) :=

∑
l,m∈N

J l,mt c2lc2m ad2l
x ◦(ad2m

x ◦xpyxq)uxpyxq

is given by

∑
l,m∈N,p∈N0

p=a+b+c−2l−2m

J l,mt c2lc2m

((
2l
a

)(
2m

a+ b− 2l

)
(−1)b −

(
2l
a

)(
2m
c

)
(−1)a−c +

(
2l
b

)(
2m
a

)
(−1)a+b

−
(

2l
b

)(
2m

a+ b− 2l

)
(−1)a −

(
2l
c

)(
2m
a

)
(−1)a−c −

(
2l
b

)(
2m

b+ c− 2l

)
(−1)c

+
(

2l
b

)(
2m
c

)
(−1)b+c +

(
2l
c

)(
2m

b+ c− 2l

)
(−1)b

)
uxpyxd

+
∑

l,m∈N,q∈N0
q=b+c+d−2l−2m

J l,mt c2lc2m

((
2l
b

)(
2m

b+ c− 2l

)
(−1)c

+
(

2l
c

)(
2m
b

)
(−1)b+c −

(
2l
c

)(
2m

b+ c− 2l

)
(−1)b

)
uxayxq

+2 ·
∑

l,m∈N,p,q∈N0
p=a+b−2m
q=c+d−2l

J l,mt c2lc2m

((
2l
c

)(
2m
a

)
(−1)a+c −

(
2l
c

)(
2m
b

)
(−1)c−b

)
uxpyxq .

Lemma 3.12. Let a, b, c, d ∈ N0 then the contribution of the word xayxbyxcyxd for a+ b+ c+
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d+ 3 = 2n by the term

∆t
double even(w) :=

∑
l,m∈N

∑
0≤α<β

α+β=2l−1

J l,mt cα,βc2m
[
adαx(y), adβx(y)

]
◦
(
ad2m

x (y) ◦ 1
)

+
∑
l,m∈N

∑
0≤α<β

α+β=2m−1

J l,mt c2lcα,β ad2l
x ◦

([
adαx(y), adβx(y)

]
◦ 1
)

is given by

∑
2l+2m=2n−3
α+β=2l

J l,mt cα,βc2m

((
α

a

)(
β

a+ b− α

)(
2m
d

)
(−1)b+d−α −

(
α

a+ b− β

)(
β

a

)(
2m
d

)
(−1)b+d−β

+
(
α

b

)(
β

b+ c− α

)(
2m
a

)
(−1)a+c−α −

(
α

a+ d− 2m

)(
β

c

)(
2m
d

)
(−1)a+c−β

−
(

α

b+ c− β

)(
β

b

)(
2m
a

)
(−1)a+c−β +

(
α

c

)(
β

a+ d− 2m

)(
2m
d

)
(−1)a+c−α

)

+
∑

2l+2m=2n−3
α+β=2m

J l,mt c2lcα,β

((
α

a+ b− 2l

)(
β

d

)(
2l
a

)
(−1)b+d−,β −

(
α

d

)(
β

a+ b− 2l

)(
2l
a

)
(−1)b+d−α

(
α

a

)(
β

d

)(
2l
b

)
(−1)a+b+d−β −

(
α

a+ b− 2l

)(
β

d

)(
2l
b

)
(−1)a+d−β

+
(
α

a

)(
β

a+ b− α

)(
2l
c

)
(−1)b+c−α −

(
α

a

)(
β

d

)(
2l
c

)
(−1)a+c+d−β

−
(
α

d

)(
β

a

)(
2l
b

)
(−1)a+b+d−α +

(
α

d

)(
β

a+ b− 2l

)(
2l
b

)
(−1)a+d−α

−
(

α

a+ b− β

)(
β

a

)(
2l
c

)
(−1)b+c−β +

(
α

d

)(
β

a

)(
2l
c

)
(−1)a+c+d−α

)
.

Lemma 3.13. Let a, b, c, d ∈ N0 then the contribution of the word w = xayxbyxcyxd for a+ b+
c+ d+ 3 = 2n+ 1 by the term

∆t
triple(w) :=

∑
l,m,h∈N

K l,m,h
t c2lc2mc2h ad2l

x (y) ◦ (ad2m
x (y) ◦ (ad2h

x (y) ◦ 1))

is given by

∑
l+m+h=n−1

K l,m,h
t c2lc2mc2h

((
2l
a

)(
2m

a+ b− 2l

)(
2h
d

)
(−1)b−d +

(
2l
a

)(
2m
c

)(
2h

a+ b− 2l

)
(−1)b+c

−
(

2l
a

)(
2m
c

)(
2h
d

)
(−1)a−c−d +

(
2l
b

)(
2m
a

)(
2h
d

)
(−1)a+b−d

−
(

2l
b

)(
2m

a+ b− 2l

)(
2h
d

)
(−1)a−d +

(
2l
c

)(
2m
a

)(
2h

a+ b− 2m

)
(−1)b+c

−
(

2l
c

)(
2m
a

)(
2h
d

)
(−1)a−c−d +

(
2l
b

)(
2m

b+ c− 2l

)(
2h
a

)
(−1)a+c

−
(

2l
b

)(
2m
c

)(
2h

a+ b− 2l

)
(−1)a+c +

(
2l
c

)(
2m
b

)(
2h
a

)
(−1)a+b+c
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−
(

2l
c

)(
2m

b+ c− 2l

)(
2h
a

)
(−1)a+b −

(
2l
b

)(
2m

a+ d− 2h

)(
2h
d

)
(−1)a+b

+
(

2l
b

)(
2m
c

)(
2h
d

)
(−1)b+c+d −

(
2l
c

)(
2m
b

)(
2h

a+ b− 2m

)
(−1)a+c

+
(

2l
c

)(
2m

a+ d− 2h

)(
2h
d

)
(−1)a−c

)
.

Finally, we can turn back to calculating the cα,β,γ . From equation (7) we get the following
system of equations∑

β<γ,α≤γ
α+β+γ=2n−2

Int cα,β,γm(a,b,d)(α,β,γ) = −2 · uv −∆1
single(v)−∆1

double(v)−∆1
triple(v)

where v = xayxby2xd which as shown above has a unique solution. This has been implemented
in Python as described in Appendix C. The results for the coefficients of depth 3 for small n
can be found in Appendix D.

3.3 The interpolating associators in depth 3

To calculate the values of the associator

Φt = P exp
(∫ t

0
τ s ds

)
· ΦKZ

in depth 3 we can use the right hand side of equation (7) where we replace the integrals
Is1 , J

l,m
1 ,K l,m,h

1 by Ist , J
l,m
t ,K l,m,h

t . Distinguishing then between words of odd and even length
we get the following formulae:

Theorem 3.14. Let w = xayxbyxcyxd then for |w| = 2n+ 1,

Φt(w) = uw +
∑

β<γ,α≤γ
α+β+γ=2n−2

Int cα,β,γm(a,b,d)(α,β,γ) + ∆t
single(w) + ∆t

double(w) + ∆t
triple(w)

and for |w| = 2n,

Φt(w) = uw + ∆t
single(w) + ∆t

double(w) + ∆t
double even(w).

Importantly, for the case of t = 1/2 we get the Alekseev-Torossian associator. In this case we
make the following observation:

Theorem 3.15. Let w = xk1y . . . yxkn. Then if |w| is odd ΦAT (w) = 0, that is ΦAT vanishes
on odd words.

Proof. The associator ΦAT can be written in two ways

ΦAT = P exp
(∫ 1

2

0
τ t dt

)
◦ ΦKZ and ΦAT = P exp

(∫ 1
2

1
τ t dt

)
◦ ΦKZ

where the second one follows by traversing the path from ΦKZ to ΦKZ in the other direction.
Notice that τ t is invariant under the substitution t 7→ (1− t) as t always appears as (t(t− 1))2i.
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We can now transform the integrals in P exp
(∫ 1

2
1 τ t dt

)
as follows

∫ 1
2

1

∫ t1

1
. . .

∫ tn−1

1
τ t1 ◦ . . . ◦ τ tn dtn . . . dt1 =

∫ 1
2

0

∫ t1

0
. . .

∫ tn−1

0
(−1)nτ t1 ◦ . . . ◦ τ tn dtn . . . dt1

where we used the above discussed substitution and the (−1)n comes from substituting the dti.
If we apply this transformation to the whole time-ordered exponential we get:

P exp
(∫ 1

2

1
τ t dt

)
= P exp

(∫ 1
2

0
(−τ t) dt

)
.

Let us denote the inversion map (x, y) 7→ (−x,−y) by Θ. Then we find:

ΦAT = P exp
(∫ 1

2

0
τ t dt

)
◦ ΦKZ

=
(
P exp

(∫ 1
2

0
−τ t dt

)
ΦKZ

)
◦Θ

=
(
P exp

(∫ 1
2

1
τ t dt

)
◦ ΦKZ

)
◦Θ = ΦAT ◦Θ

where in the second equality we used the fact that in τ t only odd words appear and thus applying
Θ to those words gives a minus. Rewriting this for a specific word w gives

ΦAT (w) = (−1)|w|ΦAT (w)

from which the desired statement follows.

Remark 3.16. Let w be a word of depth n. Notice that the above proposition shows that to
ΦAT (w) in depth n only terms of τ1/2 of depth n− 1 contribute.

The calculation of these coefficients has also been realized in the Python implementation de-
scribed in Appendix C.

