
Cutting-Edge Graphical Stabiliser

Decompositions for Classical

Simulation of Quantum Circuits

A thesis submitted for the degree of

MSc in Mathematics and Foundations of Computer Science

Trinity 2022

J Codsi

St Edmund Hall

University of Oxford

Acknowledgements

I would like to thank Tuomas Laakkonen for the countless fruitful dis-

cussion and help with the implementation of the algorithm. His help has

greatly improved the content of this work. I would also like to thank John

van de Wetering for his supervision. Finally, I would like to thank my

family and my girlfriend Thalie St-Jacques for their support and encour-

agement.

Abstract

The aim of this thesis is to study and improve classical simulation of quan-

tum circuits with stabiliser decompositions by using the ZX-calculus. We

propose more efficient decompositions for a large family of states in addi-

tion to integrating graphs cuts to make use of potential low connectivity of

ZX-diagrams. We also discovered different heuristics to speedup the sim-

ulations. Finally, we implemented our method and compared it with the

state-of-the-art on different families of circuits to asses the improvements

achieved by our approach.

Contents

1 Introduction to Quantum Computing and the ZX-Calculus 1

1.1 Basic notation . 2

1.2 ZX-Calculus . 4

1.2.1 ZX-diagrams . 5

1.2.1.1 Spiders . 5

1.2.1.2 Hadamard Box . 6

1.2.1.3 Cups, Caps and Swaps 7

1.2.1.4 Symmetries and OCM 7

1.2.1.5 Generalisation of Quantum Circuit 8

1.3 ZX-Calculus . 9

1.4 Fragments . 10

1.5 Simplifications Algorithm . 11

2 Simulation Through Stabiliser Decomposition 13

2.1 Time Complexity of Partial Decomposition 16

3 Graph Cuts Decompositions 18

3.1 Hardness . 21

3.2 Heuristics . 22

3.2.1 Balanced Vertex Separators 23

3.2.2 (Hyper)graph Partitioning . 23

3.2.2.1 Extracting vertex separators 24

3.2.2.2 Hypergraph Partitioning 25

3.2.3 Small Separators . 26

3.3 Subgraph Complement Cuts . 27

i

4 Finding New Decompositions 28

4.1 Combining cat states decompositons 29

4.1.1 Cuts . 29

4.1.2 Splits . 30

4.1.3 Combining both . 31

4.2 Star States . 31

4.2.1 Catification . 32

4.2.2 Cuts (Star version) . 33

4.2.3 Splits (Star version) . 33

4.2.4 Results . 34

4.3 Multiple Copies of Cats and Stars . 34

4.3.1 |star1⟩ Split . 36

4.3.2 Star Fusion . 36

4.3.3 Results . 37

4.4 Decomposition of Large Stars . 38

5 Where to Apply Decompositions 41

5.1 Where to apply the trivial decomposition? 42

5.2 Where to apply star fusion? . 43

6 Combining All the Decompositions 45

6.1 Our algorithm . 45

7 Numerical Experiments 47

7.1 Implementation . 47

7.2 Benchmarks . 47

7.2.1 Random IQP . 48

7.2.2 Random Clifford+T . 48

7.2.3 Other Families . 49

7.3 Results . 49

7.3.1 IQPs . 49

7.3.2 Random Clifford+T . 50

8 Weak Simulation Techniques 52
8.1 Qubit-per-Qubit . 52

8.2 Gate-per-Gate . 53

8.2.1 Speeding up the algorithm . 54

8.3 Relation to graph cuts . 55

ii

8.4 More Numerical Results . 56

9 Conclusions 59

A List of best decompositions 60

A.1 Laakkonen’s new decompositons . 60

A.2 Single Copy of a Cat State . 62

A.3 Single Copy of a Star State . 63

A.4 Multiple Copies of Cats . 64

A.5 Multiple Copies of Stars . 65

Bibliography 66

iii

List of Figures

4.1 Single copy cat state decomposition 31

4.2 Multiple copies cat state decompositions 37

4.3 Multiple copies stars state decompositions 38

7.1 Shape of a generic IQP circuit . 48

7.2 Strong simulation of IQP circuits . 50

7.3 Time for strong simulations of IQP circuits compared to the number

of qubits . 50

7.4 Strong simulation of random Clifford+T circuits 51

7.5 Time for strong simulations of Clifford+T circuits compared to the

number of qubits . 51

8.1 Weak simulation of random IQP . 56

8.2 Weak simulation of random IQP compared to the number of qubits . 57

8.3 Weak simulation of random Clifford+T 58

8.4 Weak simulation of random Clifford+T compared to the depth 58

iv

Chapter 1

Introduction to Quantum
Computing and the ZX-Calculus

Over the last hundred years, computers have completely revolutionised the world and

continue to do so today. Yet for a vast number of problems of interest, we do not have

the computational capabilities to solve them in a reasonable time. With the end of

Moore’s Law, we cannot simply rely on hardware improvements to solve ever larger

problems. It is in this context that quantum computing poses itself as a potential

solution. This new model of computing makes use of the quantum nature of the

microscopic world to achieve greater efficiency than one would expect from a classical

computer. This idea, generally attributed to Richard Feynman [13], has now been

the subject of a continuous global effort for just over forty years.

Two components make quantum computing so powerful, namely superposition

and entanglement.

Superposition is the property of an object to be in several states at once. For

example, an electron in an atom can be in several disjoint energy levels simultaneously.

This electron is not between these levels, but rather in each of them a little. In the

context of computing, we can create an analogue to the classical bit, the qubit, which

can be 0 and 1 simultaneously. By composing n qubits together, it is possible to

have a superposition state of the 2n possible n-bits strings. This makes it possible,

for example, to compute a function f on all strings of length n by calling it only

once. Essentially, it is this phenomenon that makes quantum computing seem to

have an exponential advantage over classical computing. Unfortunately, it’s not all

that simple, to get information out of a qubit, you have to measure it. One of the most

important and mysterious components of quantum physics is that any measurement

of a quantum system changes it. More precisely, it collapses its wave function. In the

case of our qubits and f , a measurement will return the value of the function only of a

1

string (and even of a random string). The amount of information that can be obtained

from a quantum system is fundamentally limited. On the other hand, this limited

information can depend on the entire state, allowing us to obtain global information

more quickly. The name of the game is to be able to extract the information we want

from a state. For example, if you have an array containing a single non-zero element,

and you want to know which one, conventionally, you would have to try them all (or

at least half of them on average) to accomplish this task. On the other hand, with a

quantum computer, it is possible to do this in O(
√
n) with Grover’s algorithm.

The second component of quantum computing that has no analogue in classical

computing is entanglement. Entanglement is the property of a system that cannot be

understood by looking only at its parts. It is possible to correlate the value of several

qubits so that they all give the same result when measured while keeping the result

of each measurement random. In a classical context, this would be the equivalent of

having several people flip a coin and being able to guarantee that they all get the same

result. If we repeat this experiment several times, we will have that each person gets

heads and tails about 50 per cent of the time, but these marginal distributions are

not enough to understand the whole system. The sum is more complex than its parts.

This almost gives the impression that the coins can communicate with each other,

but the correlation of entangled qubits remains even if they are so far apart that the

laws of physics forbid any rapid communication between them (because information

cannot travel faster than the speed of light). Moreover, it is possible to show that no

information can be sent using these correlations. One might think that the results of

the measurements are determined in advance and are hidden in the qubits, but Bell’s

theorem shows that this cannot explain the phenomenon1. Quantum computing tries

to use these strange properties to get a (potentially exponential) advantage over

classical computers.

1.1 Basic notation

A useful property of quantum mechanics is that it is linear. This linearity allows

(pure) quantum states to be represented by vectors in C2. For example, the quantum

1A common misconception is that Bell’s theorem shows that our universe is non-local. This is
not the case. It only shows that no hidden variables theory can explain quantum phenomena. For
example, superdeterminism is a local theory that could explain quantum behaviours. Other local
realist theories have been found with weaker assumptions (see, for example, [28])

2

analogue of a bit at zero is |0⟩ and the analogue of a bit at 1 is |1⟩.

|0⟩ =

(
1
0

)
|1⟩ =

(
0
1

)
More generally, we have the definition of pure states.

Definition 1 (Pure States). A pure state is a vector

|ψ⟩ =
(
α
β

)
= α |0⟩+ β |1⟩

where α, β ∈ C with α2 + β2 = 1

The condition on α and β is a normalisation condition guarantying that ∥|ψ⟩∥ = 1.

Two pure states that are very common are

|+⟩ =
1√
2

(
1
1

)
|−⟩ =

1√
2

(
1
−1

)
They represent a uniform superposition of |0⟩ and |1⟩. In addition to pure states,

there are also mixed states which can be represented by matrices. We will, however,

not need these so we omit their formal definition. To form larger spaces, we can

combine states through the use of tensor products. For one qubit states, we have a

special and less cumbersome notation |x⟩ ⊗ |y⟩ = |xy⟩.
Now that we know what are the states of quantum computing, we will explain

how to transform states into others. Quantum gates are unitary operators that allow

us to do exactly that. They are described by unitary matrices. To apply a gate U to

a state |ψ⟩, we can use the usual matrix/vector multiplication U |ψ⟩. Just like states,
we can combine gates with a tensor product to build larger gates that can be applied

to larger states. We can also chain multiple gates together U1U2 . . . Uk |ψ⟩. There is

also a more general class of transformation that is called isometries. We will not need

those in this dissertation so we omit their definition. Some usual gates are listed in

table 1.1.

Finally, we have measurements. The simplest form of measurement is what is

called projective measurements. This type of measurement tells us how far one state is

from another. To project a state |ψ⟩ to a state |ϕ⟩ we can use the scalar product ⟨ϕ|ψ⟩
which is what we call a bra-ket. We can also compute the probability of obtaining a

string x1, . . . xn while measuring a state |ψ⟩ by computing

| ⟨x1 . . . xn|ψ⟩ |2

3

I =

[
1 0
0 1

]
X = NOT =

[
0 1
1 0

]
Z =

[
1 0
0 −1

]

Y =

[
0 −i
i 0

]
H = 1√

2

[
1 1
1 −1

]
S =

[
1 0
0 i

]

T =

[
1 0
0 ei

π
4

]
CNOT =

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

Table 1.1: Some common quantum gates

This is what we call the Born rule. We can regroup all of these concepts in the model

of quantum circuit. In this model, a gate is represented by a box with wires coming in

and out. Those wires represent the inputs and outputs of a gate. To compose gates

we can simply chain them with wires from left to right. For example, we can build

the following circuit

|0⟩

|1⟩

|1⟩

S

X

T

+

+

T†

X

H H

The left of a circuit is the input of a circuit while the right is the output. Here the

vertical wire is a notation shorthand for a very common gate called the CNOT gate.

1.2 ZX-Calculus

The quantum circuit model has long been considered the model of choice for repre-

senting quantum computation. This model has several advantages over, for example,

quantum Turing machines. It offers a strong visual intuition for understanding the

workings of the calculations made with it. By knowing some useful identities such as

the commutation of certain gates, it is even possible to manipulate a quantum circuit

in a limited way. Although this visual intuition is very convenient, it is sometimes nec-

essary to express everything in equations containing a lot of Kronecker products and

matrix products. In a way, these equations concern objects that are two-dimensional

(the circuits), which we are forced to project into one dimension. It would be much

nicer if we could always work directly with diagrams. This is where the ZX-calculus

shines. ZX-calculus is a graphical language first introduced by Bob Coecke and Ross

Duncan in 2008 [8], that allows one to reason about quantum computations with-

out having to manipulate anything other than ZX-diagrams, which are, in a way, a

4

generalisation of quantum circuits (in fact, they can be used to represent any lin-

ear operator). This approach turns out to give a much more combinatorial intuition

to quantum computing. This new viewpoint has been successfully used in a wide

range of applications, from understanding indeterminate causal structures, through

measurement-based computing, to classical quantum circuit simulation (the subject of

this dissertation). In the next section, we give a brief introduction to the ZX-calculus

inspired by [33].

