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Figure 1 – Representing a store (left) as a network (right)

1 Introduction
Background
Understanding how customers move inside stores is of considerable interest to retailers,
as it can help them improve store layouts with less congestion, more item sales, or other
desirable features. However, the mobility of customers in a store is a complicated process
that depends on many factors, including customers’ item preferences, shopping lists,
familiarity with a store’s layout, the availability and price of items, and the level of
congestion in a store. Some of these factors also vary over time (e.g., availability of items
or congestion), and the flow of people or the way in which people navigate therefore
varies over time. A mathematical model that explains the main features of customer
mobility and that gives good estimates of the movements (even if on an aggregate level)
is of great interest to retailers. Such a model can be used to improve store layouts, so that
there is less congestion or greater exposure of promotional items.

Our work is motivated by the problem of understanding how customers move in a
supermarket and the problem of measuring and mitigating congestion inside a store.
There are three primary objectives:

� model how customers move in a supermarket,

� model congestion based on customer movements, and

� identify store layouts that minimize congestion.

Congestion negatively
affects customer
satisfaction and
delays staff in fulfilling
online orders.

Supermarket companies seek to reduce congestion inside their stores, because it has a
negative effect both on customer shopping experience and on the fulfilment time for
online orders. In many supermarkets, staff members go around a store (at the same time
as customers shop in the store) and pick up items that were ordered online. Congestion
may delay such orders and thereby incur additional costs and inconvenience customers in
the stores.

Approach
Our approach is to represent a store as a network (which we call store network), in which
each node represents a zone in a supermarket and each edge connects adjacent zones (see
Figure 1).

We use state-of-the-art population-level mobility models to estimate the mobility flow of
customers between zones in a supermarket. These models take the store network and the
popularity of zones (measured roughly by the number of purchases made in each zone)
as input and return an origin–destination (OD) matrix T with entries Ti j which record
the mobility flow from zone i to zone j during a time period (3 months in our case). We
measure the mobility flow Ti j by the number of times that a customer purchased an item
in zone i followed by a purchase in zone j.

We then combine the mobility model with a congestion model to estimate congestion in a
supermarket. Our congestion model is based on queueing networks, in which each node

1



Figure 2 – Summary of our approach

(or zone) acts as a queue, at which customers queue up to be served. Such a queueing
network framework allows us to estimate the mean time it takes for customers to traverse
a node based on the number of other customers in the same node. Wemeasure congestion
by the mean time it takes for customers to finish their shopping journey. Finally, we use
an optimization algorithm to find better store layouts with lower values of our congestion
measure. We summarize our approach in Figure 2.

Glossary of terms
� Store network: Network representation of a store

� Origin–destination (OD)matrix: Matrix T with entries Ti j which record themobility
flow from zone i to zone j during some time period.

� Common part of commuters (CPC): Proportion of trips that are in both the empirical
OD matrix and OD matrix that is estimated from a model.

2 Data

We use anonymized
ordered basket data to
estimate the mobility
flow in supermarkets.

Our data consists of anonymized ordered customer-basket data from 17 Tesco stores over
a common three month period. Each ordered customer basket is a list of item purchases,
which we order by pick-up time. We use item-location data to map each ordered list of
purchases to their associated zones in a supermarket. We calculate the empirical origin–
destination matrix Tdata by counting the number of times that customers bought an item
in zone i followed by a purchase in j for every pair of nodes (i, j).

3 Mobility models

We use mobility
models which have
been used to estimate
flow of commuters,
goods, and vehicle
traffic.

We use the following population-level mobility models to estimate the mobility flow in a
supermarket.

� Gravity model: Inspired by Newton’s law of gravity, the mobility flow under the
gravity model is proportional to the popularities of the origin and destination nodes
and is inversely proportional to the distance (to some power α) between these two
nodes (see Figure 3). The gravity model has been used for many decades in various
applications such as estimating flow of commuters, flow of trade goods, traffic flow,
and identifying catchment area of shops, hospitals, and schools.