Example 3.17. For words of length 4 and 6 we find the following coefficients of AT:

ΦAT (y2x1y) = − 1
480 ΦAT (y3x1) = 1

1440 ΦAT (yx1y2) = 1
480 ΦAT (x1y3) = − 1

1440

as well as

ΦAT (y2x3y) = 89
2903040 ΦAT (y2x2yx1) = − 17

580608 ΦAT (y2x1yx2) = 29
414720

ΦAT (y3x3) = − 23
967680 ΦAT (yx1yx2y) = − 143

2903040 ΦAT (yx1yx1yx1) = − 31
967680

ΦAT (yx1y2x2) = − 17
580608 ΦAT (yx2yx1y) = 37

580608 ΦAT (yx2y2x1) = 13
967680

ΦAT (yx3y2) = − 11
290304 ΦAT (x1y2x2y) = − 13

967680 ΦAT (x1y2x1yx1) = − 143
2903040

ΦAT (x1y3x2) = 89
2903040 ΦAT (x1yx1yx1y) = 1

322560 ΦAT (x1yx1y2x1) = 37
580608

ΦAT (x1yx2y2) = 53
1451520 ΦAT (x2y2x1y) = 53

1451520 ΦAT (x2y3x1) = − 11
290304

ΦAT (x2yx1y2) = − 29
414720 ΦAT (x3y3) = 23

967680 .
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Remark 3.18. Even though these results might suggest that ΦAT is anti-symmetric under the
reversal of words this does not hold as can be seen by calculating the coefficient of the word
w = x4yxy2 and w̃ = y2xyx4 :

ΦAT (x4yxy2) = 1133
180

ζ(8)
(2πi)8 + 7

10
ζ(5, 3)
(2πi)8 + 5943

4096
ζ(5)ζ(3)
(2πi)8 + 2ζ(2)ζ(3)2

(2πi)8

ΦAT (y2xyx4) = −1133
180

ζ(8)
(2πi)8 −

7
10
ζ(5, 3)
(2πi)8 −

5943
4096

ζ(5)ζ(3)
(2πi)8 .

4 The isomorphism from H0(GC) to grt1

In the following section we are going to describe in detail the isomorphism from H0(GC) to
grt1 introduced by Willwacher in [22]. In [18] it was shown by Rossi and Willwacher that this
isomorphism is induced by a map ϕ : GC→ sder2 which we will also discuss. First however, we
will describe the different spaces involved. For these sections we follow the descriptions in [20].

Definition 4.1. Let G = (V,E) be a graph. An ordering on its edges is a bijective function σ

from E to {1, . . . , |E|}. Notice that S|E| acts on σ by π ◦ σ for π ∈ Sn. We call the tuple (G, σ)
an ordered graph and note that S|E| acts on (G, σ) by π(G, σ) = (G, πσ) for π ∈ S|E|. Moreover,
we denote by |e| the order number of an edge e.
A map f between two ordered graphs (G, σ)→ (H, τ) is said to be a ordered graph isomorphism
if f is a graph isomorphism on G, f(Φ) = Ψ and σ = τ ◦ f .

In the following we are mostly going to omit the orientation and just write G for (G, σ).

Definition 4.2. A graph is called k-vertex irreducible if after removing any k vertices the graph
is still connected.
A simple loop is an edge starting and ending at the same vertex. A graph is called simple if it
does not contain any simple loops or multi-edges.

Definition 4.3. For two ordered graphs G, G′ a composition G◦jG′ can be defined by inserting
the graph G′ at the j-th vertex vj in G (thereby removing vj) and then summing over all possible
ways to reconnect all edges incident to vj to vertices in G′. Here in the ordering all edges in G′

are placed after the edges in G in the same order they appear in G′.

Example 4.4. Consider the graph G and G′ as given in Figure 4 on the left. We then apply
the composition ◦j where j is the vertex in G marked by j to G′ which gives the result on the
right.

◦j1 2 1j = 1
3

2

3+ 1 2

1
3

2

3+
1

2+

G G′

Figure 4: The graph composition of G and G′ at the vertex j.

4.1 Kontsevich’s graph complex

Definition 4.5. A GC-admissible graph G is a loop-less connected ordered graph that is 1-vertex
irreducible and every vertex has valency ≥ 3.
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We now consider the Q-vector space GC spanned by isomorphism classes of GC-admissible graphs,
subject to the relation

(G, π ◦ σ) = sgn π · (G, σ) for all π ∈ S|E|.

Under this relation we call σ an orientation. Observe that if (G, σ) ≃ (G, π ◦ σ) for an odd
permutation π then (G, σ) ≃ (G, π ◦ σ) = −(G, σ) and thus (G, σ) = 0 in GC.
A grading on GC is given by

deg(G) = 2|V | − |E| − 2.

Further, GC carries the structure of a differential graded Lie algebra where the Lie bracket is
given by: [

G,G′] := G ◦G′ − (−1)deg(G)·deg(G′)G′ ◦G.

Here G ◦G′ is defined as

G ◦G′ =
|G|∑
j=1

G ◦j G′.

Finally, we can define a differential on GC as follows:

Definition 4.6. Let G ∈ GC. Then a differential is given by :

dGCG = [Γ , G] = Γ ◦G− (−1)deg(G)G ◦ Γ .

where Γ is the graph given by two vertices connected by an edge. That is the second term
of the differential splits every vertex w into two vertices u, v connected by an edge e and then
reconnects all the edges incident to w in all possible ways to u and v. Moreover, the new edge e
is placed last in the ordering. The first term cancels all the terms of the second where the new
vertex is univalent.

For dGC we have that d2
GC = 0 and thus GC with the differential dGC is a graph complex, called

Kontsevich’s graph complex.
It remains to see that this differential is well-defined.

Lemma 4.7. The differential dGC is well-defined.

Proof. We need to show that no graphs with bivalent vertices are created by the differential. Let
G in GC and let H be a graph occurring in the differential of G. Then H can have at most one
bivalent vertex w as G only has vertices with valency ≥ 3 and this vertex needed to be created
by the splitting.
This can only occur when a vertex u is being split into u1, u2 and all but one edge (call it e) are
connected to u1 / u2 and the remaining edge e is connected to u2 / u1. W.l.o.g. we can assume
that w is u2. Let v be the other vertex of the edge e. i.e. e = {u, v}. Then the edge going from
v to w has the order number |e| and the edge from w to u has the order number |E(G)|+ 1.
Now this arrangement of edges can also be reached in another way. That is when splitting the
vertex v into v1 and v2 all edges but e can be connected to v1 / v2 and e is connected to v2 / v1.
Once again we can assume that e is connected to v2 i.e. v2 is w. In this case however the edge
going from v to w has order number |E(G)|+ 1 and the edge from w to u has order number |e|.
Thus, the two graphs obtained differ by the permutation that permutes |e| and (|E(G)|+1) and
thus cancel. As H was an arbitrary graph with a bivalent vertex all these graphs cancel and
dGC(G) is well-defined.
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u v u vw

k k E+1
u vw

kE+1 7→← [

Figure 5: An illustration of the two ways the bivalent vertex w can be created. In the
middle the section in the original graph and on the left / right the section where the
vertex u / v have been split respectively and all but one edge has been reconnected to
one vertex.

4.2 The spaces graphs and ICG

Definition 4.8. A graphs-admissible graph G is an ordered simple graph with labeled vertices
1, . . . , k, called external, and possibly other vertices, called internal. Moreover, the internal
vertices have valency ≥ 3 and for every internal vertex there exists a path in G to an external
vertex.
Let us denote the external vertices of G by VE(G) and the internal vertices by VI(G). Moreover,
in drawings we will draw internal vertices as black dots and external vertices as black circles
with white interior.
An isomorphism between external/internal graphs G,H is an ordered graph isomorphism f :
G→ H with the extra condition that f(VE(G)) = VE(H) and for internal vertices, that f sends
the vertex labelled i in G to the vertex labelled i in H. That is external vertices can only be
mapped to external ones and internal vertices only to the corresponding internal vertex.

We can consider the Q-vector space graphs(k) spanned by isomorphism classes of graphs-admissible
graphs with k external vertices, subject to the relation

(G, π ◦ σ) = sgn π · (G, σ) for all π ∈ S|E|.

The degree on graphs(k) is given by

deg(G) = |E(G)| − 2|VI(G)|.

Moreover, we can define a differential on graphs(k) as follows:

Definition 4.9. Let G ∈ graphs(k). Then a differential is given by:

dgraphsG =
∑
v∈VE

G ◦v Γ + 1
2
∑
v∈VI

G ◦v Γ

where Γ is the graph with one internal and one external vertex connected by an edge and Γ
is the graph with two internal vertices connected by an edge. That is, the differential splits every
external vertex w in one internal u and one external vertex v and connects the edges incident to
w in all possible ways to v and u. An internal vertex w is being split into two internal vertices
u, v and the edges are once again connected in all possible ways. Moreover, the new edge is
placed last in the ordering. Finally, all graphs that result and are not graphs-admissible will be
discarded.

The map dgraphs as defined above is a differential, that is d2
graphs = 0 and thus graphs(k) is a

graph complex.
Remark 4.10. Notice that the factor 1

2 arises as when inserting Γ connecting the edges E1 to
the first vertex and E2 to the second is the same as connecting the edges E2 to the first vertex
and E1 to the second. However, when inserting Γ into the graph this does not hold as then
one vertex is internal and one is external thus they cannot be exchanged and therefore give only
half as many summands.

43



Definition 4.11. We call a graph G ∈ graphs(k) internally connected if G is connected after
removing all external vertices.
We can then consider the subspace ICG(k) of graphs(k) of internally connected graphs with k

external vertices. A grading on this space is given by

deg(G) = 2VI(G)− E(G) + 1.

Moreover, ICG(k) inherits the differential from graphs(k) by restricting to internally connected
graphs. This turns ICG(k) into a graph complex. Similarly to GC, it also has the structure of a
differential graded Lie algebra with the following bracket:

Definition 4.12. The bracket [G1, . . . , Gk] is given by gluing Gi ’s at the corresponding external
vertices, then applying the differential of ICG(k). Here the edges of Gi+1 are placed after the
edges of Gi in the same order they appear in Gi+1.

In [20] Severa and Willwacher showed the following important result:

Theorem 4.13. The cohomology of ICG(k) is isomorphic to tk. Here the isomorphism is given
by identifying the generator tij with the graph consisting of k external and no internal vertices
and an edge between the vertex i and j.

The space tk is the Drinfel’d-Kohno Lie algebra as defined in Definition 2.21. To better under-
stand the Lie bracket on ICG(k) and the isomorphism we consider the following example:

Example 4.14. Consider the space ICG(3). The goal is to show that the relation [t12, t23 + t13] =
0 holds for the corresponding graphs in ICG(3). Notice that we identify these generators as
follows:

t12 = t13 = t23 = .