1.2.1 ZX-diagrams

We now introduce the notion of ZX-diagram as a generalisation of quantum circuits.

ZX-diagrams are built out of four generators; Hadamard boxes, green and red ver-

tices and bent wires. Like quantum gates, these represent matrices. The number of

incoming and outgoing wires gives us the dimensions of the matrix in question. The

matrix product and the Kronecker product are represented in the same way as in a

quantum circuit. That is, a wire between two matrices represents a matrix product

and the vertical juxtaposition of two matrices represents the Kronecker product. If

more than one wire connects two matrices, it can be seen as a tensor contraction or,

more intuitively, that many of the qubits leaving one gate enter another gate. The

formal definition of these generators.

1.2.1.1 Spiders

Definition 2 (Green Spider).

n

{
α

..
.

..
.

}
m = |0 · · · 0⟩︸ ︷︷ ︸

m

⟨0 · · · 0|︸ ︷︷ ︸
n

+eiα |1 · · · 1⟩︸ ︷︷ ︸
m

⟨1 · · · 1|︸ ︷︷ ︸
n

(1.1)

Here the dots are used to define an infinite family with an arbitrary number of poten-

tially different inputs and outputs. For obvious reasons, this type of vertex is called

a green spider. Good intuition for these spiders, especially when α = 0, is that a

spider is a generalisation of the Kronecker delta. Indeed, if all the qubits that enter a

spider are in the same state on the standard computational basis, a certain number

of copies of this pure state are produced. On the other hand, if this is not the case,

then nothing (or more precisely 0) is obtained. We can define red spiders in a very

similar way.

5

Definition 3 (Red Spider).

α

..
.

..
. = |+ · · ·+⟩⟨+ · · ·+|+ eiα |− · · · −⟩⟨− · · · −| (1.2)

Here we dropped the m and n, as it makes the writing more cumbersome. For

reasons we will not discuss here, green and red spiders are also often called Z-spiders

and X-spiders respectively.

Note: When α = 0, it is convenient not to write the angle in the spider. For example,

this greatly simplifies the notation for circuits composed of only CNOTs.

Slightly abusing Dirac notation, let’s define “empty” bras and kets as ⟨| := 1 and

|⟩ := 1. We can now define spiders with no input wire or no output wire. We then

have that

= |+⟩+ |−⟩ =
√
2 |0⟩ = |0⟩+ |1⟩ =

√
2 |+⟩

π = |+⟩ − |−⟩ =
√
2 |1⟩ π = |0⟩ − |1⟩ =

√
2 |−⟩

We find the usual basic states modulo a multiplicative constant. Note that it is

customary to ignore multiplicative constants (as long as they are non-zero) in the same

way that it is customary to forget the global phase in quantum circuits. The reason for

this is that it is often unnecessary and it is very easy to find this constant at the end of

our calculations (for example by using circuit unitarity). Another reason is also that

the ZX-calculus has several software implementations that automatically calculate

these constants. Therefore, we will use ≈ to denote “equal up to a multiplicative

constant”. With this notation, we have

≈ |0⟩ ≈ |+⟩ (1.3)

π ≈ |1⟩ π ≈ |−⟩ (1.4)

This also allows us to use a shorthand of notation to talk about the basis states.

kπ ≈ |k⟩

1.2.1.2 Hadamard Box

It is possible, using the Euler rotation decomposition theorem, to prove that any

unitary gate on a qubit can be represented by a series of red and green spiders2.

Thus, it is possible to express the Hadamard gate with spiders. Nevertheless, this

gate is so common that it is worthy of its own notation.

2This is because the rotations of the Bloch sphere with respect to the X and Z axis can be
expressed in terms of spiders.

6

Definition 4. (Hadamard box or H-box)

H ⇝ = π
2

π
2

π
2e−iπ

4

This box corresponds to the usual matrix definition of a Hadamard gate. Hadamard

boxes are represented by a square instead of a circle because, unlike spiders, we restrict

them to having only one input and one output wire3.

1.2.1.3 Cups, Caps and Swaps

The last family of generators are bent wires.

CUP = =

1
0
0
1

 CAP = =
(
1 0 0 1

)

SWAP =

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 =

Next, we will see why those are represented with wires.

1.2.1.4 Symmetries and OCM

Cups, caps and swaps obey what we call the yanking equations

= = = (1.5)

These equations imply that we can deform wires at will without changing the value

of the underlying matrix as long as they connect to the same spider and in the same

3There are types of calculus, such as ZH-calculus, which do not have this restriction.

7

order. Moreover, we have similar wire bending equations for spiders.

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

α

..
.

..
. α

..
.

..
.= α

..
.

..
.=

α

..
.

..
. = α

..
.

..
. α

..
.

..
. = α

..
.

..
.

α

..
.

..
. = α

..
.

..
. α

..
.

..
. = α

..
.

..
.

These equations imply that spiders are what we call flexsymetric meaning that

the ordering or direction of the wires doesn’t matter as long as they are connected to

the spider. Together with the yanking equations, these imply that ZX-diagrams can

be seen as graphs and are topologically deformable! More formally, if we define an

isomorphism between two diagrams as a function that preserves adjacency relations,

spider colours, spider angles, inputs and outputs of the whole diagram and their order,

then two isomorphic diagrams represent the same matrix! This fact is known as “Only

Connectivity Matters” or OCM. It implies that we can consider ZX-diagrams as a

special type of graph4 and use a range of techniques from the fields of combinatorics

and graph theory!

1.2.1.5 Generalisation of Quantum Circuit

At the beginning of this chapter, we mentioned that ZX-diagrams were a generali-

sation of quantum circuits and we now know enough about ZX-diagrams to see why

this is the case. For most common gates, there is a simple ZX equivalent.

S ⇝ π
2 T ⇝ π

4

X ⇝ π

+
⇝

T† ⇝ −π
4

H ⇝

4In fact, we should use multigraphs instead, because nothing prevents two spiders from having
more than one wire in common, but we can always get rid of multiple edges and even loops using
ZX-calculus. We can therefore limit ourselves to the case of simple graphs

8

We invite curious readers to verify those identities by computing the matrices directly.

This means that we can easily transform quantum circuits into ZX-diagrams. Thus,

ZX-diagrams are at least as general as quantum circuits but are even more expressive

(they can represent any linear maps) and have nicer symmetries as we have just seen.

1.3 ZX-Calculus

We have now defined ZX-diagrams and how they represent linear operators. Beyond

being just a convenient notation, we want to be able to do proofs using only these.

To do this, we will need rules that allow us to manipulate ZX-diagrams.

β

..
.

..
.

α ..
.

..
.

≈..
.

..
.

..
.α+β

(sf)

−α≈
π

π α ..
.

..
.

π
(π)

kπ

..
.α ≈..
.

kπ

(c)

kπ

..
. = ..
.

(cc)

(id)

=

=
(hh)

(bi)

≈

..
.α α ..
.

These seven rules and their colour-symmetric versions (when colours are swapped)

form the ZX-calculus. In order, these rules are called, spider fusion, colour change,

π-copy, identity removal, Hadamard cancel, π-commute and the bialgebra rule. To

showcase how these rules can be used, we will prove a known circuit identity. Do to

so, we will need a lemma called the Hopf rule.

Lemma 1 (Hopf rule).

≈

Proof.

=idOCM
=

=
π

=sf

≈bi ≈

9

We can now show that three alternate CNOTs are equivalent to a SWAP.

=
OCM ≈bi =

OCM

=sf ≈ =id

Note : Since H-boxes can only have one input and one output and they are self-

inverse a shorthand of notation often used is to represent them as a type of edges

called H-edges.

:= ...
...

...
...

1.4 Fragments

It often happens that one wants to discuss a restricted class of quantum circuits. For

example, one may be interested in circuits composed only of CNOTs, Clifford gates5

or Clifford+T. It turns out that these last classes have a simple representation with

ZX diagrams. Indeed, these correspond to fragments of the ZX-calculus.

Definition 5 (Fragment). A fragment of the ZX-calculus is a set of ZX-diagrams

induced by a subset of the generators which is closed under the rules of the ZX-

calculus.

CNOT circuits

CNOT circuits are representable using only phase-free spiders. Indeed, none of the

rules of the ZX-calculus introduces an angle into a diagram that did not previously

have one.

Clifford circuits

Similarly, Clifford circuits can be represented using only spiders whose phases are

restricted to multiples of π
2
. To see this, we note that the rules of ZX-calculus only

add or negate phases. Consequently, the fact that the set {k π
2
}3k=0 is closed on these

two operations allows us to conclude this is a proper fragment.

Clifford+T circuits

For the same reasons, Clifford+T circuits can be represented using only spiders

whose phases are restricted to multiples of π
4
. This fragment is particularly interesting,

5Clifford gates are CNOT, H, NOT and S.

10

because, thanks to the Solovay-Kitaev theorem6, it is known to be approximately

universal for quantum computing. We will focus on this fragment for the rest of this

thesis and all diagrams from now on will be assumed to be of this form.

1.5 Simplifications Algorithm

With the ZX-calculus, it is possible to design diagram simplification routines that

optimise certain metrics. We briefly present the procedure introduced in [10] and

improved in [18] that we will use in this thesis. Firstly, by using spider fusions,

Hadamard cancels, colour changes and identity removals, it is possible to transform

any diagram into a graph-like diagram.

Definition 6 (Graph-Like ZX-diagram). A graph-like ZX-diagram is a diagram where

all spiders are green and all edges except outputs and inputs wire are H-edges.

In addition, it is also possible to prove that the two very useful following equations

hold.

±π
2

α1 αn

...... ...
≈ ...

α1∓ π
2

...
αn∓ π

2

α2

...
αn−1

...

α2∓ π
2

...
αn−1∓ π

2

...

...(LC)

and

jπ
α1

≈αn

βm

β1

γ1

γl

kπ

...

...

...
αn + kπ

β1 + (j + k + 1)π
...

βm + (j + k + 1)π

γ1 + jπα1 + kπ
......

γl + jπ

...

...

...

...

...

...

...

...
...

...

...

...
(P)

Which we call local complementation and pivoting. With these two operations, it

is possible to simplify a ZX-diagram by removing a great deal of Clifford spiders.

In particular, if a diagram is initially only made of Clifford spider, it is possible

to trivialise it by repetitively using these operations. Doing so offer an alternative

proof of the Gottesman-Knill theorem [14] which states that any Clifford circuit is

classically simulatable in polynomial time7. In a Clifford+T diagram, applying these

repetitively produces an equivalent diagram in the reduced form.

6A proof of which can be found in [26].
7see [9] for a fully diagrammatic proof of this statement

11

Definition 7. (Reduced Form) A ZX-diagram is said to be in the reduced form if

• No two Clifford spiders are adjacent

• No internal8 Clifford spider has a degree smaller than 3

• No internal spider phases are odd multiples of π
2

In the following chapters, we will say that a diagram is simplified if it is put

in reduced form through the use of local complementations, pivots, spider fusions,

Hadamard cancels and identity removals.

8An internal spider is a spider not connected to the inputs or outputs of a diagram.

12

Chapter 2

Simulation Through Stabiliser
Decomposition

One task that is proving important to be able to assert quantum supremacy is to

understand the power of (classical) quantum computer simulation. Indeed, in 2019

Google [2] declared to have reached this historical milestone by performing a calcu-

lation with a quantum computer that they estimated no classical computer could do

in less than 10,000 years. Since then, new simulation techniques have been developed

and it is now known that the Google experiment can be reproduced classically in

less than a day on modern supercomputers [16][27]. In addition to allowing us to

draw the line of supremacy, the study of quantum simulation helps us to understand

what makes quantum computers so powerful. One might initially believe that it is

the entanglement that gives quantum advantage. However, the Gottesman-Knill the-

orem shows that this is not the case, because the class of Clifford circuits contains

maximally entangled states, but can still be simulated in polynomial time.