� Intervening–opportunities model: The main idea of the intervening–opportunities
(IO) model is that the mobility flow between two nodes i and j increases with
the popularities of the origin and destination nodes and decreases with the total
popularities of the intervening nodes associated with the pair (i, j). An intervening
node in this case are all nodes that are closer to i than j is. These nodes are perceived
as more desirable, as it is closer to travel to the intervening nodes from i than to
travel to j. Therefore, in contrast to the gravity model, the distance between the
two nodes i and j only indirectly affect the mobility flow between them: The larger
the distance between two nodes, the more intervening nodes are there, so the total
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Figure 3 – Illustration of the gravity model. The larger the popularities of the nodes (black
circles) and the shorter the distance between them, the larger the mobility flow between
them.

popularities between the two nodes increases and there is a smaller mobility flow
between them under the IO model.

� Radiation model: Inspired by wave theory, the radiation model is a parameter-free
variant of the IO model.

� Extended radiation model: This model is an extension of the radiation model that
includes an additional calibration parameter that has been reported to give better
fits on smaller spatial scales.

In our application, thepopularity of anode correspond roughly to thenumber of purchases
made in each node.

Goodness-of-fit measures

Each of the mobility models outputs an origin–destination matrix Tmodel, and the goal of
each model is to output an OD matrix Tmodel that is as ‘close’ as possible to the empirical
OD matrix Tdata. However, we require a suitable notion of ‘closeness’ when comparing
these two matrices. For this purpose, we use the following two goodness-of-fit measures:

� Common part of commuters (CPC): The common part of commuters measures the
proportion of trips that occur in both Tmodel and Tdata. In other words, it is the
proportion of trips that were estimated correctly by the model.

� Error in estimated number of visits: When we consider congestion in Section 5,
we estimate the number of visits to each node from an OD matrix T by assuming
that customers take shortest paths between purchases. We separately calculate the
estimated number of visits from the model estimate Tmodel and from the empirical
OD matrix Tdata. We calculate the discrepancy in the estimated number of visits
calculated in these two ways by the normalized root-mean-square error in these
values.

Parameter calibration
The gravity, IO, and extended radiation model each have a single fitting parameter. We
calibrate these parameters bymaximizing CPC. In other words, for eachmodel, we choose
the parameter such that the model achieves the highest value of CPC.
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4 Results of fitting mobility models

The gravity model
gives the best fit to
the empirical mobility
flow. It estimates on
average 69% of the
flow.

Weapply the fourmobilitymodels fromSection 3 to 17 stores. The gravitymodel performs
the best both in terms of the CPC score and the error in estimated number of visits (see
Table 1). The CPC values of the gravity model are also comparable to the performance of
this model in previous applications such as estimating commuting flow. The error in the
estimated number of visits is also low for the gravity model (see also Figure 4). Therefore,
the gravitymodel describes well themobility flow in supermarkets. We further found that
themodel parameters of the gravitymodel does not change significantly between different
stores, so one can use the model parameter from one store to estimate the mobility flow
in all other stores. This observation is particularly useful in practice for estimating the
mobility flow in stores for which we do not have empirical data on the mobility flow, as
we would normally require data on the empirical mobility flow to calibrate the model
parameters.

Table 1 – Mean CPC scores and error in estimated number of visits for the four mobility
models. We highlight the best value in each column in bold.

Model Mean CPC (higher
better)

Mean error in estimated
number of visits (lower

better)

Gravity 0.686 0.045
Ext. radiation 0.672 0.054
IO 0.655 0.047
Radiation 0.513 0.116
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Figure 4 – Comparison between the estimated number of visits to each node calculated from
the OD matrix from the gravity model (Model) and from the empirical OD matrix (Data).
The orange line is the identity. The gravity model agrees well with the data in terms of the
estimated number of visits to each node.