We can then calculate the Lie brackets [t12, t23] = [ , ] = d 1 2 and

[t12, t13] =
[

,

]
= d 1

2 where the differentials give the following:

d = + + +

+ + + =

1 2 1 23 3 1
2 1 2 3 1

2 3

1 2
3 1 23 1 3 2 1

23 1 23

d 1
2

1
2

= + 1
2

+ 1
2

+ 1
2

1 2 + 1 2 + 1 2 + 1
2

33

3333

3 3 = 1
23

here we used in the second equality that all non-internally ≥ 3-valent graphs are not graphs-
admmissible. We therefore get

[t12, t23 + t13] = [t12, t23] + [t12, t13] = d 1 2 + d 1
2 = 3 21

+ 1 23
= 0

where we used that the two last graphs differ by the permutation (1; 3) and thus appear with
opposite signs.
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4.3 The spaces tderk and sderk

We denote by F̂Lie(W ) the degree completion of the free Lie algebra over K on the generators
W . Let k := |W |. Normally, we denote the generators by x1, . . . , xk in the case of k = 2 and
k = 3 we will however denote them by X, Y and X, Y , Z respectively. A grading on F̂Lie(W )
can be given by the number of Lie brackets appearing in a Lie monomial. That is, xi has degree
0, [xi, xj ] has degree 1, etc.

Definition 4.15. A derivation of a Lie algebra L is a linear map f : L→ L such that

f([a, b]) = [f(a), b] + [a, f(b)]

for all a, b ∈ L i.e. the Leibniz rule holds. We denote by Der(L) the space of all derivations on
L. To any element x, y ∈ L the inner derivation ada(b) := [a, b] can be associated. Moreover,
the Lie bracket on Der(L) is given by [a, b] = a ◦ b− b ◦ a, with a, b ∈ Der(L) and ◦ denoting the
composition.

Definition 4.16. On the space F̂Lie(W ) a derivation u is called tangential if it is of the form

u(xi) = [xi, ui]

for some ui ∈ F̂Lie(W ). The space of all tangential derivations on F̂Lie(W ) is denoted by
tderk. Every element u of this space can uniquely be represented by a k-tuple (u1, . . . , uk) with
ui ∈ F̂Lie(W ) such that the term of order 1 with respect to xi in ui is 0. This choice of 0 is
necessary as the ui are only defined up to the coefficient of the order 1 term of xi as [xi, xi] = 0.

The standard Lie bracket on Der(F̂Lie(W )) induces the following bracket on tderk: For the
elements u = (u1, . . . , uk), v = (v1, . . . , vk) the bracket is given by

[u, v] = (u(v1)− v(u1) + [u1, v1], . . . , u(vk)− v(uk) + [uk, vk])

which can be seen as follows

[u, v] (xi) = u(v(xi))− v(u(xi)) = u([xi, vi])− v([xi, ui])
= [u(xi), vi] + [xi, u(vi)]− [v(xi), ui] + [xi, v(ui)]
= [[xi, ui], vi] + [xi, u(vi)]− [xi, v(ui)]− [xi, [vi, ui]] + [vi, [xi, ui]]
= [xi, u(vi)− v(ui) + [ui, vi]]

where for the fourth equality we used the Jacobi identity to get [[xi, vi], ui] = [xi, [vi, ui]] −
[vi, [xi, ui]] and in the fifth equality we used the anti-symmetry [vi, [xi, ui]] = −[[xi, ui], vi].
Finally, we consider the subspace sderk ⊆ tderk of special derivations, consisting of all tangential
derivations satisfying the additional property that

u

(
k∑
i=1

xi

)
=

k∑
i=1

[xi, ui] = 0.

4.4 Identification between Lie trees and Lie monomials

Elements of the Lie algebra F̂Lie(W ) and in particular elements of tderk and sderk admit com-
binatorial representations via graphs. In the following we are going to discuss those and show
some examples. Here we follow [22].

Definition 4.17. Lie monomials in F̂Lie(W ) of degree n are associated with directed ordered
rooted trees with k external vertices and the further constraint that the root has two outgoing
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edges, each other internal vertex has two outgoing and one incoming edge and the external
vertices only have incoming edges. These trees are being called Lie trees.
The correspondence is given as follows: To each external vertex 1, . . . , k we associate a generator
x1, . . . , xk of F̂Lie(W ). Then recursively to every internal vertex v with the two outgoing edges
e1 = (v, w1), e2 = (v, w2) such that e1 < e2 we assign [L1, L2] where L1 and L2 are the Lie
monomials assigned to the vertices w1 and w2. This process will finish at the root as it has no
incoming edges. Then the monomial associated to the whole tree is the monomial of the root.
Moreover, one has to quotient the graded vector space of Lie trees by the IHX-relation (see
Figure 6 on the left) to encode the Jacobi-Identity of the Lie bracket.

−− = 0 = −

Figure 6: The picture on the left displays the IHX relation and the one on the right
shows the anti-symmetry relation. The dashed incoming edges may or may not be
present; depending on if this vertex is the root of the Lie tree or not.

Remark 4.18. In some papers Lie trees are defined without the ordering on the edges. Then,
however, the sign of the expression is not fixed as for a vertex v it is not clear which outgoing
edge corresponds to the first and which to the second argument of the Lie bracket at v. In this
case one has to further quotient the space of Lie trees by the anti-symmetry relation shown in
Figure 6 on the right.

X Y Z

1 2

3 4 5 6
X Y

1 2

3

4

5 6

[[X,Y ], [Y, Z]] [[X, [X,Y ]], [X,Y ]]

Figure 7: Two Lie trees with their corresponding Lie monomials in F̂Lie(X,Y, Z) and
F̂Lie(X,Y ) respectively.

Example 4.19. In Figure 7 two examples of Lie Trees with their corresponding polynomials
are shown. For the left tree the polynomials associated to the two vertices in the vertical middle
are [X,Y ] and [Y, Z]. For the right tree they are [X, [X,Y ]] and [X,Y ].

Turning to tderk from the discussion in the previous section we see that its elements are in one-to-
one correspondence with k-tuples of Lie trees with k external vertices modulo the IHX relation.
However, we can also turn to a more convenient description to encode these k-tuples: For an
element u = (u1, . . . , uk) ∈ tderk we consider the linear combination of Lie trees corresponding
to ui. For each of those trees we draw an additional edge from the i-th external vertex to the
root. This turns the Lie tree into a directed internally-trivalent graph with k external vertices.
As the new edge is the only one leaving an external vertex it uniquely identifies the root as well
as the uj to which it corresponds.

Example 4.20. Consider the tangential derivation given by u = ([X,Y ], [Y, [X,Y ]]). Then its
identification with a Lie tree is shown in Figure 8 on the left and its description in terms of the
directed internally-trivalent graphs is depicted on the right of Figure 8.
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(
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1 2 1 2
1 2 1

2
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3

+

Figure 8: The identification as a Lie tree on the left and as a internally-trivalent
directed graph on the right.

Finally, the above identification induces a correspondence between elements of sderk and the
graded vector space spanned by internally connected, internally trivalent, internally tree, undi-
rected graphs with k external vertices modulo the IHX relation. The identification goes as
follows: For such an undirected graph G and i ∈ {1, . . . , k} we choose an edge e = (i, v) of
the external vertex i and orient it away from i. The vertex v then becomes our root and the
orientation of all other edges is automatically given by the fact that all internal vertices of G
are trivalent, G is an internal tree and that every internal vertex should have one incoming
and two outgoing edges. Repeat this procedure for every edge of i and every external vertex
i ∈ {1, . . . , k}.
The sign of each graph is then fixed by the following convention: The edges of the tree should
be ordered such that the edge from (i, v) comes first. Then the two outgoing edges of the root
e, e′ and afterwards all edges of the subtree whose incoming edge is e and then all edges of
the subtree whose incoming edge is e′ where w.l.o.g. we assume that |e| < |e′|. We call the
subtree corresponding to e the left and the one corresponding to e′ the right subtree. Apply this
convention then recursively on all subtrees. This gives a graph that corresponds to an element
of tderk by the above described identification. In particular it is an element of sderk and can
then be converted into a Lie word. What remains to show is that the ordering fixing the sign is
well defined. The following lemma takes care of that:

Lemma 4.21. The above described construction respects the anti-symmetry relation of the Lie
bracket.

Proof. To show that the construction is well-defined under the anti-symmetry relation means
showing that if we exchange the numbering on the two outgoing edges of an internal vertex the
sign of the graph flips. This exchange is equivalent to exchanging the two arguments of a Lie
Bracket and thus we need this sign change to satisfy the anti-symmetry relation.
By the construction of the ordering on such a graph we know that there exist j ∈ N such
that the two outgoing edges (v, w1) and (v, w2) at a vertex v have order number j and j + 1
respectively. We call the subtree corresponding to the edge (v, w1) the left subtree and the
subtree corresponding to the edge (v, w2) the right subtree. Then from the construction of the
ordering we know that there exist k > j and l > k such that the edges in the left subtree of
v, have order numbers j + 2, . . . , k and that the edges appearing in the right subtree of v have
order numbers k + 1, . . . , l.
To then obtain a valid ordering on the graph after exchanging the labels j and j + 1 we need
to reorder the edges in the subtrees such that all labels in the left subtree are bigger than all
labels in the right subtree and the same holds for all further subtrees. This can be achieved by
applying the permutation (j + 2; . . . ; k; k+ 1; . . . ; l) a number of k− (j + 1) times. Importantly,
every subtree contains an even number of edges and thus k − (j + 1) is even. Therefore, this
permutation is even and does not change the sign.
However, the permutation (j; j + 1) remains to exchange the labels on the outgoing edges of v.
Hence, the total permutation we need to apply is (j; j+ 1)(j+ 2; . . . ; l)k−(j+1), which is odd and
the sign of the graph flips. This shows the desired result.
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+ − −7→

G G1 G2 G3 G4

Figure 9: An undirected internally trivalent, internally connected, internally tree graph
with 3 external vertices on the left and its image under the correspondence to sder3 on
the right.

Example 4.22. Consider the graph G as given in Figure 9 on the left. Then in the same image
on the right the result of the above identification can be seen. Here The signs come from the
application of the permutation (0; 1; 2) to G1, (0; 2) to G2, (4; 3; 2; 1; 0) to G3 and (0; 3; 2; 1) to
G4. Moreover, we see that the graph G1 contributes to u1, G2 to u3 and G3, G4 to u3. We
therefore get that the element of sder3 corresponding to G is given by

u = (u1, u2, u3) = ([Y, [Y, Z]],−[X, [Y, Z]]− [[X,Y ], Z], [[X,Y ], Y ]) ,

where we identified x1, x2, x3 with X,Y, Z. We can now check that this element satisfies the
special relation: We have

[X,u1] = [X, [Y, [Y,Z]]] = [[Y,Z], [Y,X]]− [Y, [[Y, Z], X]]
[Z, u3] = [Z, [Y, [Y,X]]] = [[Y,X], [Y, Z]]− [Y, [[Y,X], Z]]
[Y, u2] = [Y, [[Y, Z], X]] + [Y, [[Y,X], Z]]

where in the first two lines we used the Jacobi identity and in the last row we just used linearity
and anti symmetry. Finally we get

[X,u1] + [Y, u2] + [Z, u3] = [[Y, Z], [Y,X]] + [[Y,X], [Y,Z]] = 0

by anti-symmetry. Thus, u is an element of sder3.