In this chapter, we will focus on what is called strong simulation. This is the task

of computing the probability of obtaining an output knowing the input of a circuit.

We note that after having chosen an input and output vector, it is enough to compute

the resulting amplitude to then calculate a probability using the Born rule. This task

differs from weak simulation in which the goal is to obtain a sample from the output

distribution of a circuit given an input (more on this task in chapter 9). In both

cases, we can without loss of generality focus on the specific case where the input of

a circuit is |0n⟩.
Several techniques exist to simulate quantum computations using classical com-

puters. We can, for example, directly make matrix products. This has a complexity

Õ(2n)1 for any circuit with polynomially many bounded size gates. An approach

1Õ is a standard notation that ignores polynomial factors of exponential functions.

13

that often proves to be much more efficient (time-wise and memory-wise) is to do a

stabiliser decomposition.

The goal of this technique is to represent the output |ψ⟩ of the circuit as a linear

combination of Clifford states2 |ϕ1⟩ , ..., |ϕk⟩.

|ψ⟩ =
k∑

i=1

ai |ϕi⟩

We can then compute the probability of any output x by computing

⟨x|ψ⟩ =
k∑

i=1

ai ⟨x|ϕi⟩

Since all of |ϕi⟩ are Clifford, it is possible to compute each ⟨x|ϕi⟩ in polynomial time.

Such a simulation can be done in Õ(k). It is therefore important to find sums in

which the value of k is minimized.

Definition 8 (Stabiliser Rank). The stabiliser Rank of a state |ψ⟩, written χ(ψ) is

the smallest k for which it is possible to express |ψ⟩ as a linear combination of k

Clifford states.

It is strongly believed that, in the worst case, χ(ψ) grows exponentially with the

size of the circuit. Otherwise, a quantum computer would only have a subexponential

advantage over a classical computer. However, extensive work has been done to give

an upper bound on the stabiliser rank of states from a specific family of circuits.

Fortunately, there is an elegant adaptation of these ideas to the ZX-calculus. To

explain it, let us restrict ourselves to the Clifford+T class of circuits (and thus to the

fragment of the ZX-calculus induced by the multiples of π
4
). In this class, the only

real obstacles to simulating a circuit efficiently are T gates or, more precisely, spiders

with angles that are multiples of π
4
without being multiples of π

2
. Indeed, without

such gates, the Gottesman-Knill theorem or, more specifically, the simplification rou-

tine from [18] assures us that it is possible to simulate the resulting ZX-diagram in

polynomial time. If we have a diagram that contains only one of these T gates, then

using the definition of a T state,

π
4 ≈ + πei

π
4

we can replace the T state in the diagram with a sum of two ZX-diagrams without T

gates. These two diagrams will then be easy to simulate. To make sure that we get

2A Clifford state is a state that can be obtained using a Clifford circuit.

14

our spider with a “bad” angle in this form, we can use the spider fusion rule to unfuse

a T state from any T spider. This technique is somewhat equivalent to a technique

from the quantum literature called magic state injection. If a diagram contains more

than one T spider, then you can repeat this procedure for each of these spiders leading

to decomposition into 2t terms where t is the number of t gates. It is possible to slow

down this exponential growth by using more efficient decompositions than the one

mentioned above. For example, it is possible to decompose 2 T states into only two

terms.
π
4

π
4

= π
2 + ei

π
4 π

This gives us a decomposition in 2αt where α = 0.5. The most efficient decomposition

of (magic) T states known to date, in terms of α, is that of [20] which transforms five

T states into three diagrams in which only one T gate remains.

π
4

π
4

π
4

π
4

π
4

− π
2

−π
4

+ 2
√
2ieiπ/4

−π
4

− 2
√
2eiπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

Indeed, this decomposition removes 4 T gates in 3 terms, giving us a α ≈ 0.396.

Another idea from [19] that proved to be very beneficial is to try to do the most

ZX simplification possible in between two replacements. This works because if two

T gates ever get fused, they transform into a Clifford and since Cliffords are closed

under the ZX-calculus, no new T gates can be created. Even though this led to

only a polynomial improvement in the worst-case time complexity (if no T gate gets

simplified during this process), in practice, these gave massive speedups compared to

previous techniques.

Another approach that is also able to greatly speed up the whole process is to look

for other patterns than T state injections. Even if such patterns aren’t as generic and

cannot be used to remove every T gate, they might have better decompositions so it

is worth looking for them as pattern matching can be done quickly. One particular

example of such patterns is cat states which are quite common, can be found in linear

time, and, for cat states of a certain size, can bring the complexity down to α = 0.25.

We will discuss cat states in more detail in the next chapters.

We note that our technique is slightly different from a direct stabiliser decompo-

sition because instead of decomposing U |0n⟩, we are decomposing ⟨x⃗|U |0n⟩ which is

15

equivalent to finding the value of

x1π

x2π

x3π

xnπ

U

··
·

··
·

which is slightly simpler as we can use the output to obtain some ZX simplifications.

2.1 Time Complexity of Partial Decomposition

In the previous section, we encountered a partial decomposition. Since all terms of the

decomposition removed the same number of T gates, the time complexity analysis

of this decomposition was straightforward. In general, this is not always the case

and it is necessary to have a way to capture this non-homogeneity so that we can

compare our decompositions. To do this, we would like to be able to calculate the

complexity of an algorithm that would be able to always use a given decomposition.

Let us consider a decomposition that takes a ZX-diagram with t T gates and returns

k terms. Let a1, ...ak be the number of T gates removed in each of these terms.

Without loss of generality, let a1 ≥ a2, . . . ,≥ ak. We want to find the total number

of terms generated using only this decomposition. Thus, we want to understand the

asymptotic behaviour of

F (t) =
k∑

i=1

F (t− ai)

One way to bound this function uses the minimal ai for every term.

F (t) ≤
k∑
1

F (t− ak) = kF (t− ak)

This gives us a bound of

F (t) ≤ 2αt where α ≤ lg(k)

ak
Moreover, it turns out that we can find exactly the value α. Indeed, if we take

the characteristic polynomial of our recurrence, we obtain

xak −
k∑

i=1

xai+ak

Since there is only one sign change in the coefficients, we can use Descartes’

sign rule3. This implies that this polynomial has only one positive root r and that,

3First proven in Descartes’ revolutionary work, La Geometrie.

16

therefore, F (t) = O(rt). In other words, we have that α = lg(r). This value of r can

be found quickly, by for example Newton¡s method, as we know that 1 ≥ r ≥ 2 for

all useful decompositions. This trick to obtain the asymptotics of F is a special case

of branching numbers (see [11] for a more in-depth discussion).

17

Chapter 3

Graph Cuts Decompositions

An interesting situation occurs when, after a decomposition, one obtains a ZX-

diagram D which splits into two disconnected components S and S̄.

S S̄

In this case, we can simply compute the amplitude after simulating S and multiply

it with the one of S̄ to get that of D. To simplify the calculations, let’s say that S and

S̄ contain the same number of T spiders. Using this divide and conquer approach,

we can compute the amplitude we are looking for by simulating only 2 · 2α t
2 = 2α

t
2
+1

terms which is much better! This situation is unfortunately not very common, but

it is possible to make this kind of argument work in many similar situations. For

example, in the same situation, but with an edge between S and S̄, one could think

that the reasoning above does not work anymore.

S S̄

Fortunately, all is not lost. By using the following identity resolution

≈ + π π

we can cut the problematic edge at the cost of two extra terms. The total decom-

position is then done in 2 · 2α t
2
+1 terms which is only slightly worse. In general, if

18

we can separate a graph by a cut of c edges, then we can simulate a diagram by

computing 2c · 2α t
2
+1 terms. As long as the required cut is not too large, this gives

a significant advantage. Thus, finding small cuts that separate a graph into two can

help in quantum circuit simulation. It turns out that it is even possible to be a little

more economical than cutting edges. If we want to cut several edges adjacent to a

single vertex, then we can use the following transformation:

...
... = ...

...

one can thus obtain the same partition of vertices by making the following cut

...
...

which is done by cutting only one edge. An even better decomposition is to simply

use the definition of a spider

α
...

... ≈ ...
... +

...
...

π π

π π
eiπα

Therefore, one can afford not just to cut edges, but to cut vertices which are always

more efficient to disconnect graphs. This is the case since we can reproduce an edge

cut by cutting an endpoint of every edge in the cut. These types of cuts are often

called vertex separators.

Definition 9 (Vertex Separator). Let G(V,E) be a connected graph. We call C ⊂ V

a vertex separator if the graph induced by V \ C is disconnected.

We will also use vertex cut or simply cut somewhat interchangeably with vertex

separator.

A legitimate question is then: can we expect there to be many good vertex sep-

arators while simulating real circuits? It turns out that on a fairly common class of

circuits, it is possible to demonstrate the efficiency of this approach.

Theorem 2 (Adapted from [21]). Any problem on n qubits that can be solved with

o(n2) quantum gates in a linear nearest neighbour architecture can be solved classically

in sub-exponential time.

19

Proof. Notice that an underlying ZX-diagram of a circuit where wires can only inter-

act with their neighbour needs to be planar. By the planar separator theorem first

proven by Lipton & Tarjan in [23], for any planar graph, there exists a vertex separa-

tor of size O(
√

|V |) that partitions the graph into two disconnected subgraphs of at

most 2
3
|V | vertices. Moreover, these cuts can be found in linear time. This naturally

gives us a recursive algorithm where we simply use these cuts until the graph is fully

disconnected. The time taken by such an algorithm can be bounded by

T (|V |) ≤ 2
O
(√

|V |
)
+1
T

(
2|V |
3

)
+O(|V |)

Taking logarithm on both sides gives,

log(T (|V |)) ≤ log

(
2
O
(√

|V |
)
+1
T

(
2|V |
3

)
+O(|V |)

)
≤ log

(
2
O
(√

|V |
)
+1
T

(
2|V |
3

))
+ log (O(|V |))

= O
(√

|V |
)
+ 1 + log

(
T

(
2|V |
3

))
+ log (O(|V |))

= log

(
T

(
2|V |
3

))
+O

(√
|V |
)

Setting F (|V |) = log (T (|V |))) and using the master theorem let us conclude that

T (|V |) ∈ 2
O
(√

|V |
)

Thus, since |V | is sub-quadratic, this technique can simulate a circuit in sub-exponential

time.

This argument can be adapted to work with any family of circuits for which there

exists an analogue of the planar separator theorem for their underlying ZX-diagrams

such as k−nearest neighbours architectures or finite-ranged two-qubit gates circuits

(see [34]).

The effectiveness of this approach on common circuit classes motivates the search

for good separators in the general case. For arbitrary ZX diagrams, we will only

consider greedily finding separators, meaning finding the best cut possible at each

step of the algorithm. This has two advantages. Firstly, it gives a natural way to

incorporate this technique with other ZX stabiliser decomposition techniques as we

20

will see in chapter 7. Secondly, it makes the problem more tractable. Precisely, our

goal is to find a cut set C that optimises the set function

f(C) = 2|C|
∑

Si∈ΠC

2αT (Si)

Where ΠC is the partition into disconnected components induced by the removal of

C and T is the T -gate counting function. We call this the efficient vertex separator

problem (EVSP).

Separating graphs into smaller and somewhat balanced subgraphs while minimis-

ing the size of the interface between them is a technique widely used to design divide-

and-conquer algorithms. Sadly, optimising the size of the interface under different

metrics such as the number of edges crossing the partition or the total weight of

those edges for some weight functions tends to give rise to NP-Hard problems [32].

In the next section, we will discuss the hardness of the efficient separator problem

which will motivate our search for good heuristics presented in the remaining sections

of this chapter.