So far, we have shown that the gravity model describes well the mobility flow in
supermarkets and that its parameter value does not change significantly between
different stores (which each have different store layouts). Therefore, we expect the
gravity model to work well in estimating the change in mobility flow when changing the
store layout. Given a suitable model for how customers walk between purchases, one can
estimate shelf-level foot traffic and congestion from the mobility flow. (Note that the
mobility flow does not make any assumptions on how customers walk between
purchases.) Our models therefore allow supermarket companies to test out different
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store layouts and estimate the mobility flow (and therefore the foot traffic and
congestion) for each of them, so they can select a layout with more desirable properties
than the existing layout. We demonstrate one application (estimating and mitigating
congestion) in the next section.

5 Integrating mobility model with congestion
model

We integrate our
mobility model with a
congestion model
based on queueing
networks to estimate
congestion in
supermarkets.

To estimate congestion from a mobility flow (which we estimate using the gravity model),
we assume that customers traverse shortest paths between purchases and that every node
acts as a queue with a single server (see Figure 5). Each customer queues up at each node
to be served. The server at each node serves at a rate µ (the service rate). In practice,
the service rate µ can be calibrated using empirical data on the mean traversal time of
each node. However, as we do not possess this data, we choose a value of µ that is
deemed plausible (in particular, which gives plausible values for the mean traversal time).
We estimate congestion by the total mean queue size Q, which is the mean number of
customers in the store. Minimizing Q is also equivalent to minimizing the mean journey
time of customers.

Figure 5 – Diagram of a queue. We use queues to model congestion at each node.

We use an optimization algorithm (called simulated annealing algorithm) that swaps
aisles with one another to find store layouts that reduce our congestion measure Q. Our
algorithm is able to find store layouts with significantly lower values of Q (around 25%
lower) than the original store layout. In the store layout with the smallest found value of
Q, popular nodes were moved from the centre of the store towards the perimeter of the
store (see Figure 6).

6 Summary and future directions
In summary, we considered the problem of modelling and analyzing customer mobility
and congestion in supermarkets. We were motivated by the problem of modelling how
customers move in a supermarket and finding an optimal supermarket layout that
minimizes congestion. In our approach, we represented a store as a spatial network
(which we called a “store network”) in which the nodes are zones of the store and edges
connect adjacent zones. We estimated the empirical mobility flow in 17 supermarkets
from anonymized and ordered customer-basket data. We fit the mobility models to this
data and found that the gravity model successfully estimate 65–70% of the flow inside
supermarkets. Being able to estimate mobility flow in a supermarket has potential
applications for estimating shelf-level foot traffic and congestion in supermarkets, as well
as finding store layouts with redirected foot traffic or less congestion. We demonstrated
the latter application by combining the gravity model with a congestion model based on
queueing networks to estimate congestion. We applied an optimization tool to it to
identify store layouts with lower values of congestion.

Our work has
potential applications
in designing more
efficient and less
congested stores.

Ourwork is notwithout limitations. Thesemainly concern on the simplifying assumptions
that we made. For example, we assume that customers traverse shortest paths between
purchases. However, in reality, customers traverse paths that deviate from a shortest
path. Furthermore, our congestion model based on queueing networks has not been
verified empirically, so all estimates of congestion may not be accurate. However, our
approachdoes not rely on the specific choices ofmodel for howcustomers traverse between
purchases and congestion models. In future work, one can replace them with more
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(a) Original store layout

(b) Optimized store layout
when minimizing the total mean queue size Q

Figure 6 – Location of popular nodes before and after optimization. Nodes of the same
colour belong to the same aisle. Gray nodes do not belong to any aisles. The node size is
proportional to its popularity (roughly the number of items sold at the node). We circle the
entrance and till nodes in yellow and red, respectively.
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accuratemodels to obtain better estimates of congestion or other quantities of interest. Our
approach is therefore a first step towards modelling customer mobility and congestion in
supermarkets.

For more details on this work, see [1, 2].

Dr. Alisdair Wallis, Data Science Manager at Tesco, said: “...”Comment from Alisdair
Wallis, Data Science Manager
at Tesco

Comment from Alisdair
Wallis, Data Science Manager
at Tesco
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