4.5 The map from GC to sder2

The goal of this section it to understand Algorithm 1 from [22] which describes the isomorphism
between H0(GC) and grt1 in detail. Moreover it will follow that there is a map ϕ : GC→ sder2
which when passing to cohomology gives the isomorphism from H0(GC) to grt1. The algorithm
is given as follows: Let γ ∈ GC be a cocycle.

1. We can assume that γ is 1-vertex irreducible.
2. For each graph in γ sum over all ways to mark a vertex as external. This gives a (linear

combination of) graph(s) γ1 ∈ graphs(1).
3. Split the marked vertex into two and sum over all possible ways to reconnect the incoming

edges such that each vertex is hit by at least one edge. Call this linear combination of
graphs γ′

2 ∈ ICG(2).
4. γ′

2 is closed in ICG(2) and has no one-edge component, hence it is the coboundary of some
element γ2. We choose γ2 to be symmetric under interchange of the external vertices 1
and 2.

5. Forget the non-internal-trivalent non-internal-tree part of γ2 to obtain T .
6. For each tree t occuring in T construct a Lie word in variables X,Y as follows. For each

edge incident to vertex 1, cut it and make it the "root" edge. The resulting (internal)
tree is a binary tree with leaves labelled by 1 or 2. It can be seen as a Lie tree, and one
gets a Lie word ψ1(X,Y ) by replacing each 1 by X and each 2 by Y . Set ψ(X,Y ) =
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ψ1(X,Y ) − ψ1(Y,X). Summing over all such Lie words one gets a linear combination of
Lie words corresponding to γ. Let us call it again ψγ(X,Y ) ∈ FLie(X,Y ).

7. ψγ is the desired grt1-element.
In the following we are going to describe the steps of this algorithm in detail:

Step 1

This follows from the following proposition:

Proposition 4.23. GC1vi ↪→ GC is a quasi isomorphism.

Here GC1vi denotes the subspace of 1-vertex irreducible graphs of GC. This result has been
shown by Conant, Gerlits and Vogtman in [10].

Steps 2, 3 and 4

Here we follow the extra construction from Rossi and Willwacher from [18, Section 7.3]. Notice
that step 3 can explicitly be written down as

γ′
2 = γ1 ◦1 Γ − Γ ◦1 γ1

where Γ is the graph given by two external vertices and no edges and 1 is the one external
vertex. Here the first term corresponds to splitting the external vertex into two and reconnecting
the edges in all possible ways. The second term then cancels all the terms of the first where one
external vertex is not hit by any edge. We can however also express the steps 2, 3 and 4 via
another construction: Consider the map ψ : GC→ graphs(2) which works on a Graph G by

ψ(G) =
∑

e={u,v}∈E
(−1)|e|−1 ((G \ e)u,v + (G \ e)v,u) ,

where G \ e denotes the graph where e has been deleted from G and (. . .)u,v denotes the graph
where the vertex u has been marked as external with number 1 and v as external with number
2. That is ψ sums over all edges e in γ marks the two vertices connected by e as external and
deletes the edge e. The sign arising from (−1)|e|−1 is the same as assuming that e has position
1 in the ordering.
We then have the following key lemma from [18, Lemma 7.2]:

Lemma 4.24.
dgraphs(ψ(γ))− ψ(dGC(γ)) = γ1 ◦ Γ − Γ ◦ γ1

Since γ is closed and if we only keep the internally connected part of ψ(γ) we get

γ2 = ψ(γ)

as by the lemma

dgraphs(γ2) = γ1 ◦ Γ − Γ ◦ γ1 + ψ(dGC(γ)) = γ′
2 + 0 = γ′

2.

This also instantly shows that γ′
2 is closed as dgraphs(γ′

2) = d2
graphs(γ2) = 0 and clearly it is also

a coboundary as dgraphs(γ2) = γ′
2. This last statement however follows also for general elements

of ICG(2):

Proposition 4.25. A closed element of ICG(2) with no one-edge component is a co-boundary.
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Proof. Notice that the only generator of H∗(ICG(2)) is given by the graph corresponding to t12
which is exactly Γ , the graph with two external vertices connected by an edge. As the only
possible product is [t12, t12] = 0 the homology of ICG(2) is given by Q · Γ .
Now if a closed element G contains no one-edge component then it cannot contain the generator
Γ and thus must vanish in homology. This implies that there existsH such thatG = dgraphs(H)
and thus G is a co-boundary.

To illustrate these three steps we can consider the following example:

Example 4.26. Let G be the three wheel graph. Then G is a co-cycle as no vertex of G can
be split into two ≥ 3-valent vertices. The figure below illustrates G,G1, G

′
2 and G2 as well as T

from Step 5.

G G1 G′
2 G2 = T

Step 2 Step 3 Step 4
1 4 12 12+1 1 2 12 1 212

1

2 3

4 5

6

1

2 3

4 5

6

1

2 3

4 5

6

1

2 3

4 5

6

1

2

3

4

5

A further example of these computations can be found in Appendix A for the five wheel.

Step 5

This step is rather straightforward and does not warrant any further explanation. However, this
step is also very restricting in the graphs that contribute to the final result. This can be seen
as follows:

Definition 4.27. As the fundamental group of a graph G is isomorphic to the free group we
can define the rank of a graph rank(G) to be the rank of its fundamental group. It can be shown
that this is equal to

rank(G) = |E| − |V |+ 1,

that is the Euler characteristic of G.

Notice now that for an element of H0(GC) it holds that 2 rank(G) = |E|:

0 = deg(G) = 2|V | − E − 2⇒ −|E| = −(2|E| − 2|V |+ 2) = 2 rank(G).

Consider the map ψ. Then we observe that, for a graph G2 = ψ(G) to be internally trivalent
all but two vertices of G need to be trivalent. Moreover, the two non trivalent vertices needed
to be chosen as external. We denote them by v1, v2 and their degrees by d1 and d2.
Using the handshaking lemma, that is for every undirected graph the following holds∑

v∈V
deg(v) = 2E,

and the definition of the rank we find

2E =
∑
v∈V

deg(v) = 3 · (V − 2) + d1 + d2 = 3(E − rank(G)− 1) + d1 + d2

⇒ d1 + d2 = 3(rank(G) + 1)− E = rank(G) + 3

where in the first line we used the handshaking lemma in the first equality and the fact that
V = E − rank(G) + 1 in the third equality. In the second line we used that E = 2 rank(G).
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Thus, we see that the only contributing graphs are graphs that are trivalent on all but two
vertices and whose degree on the final two vertices satisfies d1 + d2 = rank(G) + 3.

Step 6

Although step 6 can be executed as given in the algorithm one can also perform it via the iden-
tification between sderk and the graded vector space spanned by internally connected, internally
trivalent, internally tree, undirected graphs given in Section 4.4.
For this we consider the element u = (u1, u2) corresponding to T via this identification. Then we
have that ψ1(X,Y ) is equal to u1 and ψ1(Y,X) is equal to u2. This follows as by the requirements
in step 4, T is symmetric under interchange of the external vertices and thus making the edges
incident to vertex 1 the root edges and naming 1 Y and 2 X is the same as making the edges
incident to vertex 2 the root edges and naming 1 X and 2 Y . This is exactly what gives u2.
Therefore, under this identification we have that ψγ(X,Y ) = u1 − u2.
Using the alternative description of steps 2, 3 and 4 via the map ψ this gives a map ϕ : GC→ sder2
by ϕ(G) = ψγ(X,Y ).

Example 4.28. Continuing from Example 4.26 by applying this identification we find that the
element in grt1 corresponding to the three wheel is given by

σ3 := −24 · [X, [X,Y ]] + 24 · [[X,Y ], Y ].

The result for the five wheel can also be found in Appendix A as well as for the seven wheel in
Appendix B.

4.6 Calculating τ2j+1 to weight 13

In this section we are going to use the implementation of the map ϕ as well as the formulas
derived for c2n, cα,β, cα,β,γ to calculate τk for k ≤ 13 odd.
First however we need the following result about the term ad2n

x (y) and the wheel graph:

Proposition 4.29. Let n ∈ N. The pre-image of ad2n
x (y) in grt1 under the above isomorphism

is given by the 2n + 1 wheel-graph as given in Figure 2. That is under the above isomorphism
the only graph that gives the term ad2n

x (y) is the wheel graph.

Proof. Assume that G ∈ GC such that ad2n
x (y) ∈ Im(ϕ |G). Then G has 2n+ 2 vertices as ϕ(G)

gives words of lengths 2n+1 exactly if it contains 2n+2 vertices as two vertices are being chosen
as external and then each other vertex gives one bracket. We denote the external vertices by x
and y. From step 5 we know that G\{x, y} is a tree and thus has (|VG|−2)−1 edges. Moreover,
from step 4 we know that there is an edge between x and y in G. Let us denote the degree of
x, y be dx, dy respectively. From this we conclude that

|EG| = (|VG| − 2)− 1 + dx + dy − 1

On the other hand, however, we have that each internal vertex is trivalent and thus by the
handshaking lemma we have

2|EG| = 3(|VG| − 2) + dx + dy.

By combining the two results we find that dx + dy = |VG| + 2. Now trivially we have that
dx ≤ |VG| − 1. Furthermore, d1 ≤ 3 as else we would get more than one y in the words in ϕ(G)
(one edge is between x and y, another edge could go to the root and one final edge then gives the
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one y ). This, however, implies that dx = |VG|−1 and dy = 3. This means that x is connected to
every vertex in G and thus G \ {x} is bivalent. Moreover, as G needs to be internally connected
to contribute and y is connected to at least one internal vertex G \ {x} is connected. However,
the only connected bivalent graph on k vertices is the k-cycle. Thus, G \ {x} is the k-cycle and
G is then the 2n+ 1-wheel. This shows the result.