3.1 Hardness

An approach to find good cuts is to try to directly minimise the cost function.

f(C) = 2|C|
∑

Si∈ΠC

2αT (Si)

Most theorems about minimal vertex cuts do not apply to this situation as we need

to take into consideration the size of each component. For example, any algorithm

solely based on minimal separators through Menger’s theorem1 is doomed to fail as

it only optimises the size of the cut. To the best of our knowledge, no good method

exists to directly optimise such a function and an exhaustive search would take time

of O(2V). Conversely, no results exist to prove the hardness of such an optimisation

directly. However, we can try to approximate it with a function with nicer properties.

Firstly, since that, in most instances, the best cut won’t be perfectly balanced and

since we have exponential growth, we can expect that one of the terms in our cost

function will dominate. This leads us to the following approximation.

f(C) ≈ 2|C|2
α max

Si∈ΠC
T (Si)

1A version of the max-flow min-cut theorem.

21

Which is equivalent to optimising

F (C) = |C|+ α max
Si∈ΠC

T (Si) (3.1)

This problem is very similar to the (weighted) Most Balanced Minimum Vertex

Cut - Largest Component problem (MBMVC-LC).

MBMVC-LC
Input: A graph G = (V,E), two vertices x, y, a cut size M and a weight

function w.
Goal: Find the vertex separator C ⊆ V \ {x, y} of size M that minimises

max
Si∈ΠC

w (Si) such that x and y aren’t in the same connected component.

This problem studied in [1] has been shown to be NP-hard even in the unweighted

version (w(Si) = |Si|). Moreover, the best approximation that we are aware of is a

2-approximation2 (also from [1]). We notice that this problem is equivalent to EVSP

where we impose a constraint on the size of the cut and the separation of two vertices

x and y. Therefore, a solution to EVSP also provides a solution for about half of the

MBMVC-LC instances for the obtained cut size. It is, however, not trivial to obtain

a reduction in the sense of computational complexity of this problem as we have no

control over the cut size in EVSP. If all the cuts obtained by an EVSP oracle are

bounded by a constant M , it only allows us to solve MBMVC-LC instances where

the size of the cut is smaller than M . This is not an NP-hard problem as it can be

solved in polynomial time by brute force. On the other hand, by letting α exceed 1,

one can add weight to the balance constraint which must eventually force the size of

the cut to grow larger than any fixed constant.

This is a good indication that, assuming that P ̸= NP this problem has no

solution in polynomial time or at least no simple one. We will, therefore, work on

heuristics to obtain cuts that are good in practice.

3.2 Heuristics

We now present different approaches to finding good cuts in arbitrary ZX diagrams by

relating the problem to similar graph problems where good approximation algorithms

are known. We will first focus on finding small separators that cut graphs into roughly

equal parts. This potentially avoids very cheap cuts that cut out a small part of the

graph and artificially worsen the optimality of the cuts. This issue is inherent in the

2A k-approximation is an approximation at most k times larger than the optimal solution.

22

use of balanced graph partitioning problems and we will present another way to find

small efficient vertex separators that avoids it in the next section.

3.2.1 Balanced Vertex Separators

A problem closely related to finding efficient vertex separators is the one of Balanced

Vertex Separators.

Balanced Vertex Separators
Input: A graph G = (V,E), β ∈ [0, 1).
Goal: Find the smallest vertex separator C ⊆ V such that

max
Si∈ΠC

|Si| ≤ β|V |

A solution for this problem would be a good candidate for the EVSP because it

tries to minimize |C| while also giving us a bound on each term of the sum. Un-

fortunately, this problem is NP-Hard [24]. However when 2/3 ≤ β < 1, quasi-linear

time approximation algorithms exist that approximate the optimal value within an

essentially quadratic multiplicative factor with respect to the size of the optimal value

(see [12] for more details of those kinds of schemes). Since this quadratic error might

matter to us, we could also use another algorithm with a worse time complexity but

a better guarantee. Sadly, no efficient enough libraries are available to try this ap-

proach. In practice, recent algorithms have been able to obtain a good approximation

for graphs of around 300 vertices in several minutes [29] which is way too slow to use

recursively in our application.

3.2.2 (Hyper)graph Partitioning

Most of the work done in recent years on the problem of cutting graphs into roughly

equal parts has focused not on vertex cuts, but on edge cuts. Thus, we will study

these variants and how they can be used to find good vertex cuts. The edge variant

of the balanced vertex separators problem is called the graph partitioning problem. In

this problem, we want to partition a graph into k parts such that none of the parts

is too big. Formally,

23

Graph Partitioning
Input: A graph G = (V,E), 2 ≤ k ≤ |V |] and ε.
Goal: Find the minimal edge cut EC ⊆ E such that

max
Si∈ΠEC

|Si| ≤ (1 + ε)
|V |
k

Even though there exist a large body of literature, good approximation algorithms

and efficient libraries for this problem and its generalisation to hypergraphs3, we

cannot directly use them in our situation as they minimise the number of edges to

remove and not the number of vertices. To overcome this issue, we will present two

different approaches in the next subsections.

3.2.2.1 Extracting vertex separators

It is often the case that the smallest edges cut can be done by cutting a good (and

even smaller) vertex separator. Therefore, if given a set of edges to cut Ce, we could

efficiently extract an optimal set of vertices Cv performing that cut, and we would

obtain a good method to generate vertex cuts. Fortunately, this can be done very

quickly.

Lemma 3. It is possible to extract a minimal vertex cut from an edge cut in O(|Ce|3/2)

Proof. Since it is useless to cut vertices that are not adjacent to at least an edge in

Ce, we can only consider the bipartite subgraph induced by Ce. Finding a vertex

cut of the original graph is equivalent to finding a vertex cover of this subgraph. By

Kőnig’s theorem this is equivalent to finding a maximal matching which can be found

in O(|Ce|3/2) by the Hopcroft–Karp algorithm.

By considering a weighted version of the graph partitioning problem, we can even

give a weight of 1 for every T gate and 0 for everything else giving us an algorithm

that tries to split the T gates, instead of vertices, somewhat equally. The issue with

this method is that it results in vertex separators being only locally optimal as using

small edge cuts to find vertex cuts is only a heuristic. For example, in the following

3Even if this problem is also NP-Hard.

24

graph

f

c

g

i

b

e

h

a

d

the optimal edge cut would be {ab, de} and its induced vertex separator would need

to have two vertices while {f} is a better vertex cut.

3.2.2.2 Hypergraph Partitioning

Another approach is to transform our ZX-diagrams in its line hypergraph.

Definition 10 (Line Hypergraph). A line hypergraph H = (V ′, E ′) of a graph G =

(V,E) is defined by

V ′ = E

E ′ = {NE(v) ∀v ∈ V }

where NE means the edge neighbourhood which is simply all the edges adjacent to v.

For example,

a

d

b
c

α
β γ

δ
−→

a

d

b

c
α

β
γ

δ

Using this transformation, we can use hypergraph partitioning algorithms to ob-

tain vertex cuts on our ZX-diagrams. We can then use ε as a hyperparameter and

optimise it through benchmarks. This line hypergraph transformation followed by

a hypergraph partitioning similar to a technique used in [21] to obtain contraction

trees in tensor networks. In our implementation, we used the KaHyPar library [31]

to obtain the cuts. This algorithm is efficient enough to be used recursively4 without

being a bottleneck in the speed of the overall implementation and giving good quality

cuts as we will see in chapter 7.

However, there is one main drawback of this approach. Namely, optimising the

equal distribution of the vertices in the hypergraph is equivalent to finding a partition

4Therefore, an exponential amount of time

25

in the ZX-diagram where each half has the same number of Hadamard edges and not

the number of T gates. If we make the reasonable assumption that edges are somewhat

uniformly distributed and that T gates are also uniformly distributed among the gates,

then this is not a problem. This issue could also be mitigated by only giving weight

to edges adjacent to T gates. Furthermore, the weight can be proportional to the

inverse of the degree of the T gates so all T gates have a similar impact on the cost

function.

3.2.3 Small Separators

In this section, we will try to address the shortcomings of the previous methods. All

of the methods above don’t find small vertex cuts that cut the ZX-diagrams into two

parts of hugely different sizes. This won’t allow us to find some very efficient cuts

that would, for example, cut out a chain of length 20 by removing only a single vertex

which is equivalent to α ≈ 0.05.

One way to find such a cut is to try to remove each vertex and count the num-

ber of resulting connected components using a depth-first search. Since it is only

necessary to do this operation a linear number of times, the cost of this search re-

mains polynomial. This can be transformed into a more efficient algorithm by first

looking for an articulation point in the graph which can be done in O(|V | + |E|).
For larger cuts, we can use the min-cut/max-flow theorem to find vertex separators.

To do so, we must consider each pair of vertices x and y of our graph and find the

smallest cut separating them using the Ford-Fulkerson algorithm. It is not necessary

to repeat this operation |V |2 times because the same separator optimally separates

x′ and y′ for each pair of vertices contained in the respective related components of

x and y after having separated them. Moreover, it is possible to stop this algorithm

prematurely when the cut found is too large. If we impose a small finite bound on

the size of the cut, we can find all these minimal cuts in O(|V |3|E|). One problem

with this approach is that if the cut size exceeds the degree of x or y then trivial

cuts are found even if better cuts exist. It is possible to prevent this kind of effect

and it is on this kind of technique that several optimisation methods of the balanced

vertex separator problem are based. The main drawback of this approach is that it

tries to only minimise the size of the cut and not the balanced. However, considering

different initial vertices gives some diversity in the solutions found.

26

3.3 Subgraph Complement Cuts

At the beginning of this chapter, we generalised edge cuts to vertex cuts. There is

another way to generalise edge cuts by making cuts by induced subgraph completion.

Indeed it is possible to perform the complementation of any induced subgraph at the

cost of two terms. Let S be an induced subdiagram, then

S ≈ S

π
2

. . .

≈ S

π
2

. . .

S

π
2

. . .

π π

+

≈ S

π
2

. . .

S

π
2

. . .

π

+

= S

π
2

. . .

S

−π
2

. . .

+

LC
≈ S̄ S̄+

A special case of this operation is to remove cliques. Since an edge is a 2-clique, this

generalises edge cuts. As we only noticed this identity shortly before the submission of

this work, we postpone the analysis of this technique to future work. However, another

implication of this operation is that we can complement the entire ZX-diagram for

the cost of two terms which could lead to more ZX simplifications and bound the

edge density of the diagram.

27

Chapter 4

Finding New Decompositions

A considerable amount of effort has been put into discovering new and more efficient

decompositions for several types of states. A particularly interesting class is the one

of cat states named after Schrödinger’s cat.

Definition 11 (Cat State). A cat state is a state formed by a Clifford spider only

attached to T gates.

|catn⟩ :=
1√
2

π
4

π
4

...

n

It is through the study of this type of state that the algorithm with the smallest

provable complexity for the stabilizer decomposition was discovered. Indeed, in [20], it

was shown that one can transform a |cat6⟩ decomposition into a partial decomposition

of the injection of five T magic states. In doing so, they showed that it is possible to

simulate an arbitrary diagram in O(2αt) diagram where α ≈ 0.396. Moreover, several

cat state decompositions with much better α have been discovered. A by-product of

the ZX simplification procedure used in between every round of decomposition is that

no two Clifford spiders can be adjacent since that would lead to a pivot (which would

remove the two spiders). Moreover, this procedure removes every Clifford spider with

an angle other than 0 or π with the local complementation operation. Finally, with

the use of the π−copy rule, it is possible to get rid of any π angle on a Clifford spider.

Thus, at every step of the algorithm, every Clifford spider is the centre of a cat state.

Even if these are not guaranteed to be present in an arbitrary diagram, they are quite

common and searching for them and using their more efficient decomposition turns

out to be a high-yielding method.

To the best of our knowledge, we list the best-known cat state decompositions

from [4].