Let us denote by σ3, σ5 and σ7 the cocycles as defined in Example 4.28, Appendix A and
Appendix B respectively. Then notice that the dimension for grt1 in degree 3, 5 and 7 is 1 (cf.
[15], Table 1). Therefore, if we find the coefficient of adk−1

x (y) (or any other Lie word of weight
k) for k ∈ {3, 5, 7} we can infer the complete description of the τ3, τ5 and τ7. Now, by the
above Lemma 4.29 we know that only the 3, 5 and 7 wheel contribute to adkx(y) and thus by
calculating the wheels coefficient we get the full description. Doing the calculations we find:

τ3 = −5
2σ3

ζ(3)
(2πi)3 = 60 ζ(3)

(2πi)3 ([X, [X,Y ]]− [[X,Y ], Y ])

τ5 = 126 · σ5
ζ(5)

(2πi)5 = 630 ζ(5)
(2πi)5 (−2 · [Y, [Y, [Y, [Y,X]]]] + 4 · [Y, [Y, [[Y,X], X]]]

− 3 · [[Y, [Y,X]], [Y,X]]− 4 · [Y, [[[Y,X], X], X]]
− [[Y,X], [[Y,X], X]] + 2 · [[[[Y,X], X], X], X])

τ7 = −1716 · σ7
ζ(7)

(2πi)7 .

For weight 9 we unfortunately do not have a full description of the cocycle. If we define σ9 up
to depth 3 however as

σ9 := ad8
x(y)− i ζ (9)

128π9e1
[ad0

x(y), ad7
x(y)]− 19i ζ (9)

1024π9e1
[ad1

x(y), ad6
x(y)]− 29i ζ (9)

1024π9e1
[ad2

x(y), ad5
x(y)]

− 13i ζ (9)
1024π9e1

[ad3
x(y), ad4

x(y)] + 28
3 [ad0

x(y), [ad0
x(y), ad6

x(y)]] + 1843
72 [ad0

x(y), [ad1
x(y), ad5

x(y)]]

+1217
72 [ad1

x(y), [ad0
x(y), ad5

x(y)]] + 835
36 [ad0

x(y), [ad2
x(y), ad4

x(y)]] + 2723
72 [ad1

x(y), [ad1
x(y), ad4

x(y)]]

+593
24 [ad2

x(y), [ad0
x(y), ad4

x(y)]] + 221
18 [ad1

x(y), [ad2
x(y), ad3

x(y)]] + 1613
36 [ad2

x(y), [ad1
x(y), ad3

x(y)]]

+467
36 [ad3

x(y), [ad0
x(y), ad3

x(y)]] + . . .

where we normalized such that the coefficient ad8
x(y) of the 9 wheel is 1. We have, as the

dimension of grt1 in weight 9 is still 1, that τ9 is given by

τ9 = 437580 · σ9
ζ(9)

(2πi)9 .

Finally for weight 11 and 13 we have that the grt1 dimensions are 2 and 3. Generators can then
be given by σ11, [σ3, [σ3, σ5]Ih]Ih and σ13, [σ3, [σ3, σ7]Ih]Ih, [σ5, [σ5, σ3]Ih]Ih respectively. Where
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once again we can only define σ11 and σ13 up to depth 3 by

σ11 = ad10
x (y) + 5[ad0

x(y), ad9
x(y)] + 17[ad1

x(y), ad8
x(y)] + 38[ad2

x(y), ad7
x(y)] + 89

2 [ad3
x(y), ad6

x(y)]

+43
2 [ad4

x(y), ad5
x(y)] + 15[ad0

x(y), [ad0
x(y), ad8

x(y)]] + 7651
240 [ad0

x(y), [ad1
x(y), ad7

x(y)]]

+15869
240 [ad1

x(y), [ad0
x(y), ad7

x(y)]]− 5063
240 [ad0

x(y), [ad2
x(y), ad6

x(y)]] + 55237
240 [ad1

x(y), [ad1
x(y), ad6

x(y)]]

+571
4 [ad2

x(y), [ad0
x(y), ad6

x(y)]]− 3077
48 [ad0

x(y), [ad3
x(y), ad5

x(y)]] + 11717
40 [ad1

x(y), [ad2
x(y), ad5

x(y)]]

+40077
80 [ad2

x(y), [ad1
x(y), ad5

x(y)]] + 1757
30 [ad3

x(y), [ad0
x(y), ad5

x(y)]] + 8519
48 [ad1

x(y), [ad3
x(y), ad4

x(y)]]

+9881
16 [ad2

x(y), [ad2
x(y), ad4

x(y)]] + 5581
48 [ad3

x(y), [ad1
x(y), ad4

x(y)]]− 417
16 [ad4

x(y), [ad0
x(y), ad4

x(y)]]

+2701
24 [ad3

x(y), [ad2
x(y), ad3

x(y)]] + . . .

and

σ13 = ad12
x (y) + 6[ad0

x(y), ad11
x (y)] + 53

2 [ad1
x(y), ad10

x (y)] + 155
2 [ad2

x(y), ad9
x(y)]

+ 137[ad3
x(y), ad8

x(y)] + 149[ad4
x(y), ad7

x(y)] + 131
2 [ad5

x(y), ad6
x(y)]

+ 22[ad0
x(y), [ad0

x(y), ad10
x (y)]] + 174721

2100 [ad0
x(y), [ad1

x(y), ad9
x(y)]]

+ 219029
2100 [ad1

x(y), [ad0
x(y), ad9

x(y)]] + 33619
350 [ad0

x(y), [ad2
x(y), ad8

x(y)]]

+ 328863
700 [ad1

x(y), [ad1
x(y), ad8

x(y)]] + 1063
4 [ad2

x(y), [ad0
x(y), ad8

x(y)]]

− 4121
150 [ad0

x(y), [ad3
x(y), ad7

x(y)]] + 144101
175 [ad1

x(y), [ad2
x(y), ad7

x(y)]]

+ 210388
175 [ad2

x(y), [ad1
x(y), ad7

x(y)]] + 12503
42 [ad3

x(y), [ad0
x(y), ad7

x(y)]]

− 20999
150 [ad0

x(y), [ad4
x(y), ad6

x(y)]] + 49439
75 [ad1

x(y), [ad3
x(y), ad6

x(y)]]

+ 107601
50 [ad2

x(y), [ad2
x(y), ad6

x(y)]] + 31546
25 [ad3

x(y), [ad1
x(y), ad6

x(y)]]

+ 230[ad4
x(y), [ad0

x(y), ad6
x(y)]]− 1524

25 [ad1
x(y), [ad4

x(y), ad5
x(y)]]

+ 38889
25 [ad2

x(y), [ad3
x(y), ad5

x(y)]] + 52426
25 [ad3

x(y), [ad2
x(y), ad5

x(y)]]

+ 27394
25 [ad4

x(y), [ad1
x(y), ad5

x(y)]] + 5263
50 [ad5

x(y), [ad0
x(y), ad5

x(y)]]

+ 29023
30 [ad3

x(y), [ad3
x(y), ad4

x(y)]] + 9949
10 [ad4

x(y), [ad2
x(y), ad4

x(y)]] + . . . .

where we also normalized such that the coefficient of ad10
x (y) and ad12

x (y) of the 11 and 13 wheel
are 1 respectively. With this defined we find for τ11 and τ13 :

τ11 = 7759752 · σ11
ζ(11)

(2πi)11 +
(
−323323

2400 · [σ3, [σ3, σ5]Ih]Ih
)(

ζsv(5, 3, 3)
(2πi)11 + 22020

3553
ζ(3)2ζ(5)
(2πi)11

)
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and

τ13 = ζ(13)
(2πi)13 · (135207800 · σ13)

+
(2414425

4032 · [σ3, [σ3, σ7]Ih]Ih
)(

ζsv(7, 3, 3)
(2πi)13 − 244740

5681
ζ(5)2ζ(3)
(2πi)13 + 123508

7429
ζ(7)ζ(3)2

(2πi)13

)

+
(
−676039

600 · [σ5, [σ5, σ3]Ih]Ih −
482885

672 · [σ3, [σ3, σ7]Ih]Ih
)(

ζsv(5, 5, 3)
(2πi)13 − 203950

5681
ζ(5)2ζ(3)
(2πi)13

)
.

Notice importantly that even though we only know the values up to depth 3 we get far more
information from this. In particular, in principle in weight 9 the MZV ζ(5, 3) could appear
however in the coefficients up to depth 3 it does not and thus by the dimension constraint
it can also not appear in higher depths. Similarly, for τ11 and τ13 for all MZVs but ζ(11) and
ζ(13) we know the total contribution of all depths even though once again we only calculated the
coefficients up to depth 3. In this case this works by the dimension constraint and the fact that we
know the full description of the generators [σ3, [σ3, σ5]Ih]Ih and [σ3, [σ3, σ7]Ih]Ih, [σ5, [σ5, σ3]Ih]Ih
respectively.
For higher weights, i.e. ≥ 15, quadruple MZVs appear in the conjectured basis of MZVs. As
these appear only for depths ≥ 4 we cannot obtain them here and thus weight 13 is the maximum
where a reasonable description of τk can be given with calculations only up to depth 3.

5 Remaining proofs

Proof of Lemma 3.10. Let a, b, c, d ∈ N0 and let N := a + b + c + d. Moreover, let w =
xayxbyxxyxd. Let us first consider the terms given by the action of Ist cα,β

[
adαx(y), adβx(y)

]
on elements of degree 1. This is given by:

Ist cα,β
[
adαx(y), adβx(y)

]
· (xpyxq) +

[
y, Ist cα,β

[
adαx(y), adβx(y)

]]
· ∂y(xpyxq), (8)

where s ∈ N, p, q ∈ N0 such that α + β = 2s − 1 and 2s − 1 + p + q = N . Expanding the first
term yields

Ist cα,β

α∑
i=0

β∑
j=0

(
α

i

)(
β

j

)
(−1)i+j

(
xiyxα−i+jyxβ−j+pyxq − xjyxβ−j+iyxα−i+pyxq

)

This contributes with the first term when q = d, i = a, j = b+a−α and p = b+a+ c− (2s− 1)
and with the second if q = d, j = a, i = b+ a− β and p = b+ a+ c− (2s− 1). Therefore, the
terms we are interested in are given by

∑
s∈N,p∈N0
α+β=2s−1

p=a+b+c−(2s−1)

Ist cα,β

((
α

a

)(
β

b+ a− α

)
(−1)b−α −

(
α

b+ a− β

)(
β

a

)
(−1)b−β

)
uxpyxd .