28

|catn⟩ 3 4 5 6 7 8 9 10 11 12 13 14
terms 2 2 3 3 6 6 9 9 27 27 27 27
≈ αn 0.333 0.25 0.317 0.264 0.369 0.323 0.352 0.317 0.432 0.366 0.366 0.34

Table 4.1: Decomposition for small cat states

In the general case, the best-known construction offers a decomposition of |cat4l+2⟩
into 3l terms. From this, we can infer the other cases with the inequality

χ(|catn⟩) ≤ χ(|catn+1⟩)

Here and for the rest of this chapter, we use αn to denote the α of |catn⟩. In the next

section, we will introduce a simple technique that allows combining cat state decom-

positions to obtain new decompositions which will let us improve the decomposition

for some cat states.

4.1 Combining cat states decompositons

We introduce two operations that allow us to express a large cat state using several

small cat states.

4.1.1 Cuts

Through a resolution of the identity and spider fusion, we can transform a |catn+m⟩
into a |catn⟩ and a |catm⟩ at the cost of two terms.

n

π
4

π
4

π
4

π
4

...
...

m =

π
4

π
4

...

π
4

π
4

...

≈
π
4

π
4

...

π
4

π
4

... +

π
4

π
4

π
... π

π
4

π
4

...

We can then push through the π phases from the second term to obtain cats.

Therefore if we have a decomposition of |catn⟩ into x terms and a decomposition of

|catm⟩ into y terms we have decomposition of |catn+m⟩ into 2xy terms. This implies

that

αn+m ≤ lg (2xy)

n+m

=
1 + lg (x) + lg (y)

n+m

29

Even if this allows us to find new decompositions for cat states, it, unfortunately,

does not allow us to find a decomposition better than its constituents. This is because,

1 + lg (x) + lg (y)

n+m
>

lg (x) + lg (y)

n+m

≥ max

{
lg (x)

n
,
lg (y)

m

}
= max {αn, αm}

4.1.2 Splits

Another way to decompose a cat state into smaller cat states is to use the splits

operation.

(n− 1)

π
4

π
4

π
4

π
4

...
...

 (m− 1) =

π
4

π
4

...

π
4

π
4

...

≈
π
4

π
4

...

π
4

π
4

...π
4

π
4

−π
2

=

π
4

π
4

...

π
4

π
4

...π
4

π
4

−π
2

Here on the left, we have a |catn⟩ while on the right we have a |catm⟩. Weirdly enough

artificially adding T gates this way helps us find better decomposition for some cat

states. This construction is similar to one from [4].

If we have a decomposition of |catn⟩ into x terms and decomposition of |catm⟩
into y terms we gain again simply compute the α of this decomposition

α(n+m−2) =
lg(xy)

n+m− 2

We can again compare the α of this new decomposition with the α of its constituents.

lg(xy)

n+m− 2
≤ lg(x) + lg(y)

n+m− 2

>
lg(x) + lg(y)

n+m

≥ max

{
lg (x)

n
,
lg (y)

m

}
= max {αn, αm}

30

4.1.3 Combining both

Even if, as n goes to infinity, using these two operations yields αn that gets worse1

these constructions can lead to better decompositions for specific cat states.

To do this, we will optimally combine these two operations. This is can be done

easily because the optimality principle applies2 so we can proceed by dynamic pro-

gramming. We then obtain an algorithm which obtains the best possible result for

|catn⟩ in O(n2).3

Running this algorithm gives us improvements for half of the instances larger than

10 as can be seen in figure 4.1.

Figure 4.1: Single copy cat state decomposition

For example, splitting a |cat12⟩ into a |cat4⟩ and a |cat10⟩ gives a decomposition

into 18 terms which improved on the previous best which was 27. Even if the gains

are only modest, the technique we have created can be used in other contexts, as we

will see in the next sections.

4.2 Star States

Since the cat state decompositions that have been found are quite good, it is inter-

esting to see if they can be used for similar states. To this end, we introduce what

1In fact, we have that αn
n→∞−−−−→ 0.396... just like in [4].

2Since an optimal decomposition must be made of optimal sub-instances.
3This is not very significant, because this algorithm does not need to be executed each time we

want to do simulation but it is nice to know that this scales nicely and could easily be rerun if
someone ever finds a new operation.

31

we call a star state.

Definition 12 (star state). A star state is a T gate surrounded by other T gates.

|Starn⟩ := π
4

π
4

π
4

...

n

These states are in some way dual to the cat states. This is the case because if a

(non-trivial) Clifford+T diagram contains no cat states, it must necessarily contain

star states and vice versa. Thus, finding good decompositions for these states com-

plements in a surprisingly efficient way the algorithm of [20] which had to resort to

the injection of magic states as soon as there were no cat states left.

We will note α∗
n the α of |starn⟩. As for the cat states, we will present different

operations allowing us to generate star state decompositions from smaller ones.

4.2.1 Catification

The simplest technique to obtain a decomposition of a star state is to use the spider

fusion and then a wire cut to transform a star state into two cat states.

π
4

π
4

π
4

... =

π
4

π
4

...π
4

≈
π
4

π
4

...π
4 +

π
4

π
4

...π
4 π π

=

π
4

π
4

... +

π
4

π
4

...π(1 + e
iπ
4) (1 + e

5iπ
4)

If we have a decomposition of |catn⟩ into x terms then we have decomposition of

|Starn⟩ into 2x terms. This gives us

α∗
n =

lg(2x)

n+ 1

Which we can compare to αn

=
lg(x) + 1

n+ 1

≥ lg(x)

n
= αn

Note : In the last inequality, we used the fact that lg(x) ≤ n. This is the case

because even with the decomposition from the definition (the one that gives us the

biggest x for a given n), we have that lg(x) = lg(2n) = n.

32

4.2.2 Cuts (Star version)

Much like the cats, we can decompose a big star state into two. However, this time

around, doing so gives a star and a cat state.

|Starn+m⟩ = n

π
4

π
4

π
4

π
4

π
4

...
...

m

=

π
4

π
4

π
4

...

π
4

π
4

...

≈
π
4

π
4

π
4

...

π
4

π
4

... +

π
4

π
4

5π
4

... π

π
4

π
4

...

So with a decomposition of |starn⟩ into x terms and a decomposition of |catm⟩
into y terms, we have a decomposition of |starn+m⟩ into 2xy terms.

4.2.3 Splits (Star version)

Here again, we can find an analogue of the split operation for star states.

(n− 1)

π
4

π
4

π
4

π
4

π
4

...
...

 (m− 1) =

π
4

π
4

...

π
4

π
4

...π
4

≈
π
4

π
4

...π
4

π
4

π
4

...

=

π
4

π
4

...−π
4

π
4

π
4

π
4

... π
4

−π
4

π
4

=

π
4

π
4

...−π
4

π
4

π
4

π
4

... π
4

−π
4

π
4

We could stop here and use it as a partial decomposition (where some T gates remain)

but we can also use the fact that the remaining T gates form a |Star2⟩ which can be

33

decomposed into two terms through catification.

π
4

π
4

...−π
4

π
4

π
4

π
4

... π
4

−π
4

π
4

=

π
4

π
4

...−π
4

π
4

π
4

π
4

... −π
4

π
4

π
4

π
4

...−π
4

π
4

π
4

π
4

... π−π
4

π
4+

=

π
4

π
4

...π
4

π
4

π
4

... −π
2

π
4

π
4

π
4

...−π
4

π
4

π
4

π
4

... π π
4

π
4+

=

π
4

π
4

...π
4

π
4

π
4

... −π
2

π
4

π
4

π
4

...π
4

π
4

π
4

... ππ
4+

So with a decomposition of |catn⟩ into x terms and a decomposition of |catm⟩ into y
terms, we have a decomposition of |starn+m−2⟩ into 2xy terms.

4.2.4 Results

Using these transformations leads us to find good decomposition for some stars. For

example, catifiying |star2⟩ and |star6⟩ gives us decomposition in respectively 2 and 6

terms or, in other words α ≈ 0.333 and α ≈ 0.369. We leave the full list of α obtained

this way in the appendix as we will improve upon these in the next section.

4.3 Multiple Copies of Cats and Stars

In the previous section, we looked at decompositions of |catn⟩ and |starn⟩. It turn

out that it is fruitful to also look at decompositions of |catn⟩⊗k and |starn⟩⊗k. One

trivial bound is that

χ
(
|catn⟩⊗k

)
≤ χ (|catn⟩)k and χ

(
|starn⟩⊗k

)
≤ χ (|starn⟩)k

This is because the stabilizer rank is sub-multiplicative which can be seen in this

case by simply applying a decomposition of |Ψ⟩ k times to obtain a decomposition

for |Ψ⟩⊗k. One example where χ
(
|starn⟩⊗k

)
< χ (|starn⟩)k is with k = 5 and n = 1.

This is because we can use the decomposition of |cat6⟩ in a similar way to how the

34

decomposition of |T ⟩⊗5 was found in [20].

π
4

− π
4

π
4

π
4

π
4

π
4

π
4

=

π
4

π
4

π
4

π
4

4

− π
2

−π
4

+ 2
√
2ieiπ/4

π
4

π
4

π
4

π
4

π
4

−π
4

− 2
√
2eiπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

3π
4 + 2

√
2ieiπ/4

5π
4

−π
4

− 2
√
2eiπ/42

π
2

π
2

π
2

π
2

π
2

π
4

=

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

If we stop here, we obtain a partial decomposition that removes 4, 8 and 4 T gates in

each term respectively. Using the α calculation for partial decomposition explained in

the previous chapter, we can compute that α ≈ 0.3179. However, we can go further

by noticing that the last term can be transformed into a |cat6⟩ by using five local

complementations. We can then apply the decomposition of |cat6⟩ into three terms

to obtain a partial decomposition for which α ≈ 0.2999. In fact, this strategy can

be used as long as two |star1⟩ are present. Indeed we can use this idea to decompose

|cat1⟩⊗2 ⊗ |T ⟩⊗3 leading to α ≈ 0.347.

Similarly, a decomposition of |star1⟩⊗6 into 8 terms and a decomposition of |cat3⟩⊗2

into 3 terms were recently be found by Tuomas Laakkonen [22] leading to α ≈ 0.25

and α ≈ 0.264 respectively4. These new decompositions can be used to find other

ones for other cats and stars with the same algorithm explained before. To use these

newly found decompositions to their full extent, we add two more operations to our

search.

4Since these decompositions are not published anywhere, we include them in the appendix.

35

4.3.1 |star1⟩ Split

A special case of the star split operation can be done in a more efficient way when

m = 1.

π
4

π
4

π
4

... =

π
4

π
4

... π
4

=

π
4

π
4

... π
4

=

π
4

π
4

... π
4

π
4

−π
4

This has both the benefit of introducing fewer T gates than the general split oper-

ation and leaving a |star1⟩ behind which as we know has a good decomposition (when

multiple copies are present). Therefore, if we do this transformation on 6 different

instances, we are guaranteed to be able to follow it by a |star1⟩⊗6 decomposition.

4.3.2 Star Fusion

Using the |T ⟩⊗2 decomposition introduced in chapter 3,

π
4

π
4

= π
2 + ei

π
4 π

it is possible to partially fuse two stars into a cat at the cost of two terms.

π
4

π
4

π
4

...

π
4

π
4

π
4

...

=
π
4

π
4

...

π
4

π
4

...π
4

π
4

π
2 + ei

π
4π

4

π
4

...

π
4

π
4

...

= π π
4

π
4

...

π
4

π
4

...

36

We will focus on the second term which is where the fusing of the stars happens.

π
4

π
4

...

π
4

π
4

...

π

π

= 5π
4

5π
4

...

π
4

π
4

...

= 5π
4

5π
4

...

π
4

π
4

...

Using this technique with, for example, two |star3⟩ we obtain a partial decomposition

with α ≈ 0.365. We will discuss how this operation can be generalised to other types

of states in the last section of this chapter.

4.3.3 Results

With the technique mentioned above applied to cats, we obtain improved decompo-

sitions even for small cat states as can be seen in figure 4.2.

Figure 4.2: Multiple copies cat state decompositions

Note : Since we assume that we have |starn⟩⊗k for k large enough to work, we

can always resort to using the T magic states injection which is why no α can be

higher than ≈ 0.396.