Expanding the second term in equation (8) gives:

Ist cα,βx
p
[
y,
[
adαx(y), adβx(y)

]]
xq = Ist cα,β

α∑
i=0

β∑
j=0

(
α

i

)(
β

j

)
(−1)i+j(xpyxiyxα−i+jyxβ−j+q

− xp+iyxα−i+jyxβ−jyxq − xpyxjyxβ−j+iyxα−i+q + xp+jyxβ−j+iyxα−iyxq).
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This contributes with
• the first term if p = a, i = b, j = b+ c− α and q = b+ c+ d− (2s− 1),
• the second term if q = d, j = β − c, i = α+ β − b− c and p = a+ b+ c− (2s− 1),
• the third term if p = a, j = b, i = b+ c− β and q = b+ c+ d− (2s− 1),
• the fourth term if q = d, i = α− c, j = α+ β − b− c and p = a+ b+ c− (2s− 1).

The terms we are interested in are thus given by

∑
s∈N,p∈N0
α+β=2s−1

p=a+b+c−(2s−1)

Ist cα,β

((
α

b+ c− β

)(
β

c

)
(−1)b−β −

(
α

c

)(
β

b+ c− α

)
(−1)b−α

)
uxpyxd

+
∑

s∈N,p∈N0
α+β=2s−1

p=b+c+d−(2s−1)

Ist cα,β

((
α

b

)(
β

b+ c− α

)
(−1)c−α −

(
α

b+ c− β

)(
β

b

)
(−1)c−β

)
uxpyxd .

Secondly, we get the action of Ist c2s ad2s
x (y) on elements of degree 2. This gives:

Ist c2s ad2s
x (y)(xpyxqyxr) +

[
y, Ist c2s ad2s

x (y)
]
∂y(xpyxqyxr) (9)

where s ∈ N, p, q, r ∈ N0 such that 2s+ p+ q + r = N . Expanding the first term yields

Ist c2s

2s∑
i=0

(
2s
i

)
(−1)ixiyx2s−i+pyxqyxr.

This contributes if i = a, q = c, r = d and p = a+ b− 2s. Thus, the terms we are interested in
are given by ∑

s∈N,p∈N0
p=a+b−2s

Ist c2s(−1)a
(

2s
a

)
uxpyxcyxd .

Considering the second term in equation (9) gives

[
y, Ist c2s ad2s

x (y)
]
∂y(xpyxqyxr) = Ist c2s

2s∑
i=0

(
2s
i

)
(−1)i(xpyxiyx2s−i+qyxr

− xp+iyx2s−iyxqyxr + xpyxqyxiyx2s−i+r − xpyxq+iyxqyxr).

This contributes with
• the first term when p = a, i = b, r = d and q = b+ c− 2s,
• the second term when q = c, r = d, i = 2s− b and p = a+ b− 2s,
• the third term when p = a, q = b, i = c and r = d+ c− 2s,
• the fourth term when p = a, r = d, i = 2s− c and q = b+ c− 2s.

The terms we are interested in are thus given by

+
∑

2s=b+c−q
I2s

1 c2s

((
2s
b

)
(−1)b −

(
2s
c

)
(−1)c

)
uxayxqyxd

−
∑

2s=a+b−p
I2s

1 c2s

(
2s
b

)
(−1)buxpyxcyxd +

∑
2s=c+d−r

I2s
1 c2s

(
2s
c

)
(−1)cuxayxbyxr .

This shows the desired result.
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Proof of Lemma 3.11. Let us first expand the following expression

adlx(y) ◦ (admx (y) ◦ xpyxq)

with ◦ being the action from Definition 2.25 and l,m ∈ N and p, q ∈ N0. In the following we
call the terms ab the first part of the action a ◦ b and the terms [y, a]∂yb the second part of the
action. Expanding the term in brackets gives:

2m∑
j=0

(
2m
j

)(
xjyx2m−j+pyxq + xpyxjyx2m−j+q − xp+jyx2m−jyxq

)
.

Let us now consider the first part of the action of adlx(y) on this expression. This gives:

2l∑
i=0

2m∑
j=0

(
2l
i

)(
2m
j

)
(−1)i+j

(
xiyx2l−i+jyx2m−j+pyxq + xiyx2l−i+pyxjyx2m−j+q

−xiyx2l−i+p+jyx2m−jyxq
)
.

If we only consider the terms that contain w we get that this contributes with
• the first term if i = a, j = a+ b− 2l, p = a+ b+ c− 2l − 2m and q = d,
• the second term if i = a, j = c, p = a+ b− 2l and q = c+ d− 2m,
• the third term if i = a, j = 2m− c, p = a+ b+ c− 2l − 2m and q = d.

Considering the second part of the action we get:

2l∑
i=0

2m∑
j=0

(
2l
i

)(
2m
j

)
(−1)i+j

(
xjyxiyx2l+2m−i−j+pyxq − xi+jyx2l−iyx2m−j+pyxq

+ xjyx2m−j+pyxiyx2l−i+q − xjyx2m−j+p+iyx2l−iyxq + xpyxiyx2l−i+jyx2m−j+q

− xp+iyx2l−iyxjyx2m−j+q + xpyxjyxiyx2l+2m−i−j+q − xpyxi+jyx2l−iyx2m−j+q

− xp+jyxiyx2l+2m−i−jyxq + xp+j+iyx2l−iyx2m−jyxq − xp+jyx2m−jyxiyx2l−i+q

+xp+jyx2m−j+iyx2l−iyxq
)
.

This contributes with
• the 1st term if i = b, j = a, p = a+ b+ c− 2l − 2m and q = d,
• the 2nd term if i = 2l − b, j = a+ b− 2l, p = q + b+ c− 2l − 2m and q = d,
• the 3rd term if i = c, j = a, p = a+ b− 2m and q = c+ d− 2l,
• the 4th term if i = 2l − c, j = a, p = a+ b+ c− 2l − 2m and q = d,
• the 5th term if i = b, j = b+ c− 2l, p = a and q = b+ c+ d− 2l − 2m,
• the 6th term if i = 2l − b, j = c, p = a+ b− 2l and q = c+ d− 2m,
• the 7th term if i = c, j = b, p = a and q = b+ c+ d− 2l − 2m,
• the 8th term if i = 2l − c, j = b+ c− 2l, p = a and q = b+ c+ d− 2l − 2m,
• the 9th term if i = b, j = 2m− (b+ c− 2l), p = a+ b+ c− 2l − 2m and q = d,
• the 10th term if i = 2l − b, j = 2m− c, p = a+ b+ c− 2l − 2m and q = d,
• the 11th term if i = c, j = 2m− b, p = a+ b− 2m and q = c+ d− 2l,
• the 12th term if i = 2l − c, j = 2m− (b+ c− 2l), p = a+ b+ c− 2l − 2m and q = d.

In the case of the double integrals the factor J l,mt c2lc2m coming from the ψ part and the factor
uxpyxq from the ΦKZ contribute extra to everyone of these terms. Collecting all the terms then
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gives

∑
l,m∈N,p∈N0

p=a+b+c−2l−2m

J l,mt c2lc2m

((
2l
a

)(
2m

a+ b− 2l

)
(−1)b −

(
2l
a

)(
2m
c

)
(−1)a−c +

(
2l
b

)(
2m
a

)
(−1)a+b

−
(

2l
b

)(
2m

a+ b− 2l

)
(−1)a −

(
2l
c

)(
2m
a

)
(−1)a−c −

(
2l
b

)(
2m

b+ c− 2l

)
(−1)c

+
(

2l
b

)(
2m
c

)
(−1)b+c +

(
2l
c

)(
2m

b+ c− 2l

)
(−1)b

)
uxpyxd

+
∑

l,m∈N,q∈N0
q=b+c+d−2l−2m

J l,mt c2lc2m

((
2l
b

)(
2m

b+ c− 2l

)
(−1)c

+
(

2l
c

)(
2m
b

)
(−1)b+c −

(
2l
c

)(
2m

b+ c− 2l

)
(−1)b

)
uxayxq

+
∑

l,m∈N,p,q∈N0
p=a+b−2m
q=c+d−2l

J l,mt c2lc2m

((
2l
c

)(
2m
a

)
(−1)a+c −

(
2l
c

)(
2m
b

)
(−1)c−b

)
uxpyxq

+
∑

l,m∈N,p,q∈N0
p=a+b−2l
q=c+d−2m

J l,mt c2lc2m

((
2l
a

)(
2m
c

)
(−1)a+c −

(
2l
b

)(
2m
c

)
(−1)c−b

)
uxpyxq .

Finally notice that by relabelling l,m in the last sum to m, l we obtain that the last sum is the
same as the second to last which gives the desired result.

Proof of Lemma 3.12. Let us first consider the expression[
adαx(y), adβx(y)

]
◦
(
ad2m

x (y) ◦ 1
)

with ◦ being the action from Definition 2.25, α + β = 2l − 1 and l,m ∈ N. In the following we
call the terms ab the first part of the action a ◦ b and the terms [y, a]∂yb the second part of the
action. The first part of the action gives:

∑
i,j,k

(
α

i

)(
β

j

)(
2m
k

)
(−1)i+j+k

(
xiyxα−i+jyxβ−j+kyx2l−k − xjyxβ−j+iyxα−i+kyx2l−k

)
.

Only considering the terms that contain w we get that this contributes with
• the first term if i = a, j = a+ b− α and k = 2m− d,
• the second term if i = a+ b− β, j = a and k = 2m− d.

Considering the second part of the action we get

∑
i,j,k

(
α

i

)(
β

j

)(
2m
k

)
(−1)i+j+k

(
xkyxiyxα−i+jyxβ−j+2m−k − xk+iyxα−i+jyxβ−jyx2l−k

− xkyxjyxβ−j+iyxα−i+2m−k + xk+jyxβ−j+iyxα−iyx2m−k
)
.

This contributes with
• the 1st term if i = b, j = b+ c− α and k = a,
• the 2nd term if i = a+ d− 2m, j = β − c and k = 2m− d,
• the 3rd term if i = b+ c− β, j = b and k = a,
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• the 4th term if i = α− c, j = a+ d− 2m and k = 2m− d.
In the case of the double integrals the factor J l,mt cα,βc2m coming from the ψ part contribute
extra to everyone of these terms. Collecting all the terms gives

∑
2l+2m=2n−3
α+β=2l

J l,mt cα,βc2m

((
α

a

)(
β

a+ b− α

)(
2m
d

)
(−1)b+d−α −

(
α

a+ b− β

)(
β

a

)(
2m
d

)
(−1)b+d−β

+
(
α

b

)(
β

b+ c− α

)(
2m
a

)
(−1)a+c−α −

(
α

a+ d− 2m

)(
β

c

)(
2m
d

)
(−1)a+c−β

−
(

α

b+ c− β

)(
β

b

)(
2m
a

)
(−1)a+c−β +

(
α

c

)(
β

a+ d− 2m

)
i

(
2m
d

)
(−1)a+c−α

)

which is the first half of the desired result.
Let us now consider the second term that is the expression

ad2l
x ◦

([
adαx(y), adβx(y)

]
◦ 1
)

with ◦ being the action from Definition 2.25 and l,m, h ∈ N. The first part of the action gives:

∑
i,j,k

(
α

i

)(
β

j

)(
2l
k

)
(−1)i+j+k

(
xkyx2l−k+iyxα−i+jyxβ−j − xkyx2l−k+jyxβ−j+iyxα−i

)
.

Only considering the terms that contain w we get that this contributes with
• the first term if i = a+ b− 2l, j = β − d and k = a,
• the second term if i = α− d, j = a+ b− 2l and k = a.

Considering the second part of the action we get

∑
i,j,k

(
α

i

)(
β

j

)(
2l
k

)(
xiyxkyx2l+α−i+j−kyxβ−j − xi+kyx2l−kyxα−i+jyxβ−j

+ xiyxα−i+jyxkyx2l+β−j−k − xiyxα−i+j+kyx2l−kyxβ−j − xjyxkyx2l+β+i−j−kyxα−i

+xj+kyx2l−kyxβ−j+iyxα−i − xjyxβ+i−jyxkyx2l+α−i−k + xjyxβ+i−j+kyx2l−kyxα−i
)
.

This contributes with
• the 1st term if i = a, j = β − d and k = b,
• the 2nd term if i = a+ b− 2l, j = β − d and k = 2l − b,
• the 3rd term if i = a, j = a+ b− α and k = c,
• the 4th term if i = a, j = β − d and k = 2l − c,
• the 5th term if i = α− d, j = a and k = b,
• the 6th term if i = α− d, j = a+ b− 2l and k = 2l − b,
• the 7th term if i = a+ b− β, j = a and k = c,
• the 8th term if i = α− d, j = a and k = 2l − c.

In the case of the double integrals the factor J l,mt c2lcα,β coming from the ψ part contribute extra
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to everyone of these terms. Collecting all the terms gives

∑
2l+2m=2n−3
α+β=2m

J l,mt c2lcα,β

((
α

a+ b− 2l

)(
β

d

)(
2l
a

)
(−1)b+d−,β −

(
α

d

)(
β

a+ b− 2l

)(
2l
a

)
(−1)b+d−α

(
α

a

)(
β

d

)(
2l
b

)
(−1)a+b+d−β −

(
α

a+ b− 2l

)(
β

d

)(
2l
b

)
(−1)a+d−β

+
(
α

a

)(
β

a+ b− α

)(
2l
c

)
(−1)b+c−α −

(
α

a

)(
β

d

)(
2l
c

)
(−1)a+c+d−β

−
(
α

d

)(
β

a

)(
2l
b

)
(−1)a+b+d−α +

(
α

d

)(
β

a+ b− 2l

)(
2l
b

)
(−1)a+d−α

−
(

α

a+ b− β

)(
β

a

)(
2l
c

)
(−1)b+c−β +

(
α

d

)(
β

a

)(
2l
c

)
(−1)a+c+d−α

)
.

Both results together then show the lemma.

Proof of Lemma 3.13. Let us first expand the following expression

adlx(y) ◦
(
admx (y) ◦ adhx(y)

)
with ◦ being the action from Definition 2.25 and l,m, h ∈ N. In the following we call the terms ab
the first part of the action a◦ b and the terms [y, a]∂yb the second part of the action. Expanding
the term in brackets gives

2m∑
j=1

2h∑
k=1

(
2m
j

)(
2h
k

)
(−1)j+k

(
xjyx2m−j+kyx2h−k + xkyxjyx2h+2m−j−k − xk+jyx2m−jyx2h−k

)
.

Let us now consider the first part of the action of adlx(y) on this expression. This gives

2l∑
i=1

2m∑
j=1

2h∑
k=1

(
2l
i

)(
2m
j

)(
2h
k

)
(−1)i+j+k

(
xiyx2l−i+jyx2m−j+kyx2h−k

+xiyx2l−i+kyxjyx2h+2m−j−k − xiyx2l−i+j+kyx2m−jyx2h−k
)
.

If we now only consider the terms that contain w we get that this contributes with
• the first term if i = a, j = a+ b− 2l and k = 2h− d,
• the second term if i = a, j = c and k = a+ b− 2l,
• the third term if i = a, j = 2m− c and k = 2h− d.

Considering the second part of the action we get:

2l∑
i=1

2m∑
j=1

2h∑
k=1

(
2l
i

)(
2m
j

)(
2h
k

)
(−1)i+j+k

(
xjyxiyx2m+2l−j−i+kyx2h−k

− xi+jyx2l−iyx2m−j+kyx2h−k + xjyx2m−j+kyxiyx2l+2h−i−k − xjyx2m−j+k+iyx2l−iyx2h−k

+ xkyxiyx2l−i+jyx2h+2m−j−k − xk+iyx2l−iyxjyx2h+2m−j−k + xkyxjyxiyx2h+2m+2l−i−j−k

− xkyxi+jyx2l−iyx2h+2m−j−k − xk+jyxiyx2l+2m−i−jyx2h−k + xk+j+iyx2l−iyx2m−jyx2h−k

−xk+jyx2m−jyxiyx2l+2h−i−k + xk+jyx2m−j+iyx2l−iyx2h−k
)
.

This contributes with:
• the 1st term if i = b, j = a and k = 2h− d,
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• the 2nd term if i = 2l − b, j = a+ b− 2l and k = 2h− d,
• the 3rd term if i = c, j = a and k = a+ b.2m,
• the 4th term if i = 2l − c, j = a and k = 2h− d,
• the 5th term if i = b, j = b+ c− 2l and k = a,
• the 6th term if i = 2l − b, j = c and k = a+ b− 2l,
• the 7th term if i = c, j = b and k = a,
• the 8th term if i = 2l − c, j = b+ c− 2l and k = a,
• the 9th term if i = b, j = a+ d− 2h and k = 2h− d,
• the 10th term if i = 2l − b, j = 2m− c and k = 2h− d,
• the 11th term if i = c, j = 2m− b and k = a+ b− 2m,
• the 12th term if i = 2l − c, k = 2h− d and j = a+ d− 2h.

In the case of the triple integrals the factor K l,m,h
t c2lc2mc2h coming from the ψ part contribute

extra to everyone of these terms. Collecting all the terms then gives

∑
l+m+h=n−1

K l,m,h
t c2lc2mc2h

((
2l
a

)(
2m

a+ b− 2l

)(
2h
d

)
(−1)b−d +

(
2l
a

)(
2m
c

)(
2h

a+ b− 2l

)
(−1)b+c

−
(

2l
a

)(
2m
c

)(
2h
d

)
(−1)a−c−d +

(
2l
b

)(
2m
a

)(
2h
d

)
(−1)a+b−d

−
(

2l
b

)(
2m

a+ b− 2l

)(
2h
d

)
(−1)a−d +

(
2l
c

)(
2m
a

)(
2h

a+ b− 2m

)
(−1)b+c

−
(

2l
c

)(
2m
a

)(
2h
d

)
(−1)a−c−d +

(
2l
b

)(
2m

b+ c− 2l

)(
2h
a

)
(−1)a+c

−
(

2l
b

)(
2m
c

)(
2h

a+ b− 2l

)
(−1)a+c +

(
2l
c

)(
2m
b

)(
2h
a

)
(−1)a+b+c

−
(

2l
c

)(
2m

b+ c− 2l

)(
2h
a

)
(−1)a+b −

(
2l
b

)(
2m

a+ d− 2h

)(
2h
d

)
(−1)a+b

+
(

2l
b

)(
2m
c

)(
2h
d

)
(−1)b+c+d −

(
2l
c

)(
2m
b

)(
2h

a+ b− 2m

)
(−1)a+c

+
(

2l
c

)(
2m

a+ d− 2h

)(
2h
d

)
(−1)a−c

)

which shows the lemma.
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A The five wheel under the map ϕ

Notice first that the five wheel (see Figure 10 on the left) is not a closed element in GC. For this
we need to add the graph G2 (see Figure 10 on the right). It can then easily be checked that
then G1 − 5

2G2 is closed we call this element γ.
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Figure 10: The five wheel G1 on the left and the auxiliary graph G2 on the right

In Figure 11 the element γ1 from step 2 can be seen. In Figure 13 the element γ′
2 from step 3 is

shown. Moreover, in Figure 12 the element γ2 obtained via the map ψ is displayed. In Figure
14 the element T obtained in step 5 is depicted. In Figure 15 the directed graphs depicting the
element in tder2 are shown. Finally the element σ5 in grt1 is given by

σ5 :=− 10 · [Y, [Y, [Y, [Y,X]]]] + 20 · [Y, [Y, [[Y,X], X]]]− 15 · [[Y, [Y,X]], [Y,X]]
− 20 · [Y, [[[Y,X], X], X]]− 5 · [[Y,X], [[Y,X], X]] + 10 · [[[[Y,X], X], X], X].