37

Similarly, we obtain improvements in the decompositions of numerous star states.

Results for star states are presented in figure 4.3. We emphasise that for these states,

Figure 4.3: Multiple copies stars state decompositions

no better decomposition than the one using magic state injection (α ≈ 0.396) was

previously known.

Those results imply that, for instance, if we could simplify the whole diagrams

only using multiple copies of cat states and stars states of degree less than 38 and

7 respectively then we could simplify the whole diagrams with an α bounded by

≈ 0.3856 (the α for |star4⟩⊗k). Another interesting aspect of these results is that they

hint at the fact that highly connected diagrams are harder to simulate in general (as

they do not have any small cat or star state) which was also the worst case of the

techniques presented in the previous chapter. We will try to address this issue in the

next section.

4.4 Decomposition of Large Stars

Earlier in this chapter, we introduced star fusion to find good decompositions of

|starn⟩⊗k. It is easy to see that the same derivation holds when we fuse stars of dif-

ferent sizes. For example, we found a decomposition of |star4⟩⊗k ⊗ |star10⟩⊗k with

α ≈ 0.378 which is better than both our decompositions for |star4⟩⊗k and |star10⟩⊗k.

Even when dealing with single instances combining a |star1⟩ and a |star5⟩ gives a

partial decomposition for which α ≈ 0.365 which is an improvement over the decom-

38

positions of |star1⟩ and |star5⟩ considered separately. All these decompositions are

actually a special case of a more general statement.

In a variety of cases in practice, stars share T gates and aren’t disjoint. Let us

observe what stars fusion gives us when this happens.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

π
4

.

.

.

=

π
4

π
2 + ei

π
4=

π
4

π
4

.

.

.

π
4

π
4

π
4

.

.

.
π
4

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

We will again focus on the second term which is where the fusing of the stars happens.

π
4

π
4

.

.

.

5π
4

5π
4

.

.

.

5π
4

5π
4

.

.

.

=

π
4

π
4

.

.

.

5π
4 .

.

.

5π
4

5π
4

.

.

.

5π
4

=

π
4

π
4

.

.

.

5π
4 .

.

.

5π
4

5π
4

.

.

.

5π
4

We see that the degree of the resulting cat only depends on the symmetric differ-

ence of the stars and not on their initial degree. Depending on the size of the sym-

metric difference, this decomposition can be very beneficial. We found that whenever

39

the difference is even, we were able to beat magic state injection using this strategy.

In table 4.2, we list the first ten sizes where this method leads to better α.

Symmetric

difference
2 4 6 8 10 12 14 16 18 20

α 0.347 0.381 0.365 0.386 0.373 0.388 0.378 0.390 0.381 0.391

Table 4.2: List of the size of symmetric difference which improves over magic state
injection

This approach allows us to fix a weakness that is common to all of the previous

techniques introduced to speed up our algorithm, namely that they do not work

well on highly connected ZX-diagrams. This is the case because high connectivity

rules out the existence of small separators and only gives us high degree cats and

stars states for which our decompositions are only marginally better than magic state

injection. However, when a diagram is highly connected, some stars must necessarily

share several T gates which makes it possible to use high-degree star states to obtain a

good decomposition. They are also some other benefits from using this decomposition

that are not captured by the value of α which makes this technique work surprisingly

well in practice. We will discuss those in the next chapter.

40

Chapter 5

Where to Apply Decompositions

In the previous chapters, we neglected one important aspect to assess the quality of

decompositions. Although we found bounds on the number of T gates guaranteed to

be removed by a decomposition, we did not discuss how much they help to find further

simplification of the diagrams through the rules of ZX-calculus and how they might

help to find instances of small stars and cats in the next iterations. If a decomposition

isn’t theoretically as efficient as another one but leads to more cancellation then that

decomposition should be preferred. For example, this was the case in [19] where the

seven T gates construction of a Toffoli gate was preferred to the four T gates one. It

is impossible to conclude that one decomposition is always better than another and

should be prioritized all the time. In fact, when there are several possible instances of a

decomposition within a ZX-diagram, it happens that some of them are vastly superior.

This is because, in addition to the T gates removed directly by a replacement, many

others can also be removed by the subsequent simplification of the diagrams depending

on the surroundings of the instance. The difference between a good and a bad instance

can sometimes have a major impact on the efficiency of the simulation. For example,

we saw earlier if a magic state injection of 5 T gates happens to choose the centre of

|star1⟩ then that leads to a |star1⟩⊗5 decomposition with an α ≈ 0.2999. A natural

question then is: how do we choose which instance of a decomposition to use?

A fairly simple technique, that was previously tried without success, is to try

several possibilities and take the best one. The problem is that several decompositions

can be applied in a very large number of ways most of which don’t lead to much further

simplification if any. For example, the decomposition that takes any five T gates can

be applied
(
5
t

)
times. Thus, finding good heuristics for applying decompositions to

the best possible locations turns out to be a problem of interest.

41

5.1 Where to apply the trivial decomposition?

Given the somewhat erratic behaviour of ZX-diagrams through several rounds of

simplification and decomposition, we will focus on the number of cancellations after

a single round of simplification. With this simplification, we have found a simple

heuristic for applying the trivial (and theoretically least efficient) decomposition that

surprisingly turns out to be, in practice, frequently more efficient than any other

decomposition.

The only simplifications one can initially obtain after this decomposition come

when the removed T gate was part of a |cat3⟩ or when it was the only gate stopping

a gadget-fusion. Since the second scenario is somewhat uncommon, we will try to

maximise the effect of the first one. The |cat3⟩ cancellation happen because removing

a T gate in this way transforms a |catn⟩ into a |catn−1⟩ and |cat2⟩ are Clifford. Indeed,
one can use the π−commutation rule of |cat3⟩ and the spider merge to get rid of the

other two T gates.

kπ

π
4

π
4

−→π
4 kπ

π
4

π
4

π
4

π
4

=
kπ

=
kπ

π
2

Therefore, after removing a single T gate, we can decrease the degree of all adjacent

cat states, in addition, to completely simplifying all adjacent |cat3⟩. In addition to

this, there are several cases where other rules can be applied such as Hopf’s rule (which

can lower the degree of Cats) as well as the pivot which offers other opportunities for

simplification. This means that after this first round of simplifications, it is very likely

that other |cat2⟩ will be formed. These |cat2⟩ will in turn be simplified creating new

simplification opportunities and new |cat2⟩ and so on. This rippling effect makes the

decomposition of some T gates can reduce the T -count significantly. There is no limit

to the number of T gates that can be removed with this decomposition and we found

instances from ZX-diagrams used for SAT counting where a single decomposition

removed 286 T gates which is equivalent to α ≈ 0.0035.

Despite the potential to find very good decompositions, the cost of trying all the

T gates at each step of the algorithm is prohibitive because of the time required to

do the ZX-simplification. Therefore, it is desirable to find a good heuristic to obtain

a good decomposition quickly. One simple idea is to maximise the effect of the first

round of simplification by selecting the T gate that is in the largest number of |cat3⟩.
Intuitively, maximizing the size of the first wave should also create bigger ripples.

42

This heuristic is fast to compute, as it can be done by only considering each edge at

most once. So we can compute the whole thing in O(|E|).

5.2 Where to apply star fusion?

In section 4.4, we explained how star fusion can be used to find efficient partial

decomposition even when no small stars and cats are left in the diagram. Since the

resulting α of these are not so great compared to some of the cats, these are in some

sense the “last resort” before falling back to magic state injection. Thus, these are

mostly used in the context where the diagram is densely connected and no better

decomposition where found. Even if we cannot guarantee the removal of further T

gates, it is still possible to apply star fusion in a way that simplifies the ZX-diagram

the most. Specifically, we can try to use it in a way that removes as many edges

as possible. Previously, we only looked at what happens in the half of the partial

decomposition where we were creating a star. Let’s now look at the second term.

π
2 =

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4

π
4

.

.

.

π
4 .

.

.

π
4

π
4

.

.

.

π
4

π
2

=

π
4 .

.

.

.

.

.

.

.

.

π
2

π
4

π
4

π
4

π
4

π
4

Here again, the Hopf rule will detach the shared neighbourhood of the stars in

addition to creating an opportunity for the ZX simplification to apply local comple-

mentation. So the number of edges removed is at least twice the size of the shared

neighbourhood in both terms. Therefore, a good heuristic to remove the most edges

is to maximize the size of the shared neighbourhood as it.

We also note that the simplification algorithm will remove the centre spider

through local complementation. It is not clear if this will help or not as the lo-

cal complementation may add some edges. This should not have a significant impact

43

as the size of the symmetric difference of the neighbourhood is bounded and since

this pivoting only happens in one of the terms.

Removing the most edges is a sensible thing to do as it lowers the degrees of the

stars and cats as well as creates better opportunities to find good vertex separators.

As we will see in chapter 7, the edges density of the graph has a great impact on the

speed of the algorithm so this heuristic gets us further from it.

44

Chapter 6

Combining All the Decompositions

Previously used methods in the literature imposed a priority order between several

decompositions based on their theoretical α. As we have seen in the previous chapter,

this kind of approach neglects the structure of the underlying diagram and misses

several possibilities of applying very good decompositions. Moreover, this type of

approach rarely uses certain decompositions and thus does not take advantage of the

full extent of the efforts that have been made to find a wide variety of decompositions.

Another disadvantage of this kind of approach is that there is no natural way to

incorporate graph cuts. On the other hand, this kind of approach allows obtaining

good theoretical guarantees on the efficiency of the algorithm, which is not the case

if one uses theoretically worse decompositions. We, therefore, propose an approach

that attempts to use decompositions more adapted to the structure of the diagram

and that incorporates graph cuts while maintaining bounds on the time complexity.

6.1 Our algorithm

We start by finding good instances of a set of decompositions. To do so, we use

heuristics as discussed in the previous section or simply the first instance found if

such heuristics do not exist. We then attempt to apply each of these decompositions

and compute their efficiency. The metric used is essentially a version of α which is

better suited for disconnected graphs and takes into account ZX simplifications.

As opposed to the theoritical α guaranteed by the decomposition, we can com-

pute the effective α. The calculation for the effective α is the same as the one for

the theoretical one but this time using the real number of T gates cancelled (after

simplification). Therefore for non partial decomposition,

αe =
lg(# terms)

T gates removed

45

We can also adapt the discussion about the efficiency of partial decomposition to

incorporate cancellation after simplification. Naturally, we have that αe ≤ α for

every decomposition. Although this metric works for most decompositions, it fails to

represent the true efficiency of graph cuts because it fails to take into account the

divide-and-conquer nature of the problem when multiple disconnected components

are involved. This is the same reason why stabiliser rank also fails to take into

account disconnected graphs. The only bound we get for two disconnected state |Φ⟩
and |Ψ⟩ is that

χ (|Φ⟩ ⊗ |Ψ⟩) ≤ χ (|Φ⟩)χ (|Ψ⟩)

which doesn’t tell the whole story as we can compute ⟨x1,...,k|Φ⟩⊗⟨xk+1,...,n|Ψ⟩ in time

that scales linearly (and not multiplicatively) with

χ (|Φ⟩) + χ (|Ψ⟩)

which is the whole point of doing graph cuts in the first place. To solves this issue, we

can, for the sake of computing the complexity of a cut, see every connected component

as a term in a partial decomposition. Thus, if a diagram has k connected components

after a cut of size C, and each component i has ai less T gates then the initial diagram,

we can compute the α of a cut as the only positive root of

xamax − 2C
k∑

i=1

xai+amax

Using this metric helps to keep the theoretical guarantee that we had without using

cuts. Indeed, since our set of decompositions includes the best theoretical decompo-

sitions, we are guaranteed that the theoretical bounds also hold for our algorithm.

Furthermore, by not restricting ourselves to a predefined priority order, it turns out

that our algorithm only rarely uses the theoretically best decomposition. Since finding

each instance and computing their efficiency takes a polynomial time, this preprocess-

ing has little impact on the total exponential efficiency of the algorithm. On the other

hand, we limit ourselves to a set of decompositions that are not too large and that

tend to work well in practice (while including the best theoretical decomposition) to

keep the cost of this preprocessing step to a minimum. We also mention that graph

cuts take significantly more time to compute as it is the only decomposition that

takes more than quadratic time to find.

46

Chapter 7

Numerical Experiments

7.1 Implementation

Our implementation is written in Rust and is available at https://github.com/

Codsilla/ZX-stabiliser-simulator. It includes all the decompositions of cat and

star states up to degree 10, the decompositions of |star1⟩⊗5 and |cat3⟩⊗2, the merging

of stars according to their symmetric difference up to 10 and the graph cuts found

via hypergraphs and vertex cuts extraction. As we decompose the diagrams in a

depth-first fashion, the memory consumption of our algorithm is negligible as it grows

linearly with the number of T gates considered.

For the representation and simplifications of the diagrams, we used Quizx (a

rust port of PyZX [17]). We also uses Kahypar [31] and Kahip [30] to find cuts in

(hyper)graphs.

7.2 Benchmarks

We tried our algorithm on multiple families of circuits to assess the efficiency of our

approach and to compare it with the state-of-the-art from [20] implemented in the

Quizx library. For every size of circuit considered we computed 10 different instances.

We also imposed a time limit to the algorithm from [20] to 45 min. We ran all

circuits on a dedicated computation server (24-core Intel Xeon E5-2667, 2.90GHz).

We mention that the Quizx algorithm doesn’t seem to utilise the full power of multi-

threading which somewhat skews the results. However, this does not impact the

scaling of both algorithms which is what matters. We also mention that our algorithm

falls back on Quizx’s algorithm for T -counts under 20 to save the overhead of having

to compute all our decompositions for small diagrams.

47

https://github.com/Codsilla/ZX-stabiliser-simulator
https://github.com/Codsilla/ZX-stabiliser-simulator

7.2.1 Random IQP

Instantaneous quantum polynomial-time (IQP) is a family of circuits built out of

diagonal gates1 and two layers of Hadamard gates.

|0⟩ H

D

H

|0⟩ H H

...
...

|0⟩ H H

Figure 7.1: Shape of a generic IQP circuit

These circuits are instantaneous in the sense that every gate in the diagonal sec-

tion commute so there is no order in which gate should be done and, in physical

implementations, can be seen as happening at the same time. These circuits have

been studied for their possible uses to demonstrate quantum supremacy [25] because

they have proprieties that make them possible to implement in the near term future

while still being unlikely to be classically simulated in polynomial time. It has been

shown that in the worst case, those circuits are hard to simulate unless the polyno-

mial hierarchy collapses to the third level [6]. Moreover, it has been shown that even

restricting this class further by imposing a sparsity condition on the circuit maintains

this worst-case hardness [7]. It has also been shown in [6] that under mild assump-

tions, IQP circuits are also hard to simulate in the average case. These hardness

results still hold when restricted to Clifford+T circuits. Within this fragment, the

diagonal part of the circuit can be simplified to a layer of power of T gates followed

by a sequence of powers of controlled S gates.

To generate random IQP circuits, we randomly generated both the power of the

T gates and the number of controlled S gates between each qubit.

7.2.2 Random Clifford+T

Random Clifford+T circuits arising from exponentiated Pauli unitaries is a class

of circuits previously used to benchmark the efficiency of stabiliser decomposition

algorithms [19]. These circuits are interesting as they contain barely any small cat

and star states. Moreover, they are generally densely connected meaning that no

1A gate is said to be diagonal if its matrix representation in the computational basis is diagonal.

48

efficient cut can be found. Therefore, these circuits will test how much star fusion

helps in this kind of instance.

We decided to reuse the same generation method and circuit size from this article

to compare our algorithm fairly. Readers interested in the generation of the random

instances should refer to [19] (section 4.1).

7.2.3 Other Families

In the literature, other families of circuits have also been considered for benchmarks.

One such family is the hidden-shift family considered in [3], [4], [19] and [20]. Sur-

prisingly, recent improvements to the simplification routine from Quizx completely

trivialised the simulation of this family. Indeed, we haven’t been able to find a single

instance where any T gate was left after an initial round of simplification. Thus, no

stabiliser decomposition was needed to simulate these circuits and we were able to

find the hidden shift of all the circuits previously considered in way less than a second.

We conjecture that this class of circuit can always be simulated in polynomial time

(since the simplification algorithm runs in O(n3)).

We also tried to simulate sets of circuits coming from real circuits found on https:

//github.com/Quantomatic/quizx/tree/master/circuits. This dataset includes

adders, multipliers, Grover circuits, etc. Again, for these circuits, we found that

simulations were completely trivialised by ZX simplifications.

7.3 Results

As mentioned in [19], the number of T gates removed by the first simplification has

a great impact on the number of the total runtime of the algorithm. Therefore,

we also include results comparing time and the remaining T -count after the initial

simplification.

7.3.1 IQPs

For random IQP circuits, we noticed that small cat states were almost always present

at every step of the decomposition which was beneficial for our approach. Using linear

regression, it is possible to estimate the α value of these two algorithms. Before

simplification, our algorithm has an α ≈ 0.0252 while the previous algorithm had

α ≈ 0.0449. If we take the T -count after the first simplification then, we obtain

α ≈ 0.0737 whereas the previous algorithm α ≈ 0.1295. We also compare the time

49

https://github.com/Quantomatic/quizx/tree/master/circuits
https://github.com/Quantomatic/quizx/tree/master/circuits

Figure 7.2: Strong simulation of IQP circuits

taken with the number of qubits by taking the mean of all the instances of every size

considered.

Figure 7.3: Time for strong simulations of IQP circuits compared to the number of
qubits

In addition to the improved exponential growth, we obtained an improvement of

multiple orders of magnitudes for bigger instances. We also mention that we estimate

that our algorithm takes time that grows in O(20.825n) with the number of qubits

which is much better than matrix-vector multiplication-based algorithms while also

avoiding the consumption of a large amount of memory.

7.3.2 Random Clifford+T

For those circuits, small cats and stars were rarely present and almost no ZX simpli-

fication ever happened. Thus, the previous algorithm had to fall back to using magic

state injection for most T gates. However, ours used a lot of star fusion which sparsi-

fied the ZX-diagrams. We have added dashed lines that grow exactly like α = 0.396

50

as a baseline for comparison (the height of these lines was chosen arbitrary, only their

rates of growth matter).

Figure 7.4: Strong simulation of random Clifford+T circuits

We see that the previous algorithm does scale similarly to the baseline while ours

seems to do slightly better. We estimate that our algorithm has an α ≈ 0.315.

However, we note that the behaviour of our algorithm seems to not have fully settled

and more data would be necessary to get a reliable measurement. Here again, we

aggregate the data by taking the mean of circuits with the same depth.

Figure 7.5: Time for strong simulations of Clifford+T circuits compared to the num-
ber of qubits

We observed significant improvement over the previous technique. Indeed we

obtain up to a 13 fold improvement in our largest instance.

51

Chapter 8

Weak Simulation Techniques

Throughout the last chapters, we have discussed how to accelerate the strong simu-

lation of a quantum circuit i.e. the calculation of the probability of an output state.

However, there is another type of simulation that we have not discussed. Weak sim-

ulation is the task of producing a sample of the output distribution of a quantum

circuit. Obviously, having an algorithm for weak simulation allows one to have an

approximate algorithm for strong simulation. Indeed, it is enough to generate a large

amount of sample to estimate the probability of a given output.

With a little more ingenuity, it is possible to use a strong simulation algorithm to

do weak simulations. Although it may seem paradoxical to use an intuitively more

difficult problem to solve a simpler one, weak simulation techniques based on strong

simulation are among the fastest approaches known for this problem. One simple

(and inefficient) way to do it is to compute the full output distribution by computing

the probability of each possible output with a strong simulation. Since there are an

exponential amount of possible outputs, this is completely impractical. There are

two known ways to reduce weak simulation to strong simulation efficiently. One that

has been used extensively in the past is the qubit-per-qubit method while the second

which has been discovered only this year by [5] is the gate-per-gate method.

8.1 Qubit-per-Qubit

This technique is based on the chain rule from probability theory. Let Q⃗ = Q1, . . . , Qn

be the result of each qubit of a measure of a circuit. Then the probability of obtaining

an outcome x⃗ = x1, . . . xn is

P
(
Q⃗ = x⃗

)
= P (Q1 = x1 ∩ . . . ∩Qn = xn)

=
n∏

k=1

P

(
Qk = xk

∣∣∣∣∣
k−1⋂
j=1

Qj = xj

)

52

More than giving us another way to compute probabilities, this equation also gives us

a way to sample a circuit. Indeed, if we were able to compute marginal probabilities

on qubits then we could simply generate randomly the first qubit according to its

distribution. We could then compute the marginal distribution on the second qubit,

generate it and so on until we would have generated a complete sample. Doing so

necessarily gives us a sample with the right distribution since it is exactly following

the application of the chain rule. Thus, using strong simulation to compute marginals

offers us a way to do weak simulations.

Fortunately, it is possible to do this operation. Indeed, we have that

P (Q1 . . . Qk = x1 . . . xk) =

x1π

xkπ

U

··
·

··
·

··
· x1π

xkπ

U †

··
·

··
·

··
·

··
·

··
·

So we can compute the marginal distribution on Qk by using the definition of condi-

tional probability

P

(
Qk = xk

∣∣∣∣∣
k−1⋂
j=1

Qj = xj

)
=

P (Q1 . . . Qk = x1 . . . xk)

P (Q1 . . . Qk−1 = x1 . . . xk−1)

This technique is known as CPM-construction or simply doubling (for a proof that

this technique works see [9]).

One of the main drawbacks is that this technique, as its name suggests, doubles the

number of gates and specifically doubles the T -count of a diagram. This is bad news

since in the worst case, our algorithm has an Õ(22αt) time complexity, squaring the

complexity of the strong simulation. This effect is mitigated as a lot of cancellation

happens between U and U † especially when a lot of wires are connecting them. For

example, in an IQP circuit, it is possible to cancel all the gates on pairs of qubits

that are both marginalised over.

8.2 Gate-per-Gate

In a recent paper [5], it has been shown that it is possible to avoid having to com-

pute marginals (and therefore avoid doubling) to do weak simulations with a strong

simulation algorithm. In this section, we will explain their method.

The idea is to create a sample of a subset of the circuit and make that sample

evolves by adding gates one at a time until the whole circuit is considered. To see

53

how this works more concretely, we notice two facts. Firstly, it is trivial to sample an

empty circuit. The sample |0n⟩ is the only one possible. Secondly, if we add a gate to

a circuit, it can only change the output distribution relative to the qubit that entered

the new gate. More precisely, let U be a circuit, g a gate acting on the bounded set

of qubits Q which we want to add to U making the new circuit U ′. Moreover let

Q1, . . . , Qn be the (random) results of a measurement of U |0n⟩ and Q′
1, . . . , Q

′
n be

the result of a measurement of U ′, then

P

(⋂
i ̸∈Q

Qi = xj

)
= P

(⋂
i ̸∈Q

Q′
i = xj

)
∀x⃗

The reason for this is the non-signalling of quantum mechanics. If this was not

the case, we could design an experiment, where we would take all of the qubits in

Q far away from the rest of the qubits but send a signal instantaneously to someone

in possession of the rest of the qubits by applying g or not. Since signalling is not

permitted, this equation must hold. This equation implies that if we ignore the qubit

in Q, then a sample from the output distribution of U is also a sample from the

output distribution of U ′. Therefore, if we take a sample from the output of U , we

only need to adjust the qubits in Q to obtain a sample from U ′. Since |Q| is bounded
(in most applications by two) we can use the brute force strategy to compute the

probability distribution of the 2|Q| outputs where the qubits that are not in Q are

the same as before. We can then sample from this distribution to create our sample

from U ′. With this approach, we have to do up to 2km strong simulations where k is

the size of the biggest gate in the circuit and m is the number of gates in the circuit.