1

12

3

4 5

6

7

8

9

10

1

1

12

3

4 5

6

7

8

9

10

+ 5 1

1

3

2

4

6 5

7

8

9

10

− 5

1

1

3

2

4

6
5

7

8

9

10

− 5

1

3

2

1
4

6 5

7

8

9

10

− 5

Figure 11: The element γ1
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Figure 12: The element γ2
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Figure 13: The element γ′
2
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B The seven wheel under the map ϕ

In [9] the authors give a description of a heptagon-wheel cocycle, i.e. a cocycle containing the
seven wheel. A graphical description of this cocycle can be found in [9] in Appendix A or here in
Figure 17. Due to the size of γ1, γ

′
2 and γ2 they are not being displayed here. However, in Figure

16 the element T obtained in step 5 is depicted. Finally, the element σ7 in grt1 corresponding
to the heptagon-wheel cocycle is given by

σ7 : = 14 · [Y, [Y, [Y, [Y, [Y, [Y,X]]]]]]− 42 · [Y, [Y, [Y, [Y, [[Y,X], X]]]]]
+ 70 · [Y, [Y, [[Y, [Y,X]], [Y,X]]]] + 70 · [Y, [Y, [Y, [[[Y,X], X], X]]]]

− 28 · [[Y, [Y, [Y,X]]], [Y, [Y,X]]] + 133
8 · [Y, [Y, [[Y,X], [[Y,X], X]]]]

− 1211
8 · [Y, [[Y, [[Y,X], X]], [Y,X]]]− 70 · [Y, [Y, [[[[Y,X], X], X], X]]]

− 28 · [[Y, [Y,X]], [Y, [[Y,X], X]]] + 119
8 · [[[Y, [Y,X]], [Y,X]], [Y,X]]

− 693
8 · [Y, [[Y,X], [[[Y,X], X], X]]] + 427

8 · [[Y, [[Y,X], X]], [[Y,X], X]]

+ 763
8 · [[Y, [[[Y,X], X], X]], [Y,X]] + 42 · [Y, [[[[[Y,X], X], X], X], X]]

− 455
8 · [[Y,X], [[Y,X], [[Y,X], X]]] + 56 · [[Y,X], [[[[Y,X], X], X], X]]

+ 42 · [[[Y,X], X], [[[Y,X], X], X]]− 14 · [[[[[[Y,X], X], X], X], X], X].
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Figure 16: The element T
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Figure 17: The heptagon-wheel cocycle.
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C Python implementation

The code of the Python implementation can be found on github under github.com/jlportner/
MscArbeitProgramming. It is structured into two parts the folder GraphComputations contains
the implementation of the map ϕ and the graph complexes GC and graphs. Examples on how to
use these can be found in the file sevenwheel.py and fiveWheel.py which create the images
in Appendix A and B respectively.
The second folder TauComputations contains the implementation of calculating the cα,β, cα,β,γ
and then using those to give elements in depth 3 of Φt and ΦAT . Moreover, it is used to generate
the definitions for σ9, σ11 and σ13. A small working example on how to get the coefficients
cα,β, cα,β,γ and ΦAT can be found in the file main.py.
Finally, the code has quite a few dependencies:

• sagemath needs to be installed,
• maple needs to be installed,
• graphviz needs to be installed,
• the python packages numpy, networkx and pydot need to be available,
• the maple package HyperlogProcedures by Oliver Schnetz (https://www.math.fau.de/

person/oliver-schnetz/) needs to be on the computer and its path needs to be set in
the function startHyperlogProc().

D The values of the depth 3 coefficients cα,β,γ

n=3

c1,1,2 = 195195i ζ (7)
256π7 c2,0,2 = 183183i ζ (7)

256π7 c0,1,3 = 297297i ζ (7)
256π7

c1,0,3 = 327327i ζ (7)
256π7 c0,0,4 = 15015i ζ (7)

16π7

n=4

c1,2,3 = −2686255i ζ (9)
256π9 c2,1,3 = −19606015i ζ (9)

512π9 c3,0,3 = −5676385i ζ (9)
512π9

c0,2,4 = −10149425i ζ (9)
512π9 c1,1,4 = −33098065i ζ (9)

1024π9 c2,0,4 = −21623745i ζ (9)
1024π9

c0,1,5 = −22401665i ζ (9)
1024π9 c1,0,5 = −14792635i ζ (9)

1024π9 c0,0,6 = −255255i ζ (9)
32π9
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n=5

Let

e1 := 116396280 · ζ(11)
(2πi)11

e2 := 7759752
5 · ζsv(5, 3, 3)

(2πi)11 + 9618336ζ(5)ζ(3)2

(2πi)11

then

c3,2,3 = 2701
360 e1 c1,3,4 = 8519

720 e1 − 5 e2 c2,2,4 = 9881
240 e1 −

25
2 e2

c3,1,4 = 5581
720 e1 + 5 e2 c4,0,4 = −139

80 e1 + 5
2 e2 c0,3,5 = −3077

720 e1 + 5 e2

c1,2,5 = 11717
600 e1 − 3 e2 c2,1,5 = 13359

400 e1 − 9 e2 c3,0,5 = 1757
450 e1 + e2

c0,2,6 = −5063
3600 e1 + 9

2 e2 c1,1,6 = 55237
3600 e1 − 3 e2 c2,0,6 = 571

60 e1 −
5
2 e2

c0,1,7 = 7651
3600 e1 + e2 c1,0,7 = 15869

3600 e1 − e2 c0,0,8 = e1

n=6

Let

f1 := 2974571600 · ζ(13)
(2πi)13

f2 := 13520780 ·
ζsv(5,5,3)
(2πi)13 − 485401000 · ζ(5)2ζ(3)

(2πi)13

f3 := 19315400 · ζsv(7, 3, 3)
(2πi)13 − 832116000 · ζ(5)2ζ(3)

(2πi)13 + 321120800 · ζ(7)ζ(3)2

(2πi)13

then

c3,3,4 = 29023
660 f1 + 34 f2 −

35
2 f3 c4,2,4 = 9949

220 f1 + f2

c1,4,5 = −762
275 f1 + 188

5 f2 −
35
2 f3 c2,3,5 = 38889

550 f1 + 532
5 f2 − 56 f3

c3,2,5 = 2383
25 f1 + 238

5 f2 −
49
2 f3 c4,1,5 = 13697

275 f1 −
78
5 f2 + 21

2 f3

c5,0,5 = 5263
1100 f1 −

28
5 f2 + 7

2 f3 c0,4,6 = −1909
300 f1 −

27
5 f2 + 7 f3

c1,3,6 = 49439
1650 f1 + 244

5 f2 − 21 f3 c2,2,6 = 107601
1100 f1 + 444

5 f2 − 49 f3

c3,1,6 = 15773
275 f1 + 98

5 f2 −
21
2 f3 c4,0,6 = 115

11 f1 − 5 f2 + 7
2 f3

c0,3,7 = −4121
3300 f1 −

58
5 f2 + 21

2 f3 c1,2,7 = 144101
3850 f1 + 888

35 f2 − 12 f3

c2,1,7 = 105194
1925 f1 + 1144

35 f2 − 20 f3 c3,0,7 = 12503
924 f1 + 30

7 f2 −
5
2 f3

c0,2,8 = 33619
7700 f1 −

239
35 f2 + 11

2 f3 c1,1,8 = 328863
15400 f1 + 286

35 f2 − 5 f3

c2,0,8 = 1063
88 f1 + 5 f2 −

7
2 f3 c0,1,9 = 174721

46200 f1 −
46
35 f2 + f3

c1,0,9 = 219029
46200 f1 + 46

35 f2 − f3 c0,0,10 = f1
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n=7

Let

g1 : = 70578471600 · ζ(15)
(2πi)15

g2 : = 258529200 · ζsv(9, 3, 3)
(2πi)15 − 12409401600 · ζ(5)3

(2πi)15

− 60512425440 · ζ(7)ζ(5)ζ(3)
(2πi)15 + 8056882080 · ζ(9)ζ(3)2

(2πi)15

g3 : = 1706292720
7 · ζsv(7, 3, 5)

(2πi)15 + 13650341760 · ζ(5)3

(2πi)15 + 63728237760 · ζ(7)ζ(5)ζ(3)
(2πi)15 .

then

c3,4,5 = 10077611
5460 g1 − 112 g2 −

3115
22 g3 c4,3,5 = 21839549

10920 g1 − 98 g2 −
2765
22 g3

c5,2,5 = 1127211
4550 g1 −

63
22 g3 c1,5,6 = 100099067

109200 g1 − 56 g2 − 77 g3

c2,4,6 = 81750661
21840 g1 − 224 g2 −

6335
22 g3 c3,3,6 = 948907

240 g1 − 224 g2 −
3115
11 g3

c4,2,6 = 10459307
7280 g1 − 63 g2 −

1785
22 g3 c5,1,6 = −21282517

109200 g1 + 28 g2 + 679
22 g3

c6,0,6 = −1800467
21840 g1 + 7 g2 + 175

22 g3 c0,5,7 = −14737889
109200 g1 + 14 g2 + 203

22 g3

c1,4,7 = 79501151
50960 g1 − 84 g2 −

1335
11 g3 c2,3,7 = 609621581

152880 g1 − 232 g2 − 295 g3

c3,2,7 = 132189913
50960 g1 − 144 g2 −

1965
11 g3 c4,1,7 = 4842731

10192 g1 − 18 g2 −
255
11 g3

c5,0,7 = −59071547
764400 g1 + 8 g2 + 197

22 g3 c0,4,8 = −18460019
76440 g1 + 23 g2 + 205

11 g3

c1,3,8 = 87199667
76440 g1 − 59 g2 −

925
11 g3 c2,2,8 = 107067939

50960 g1 −
243
2 g2 −

3285
22 g3

c3,1,8 = 130626607
152880 g1 − 47 g2 −

1235
22 g3 c4,0,8 = 113563

1560 g1 −
5
2 g2 −

35
11 g3

c0,3,9 = −1760716
9555 g1 + 17 g2 + 335

22 g3 c1,2,9 = 37359233
76440 g1 − 25 g2 −

365
11 g3

c2,1,9 = 7076711
11760 g1 − 35 g2 −

445
11 g3 c3,0,9 = 131597

1040 g1 − 7 g2 −
175
22 g3

c0,2,10 = −52070947
764400 g1 + 13

2 g2 + 137
22 g3 c1,1,10 = 101249003

764400 g1 − 7 g2 −
89
11 g3

c2,0,10 = 55641
728 g1 −

9
2 g2 −

105
22 g3 c0,1,11 = −5756327

764400 g1 + g2 + g3

c1,0,11 = 13795127
764400 g1 − g2 − g3 c0,0,12 = g1
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