Thus, this whole procedure can be done in Õ(2km2αt). Since k can be assumed to be

bounded by a small constant, we obtain Õ(m2αt). Furthermore, on every polynomial-

size circuit, this reduces to Õ(2αt) which is much better than the Õ(22αt) from the

qubit per qubit approach. However, the polynomial factors are much greater than

before as we have to use a strong simulation routine multiple times for every gate.

8.2.1 Speeding up the algorithm

Let us focus on the gate set Clifford+T as this is the set used in the circuits for our

benchmarks. With this set, we have k = 2 that is achieved only when a CNOT gate

is applied. However, the CNOT gate is deterministic on basis states which is a fact

we can exploit to our advantage. This means that if we have a sample q1, . . . qn from

a circuit U and we want to add a CNOT to the qubit i and j, we know that

P (Q1 . . . Qk = q1 . . . qn) = P (Q′
1 . . . Q

′
k = q1 . . . qi . . . qj ⊕ qi . . . qn)

54

In other words, we could have sampled the circuit U ′ by taking a sample from

U and classically applying a CNOT. Therefore, in this case, a strong simulation is

not necessary. The above argument works whenever the gates we want to apply are

deterministic on basis states. This implies that we also do not need to use strong

simulation when the gate added is a NOT gate or even a Toffoli gate.

We can, in fact, even avoid having to use strong simulation whenever we want

to add a T gate or more generally a Z-rotation. This is because adding a rotation

gate doesn’t change the output distribution. With ZX-calculus this can be seen as

an application of the π-copy rule.

x1π

U

··
·

xnπ

··
·

xiπ
... α ≈ U

··
·

··
·

...

x1π

xnπ

xiπ

This means that the only time where strong simulation is necessary is when adding

Hadamard gates which are single qubit gates.

We mention that this method scale especially well on IQP circuits where the

number of Hadamard gates is 2n (in which the first n can trivially be simulated1).

8.3 Relation to graph cuts

We briefly mention how graph cuts can be useful for each of the weak simulation

techniques presented.

Firstly, in the qubit-per-qubit method, we know that the cases with the least

initial cancellation happen when we are computing marginal over the last qubits.

This is because very few of the qubits are connected to the adjoint circuit removing

a lot of the opportunity for cancellation.

x1π

xkπU

··
·

··
·

x1π

xkπ U †

··
·

··
···
·

··
·

At the same time, when only a few wires connect both circuits, there is necessarily

a good vertex separator. It suffices to cut the remaining wire to separate the graph

1This is the case since, after the first layer of Hadamard, we have a uniform output distribution.

55

into two equal parts. Thus, vertex cuts alleviate the worse case of the qubit per qubit

simulation.

Secondly, for the gate-per-gate approach, a clever ordering of the gates can try

to maintain the underlying ZX-diagram sparse for the longest time possible. For

example, by taking gates affecting sets of wire far apart first, we can try to keep the

graph weakly connected for the first few iterations of the algorithm which helps to

find good cuts. However, if the whole circuit gives rise to a dense diagram, adding

gates will eventually increase the connectivity of the diagram.

8.4 More Numerical Results

To assess the quality of both approaches, we tested both on several circuits from

the same families as before. These simulations were run on the same dedicated

computation server (24-core Intel Xeon E5-2667, 2.90GH).

Figure 8.1: Weak simulation of random IQP

We see that gate-per-gate simulations are much more efficient than the qubit-per-

qubit ones on IQP circuits. Indeed, we were able to sample circuits around four times

as large within the time limit with this approach. This is not surprising as these

circuits have very few Hadamard gates. In fact, both methods require 2n strong

56

simulations to obtain a sample. We can therefore see how not having to use doubling

is beneficial in this type of circuit.

Figure 8.2: Weak simulation of random IQP compared to the number of qubits

In addition, by extrapolating the time taken by our gate-per-gate algorithm, we

estimate that sampling 53 qubits circuits2 should take around 50 to 60 years on our

setup. Thus, we estimate that on large computer clusters, it would be possible to

sample such a circuit in a few hours. Moreover, we estimate that, with such clusters, it

would be possible to sample 65 qubits IQP circuits in less than 6 months. Sampling of

random IQP circuits have previously been proposed as a task for quantum supremacy

experiments [15, 7], but our results call into question the usefulness of IQP circuits

in this context.

Similarly to IQP circuits, for random Clifford+T circuits, we see in figure8.4

that the gate-per-gate approach seems to be much more efficient as we managed to

simulate circuits twice as big within the same time limit. This is interesting as those

circuits contain more Hadamard gates which increase the polynomial factor in the

time complexity. However, we believe that there are families where the polynomial

factors will have a much greater impact as some families have a higher Hadamard

gate density. Therefore, further testing would be required to say if the gate-per-gate

approach is always more efficient for moderate-size circuits.

2The size of Google supremacy experiment.

57

Figure 8.3: Weak simulation of random Clifford+T

Figure 8.4: Weak simulation of random Clifford+T compared to the depth

58

Chapter 9

Conclusions

In this work, we have explored different approaches to improve strong quantum sim-

ulation techniques based on stabiliser decompositions. We have also explored two

different methods for doing weak simulations. We have succeeded in significantly

improving the current techniques to the point where we have questioned the useful-

ness of a class of quantum circuits for quantum supremacy experiments. This result

adds to recent results from tensor contraction techniques indicating that the quantum

supremacy milestone still requires progress on the experimental side to be reached.

We also mention that the partial decomposition techniques developed in this work

open up a new world of improvement opportunities. We expect that several better

such decompositions exist which could eventually drastically speed up our algorithms.

In addition, the subgraph complementation operation presented in section 3.3 has a

lot of potential and requires further work.

59

Appendix A

List of best decompositions

We here list the best-known decompositions for cat and star states up to size 40.

An implementation of the algorithm used to find most of these decompositions is

accessible at https://github.com/Codsilla/ZX-stabiliser-simulator.

A.1 Laakkonen’s new decompositons

We here states two new decompositions for |cat3⟩⊗2 and |star1⟩⊗6 found numerically

by Laakkonen [22].

|cat3⟩⊗2 =

π
4

π
4

π
4

π
4

π
4

π
4

=
π

π

i
16

+

π

π

π

π
2

π
2

i
2

+
3π
2

3π
2

1+i
4

60

https://github.com/Codsilla/ZX-stabiliser-simulator

π
4

π
4

π
4

=
π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π

3i
8
√
2

+

π

3i
8
√
2

-
π

3(
√

2−2)eiπ/4

16
+

π

(23/2 + 8i)
π

π

+

π
2

(
3

27/2
+ i

8

)
C ++

π

(
4 + 25/2i

)
π

π

+
(
− 3

32
√

2
+ 3i

64

)

Where C ≈ 0.017520 + 0.035826i. The last two terms are fully connected graphs.

61

A.2 Single Copy of a Cat State

|catn⟩ Terms ≈ αn Method
1 1 0 Direct calculations
2 1 0 Direct calculations
3 2 0.3333 Direct calculations
4 2 0.2500 Direct calculations
5 3 0.3170 Direct calculations
6 3 0.2642 Direct calculations
7 6 0.3693 split into |cat3⟩ and |cat6⟩
8 6 0.3231 split into |cat4⟩ and |cat6⟩
9 9 0.3522 split into |cat5⟩ and |cat6⟩
10 9 0.3170 split into |cat6⟩ and |cat6⟩
11 18 0.3791 split into |cat3⟩ and |cat10⟩
12 18 0.3475 split into |cat4⟩ and |cat10⟩
13 27 0.3658 split into |cat5⟩ and |cat10⟩
14 27 0.3396 split into |cat6⟩ and |cat10⟩
15 54 0.3837 split into |cat3⟩ and |cat14⟩
16 54 0.3597 split into |cat4⟩ and |cat14⟩
17 81 0.3729 split into |cat5⟩ and |cat14⟩
18 81 0.3522 split into |cat6⟩ and |cat14⟩
19 162 0.3863 split into |cat3⟩ and |cat18⟩
20 162 0.3670 split into |cat4⟩ and |cat18⟩
21 243 0.3774 split into |cat5⟩ and |cat18⟩
22 243 0.3602 split into |cat6⟩ and |cat18⟩
23 486 0.3880 split into |cat3⟩ and |cat22⟩
24 486 0.3719 split into |cat4⟩ and |cat22⟩
25 729 0.3804 split into |cat5⟩ and |cat22⟩
26 729 0.3658 split into |cat6⟩ and |cat22⟩
27 1458 0.3893 split into |cat3⟩ and |cat26⟩
28 1458 0.3753 split into |cat4⟩ and |cat26⟩
29 2187 0.3826 split into |cat5⟩ and |cat26⟩
30 2187 0.3698 split into |cat6⟩ and |cat26⟩
31 4374 0.3902 split into |cat3⟩ and |cat30⟩
32 4374 0.3780 split into |cat4⟩ and |cat30⟩
33 6561 0.3842 split into |cat5⟩and |cat30⟩
34 6561 0.3729 split into |cat6⟩ and |cat30⟩
35 13122 0.3908 split into |cat3⟩ and |cat34⟩
36 13122 0.3800 split into |cat4⟩ and |cat34⟩
37 19683 0.3855 split into |cat5⟩and |cat34⟩
38 19683 0.3754 split into |cat6⟩ and |cat34⟩
39 39366 0.3914 split into |cat3⟩ and |cat38⟩
40 39366 0.3816 split into |cat4⟩and |cat38⟩

62

A.3 Single Copy of a Star State

We note that it would probably be possible to obtain better asymptotics for the

decomposition with α significantly bigger than 0.396 by using a combination of magic

state injection of different size. We did not do it as only the decomposition with

α < 0.369 should ever be used.

|starn⟩ Terms ≈ α∗
n Method

1 2 0.5 cut
2 2 0.3333 Catification
3 4 0.5 Catification into |cat3⟩
4 4 0.4 Catification into |cat4⟩
5 6 0.4308 Catification into |cat5⟩
6 6 0.3693 Catification into |cat6⟩
7 9 0.3962 magic state injection
8 12 0.3983 Catification into |cat8⟩
9 18 0.417 Catification into |cat9⟩
10 18 0.3791 Catification into |cat10⟩
11 27 0.3962 magic state injection
12 36 0.3977 Catification into |cat12⟩
13 54 0.4111 Catification into |cat13⟩
14 54 0.3837 Catification into |cat14⟩
15 81 0.3962 magic state injection
16 108 0.3973 Catification into |cat16⟩
17 162 0.4078 Catification into |cat17⟩
18 162 0.3863 Catification into |cat18⟩
19 243 0.3962 magic state injection
20 324 0.3971 Catification into |cat20⟩
21 486 0.4057 Catification into |cat21⟩
22 486 0.388 Catification into |cat22⟩
23 729 0.3962 magic state injection
24 972 0.397 Catification into |cat24⟩
25 1458 0.4042 Catification into |cat25⟩
26 1458 0.3893 Catification into |cat26⟩
27 2187 0.3962 magic state injection
28 2916 0.3969 Catification into |cat28⟩
29 4374 0.4032 Catification into |cat29⟩
30 4374 0.3902 Catification into |cat30⟩
31 6561 0.3962 magic state injection
32 8748 0.3968 Catification into |cat32⟩
33 13122 0.4023 Catification into |cat33⟩
34 13122 0.3908 Catification into |cat34⟩
35 19683 0.3962 magic state injection
36 26244 0.3967 Catification into |cat36⟩
37 39366 0.4017 Catification into |cat37⟩
38 39366 0.3914 Catification into |cat38⟩
39 59049 0.3962 magic state injection
40 78732 0.3967 Catification into |cat40⟩

63

A.4 Multiple Copies of Cats

|catn⟩ Copies Terms ≈ α Method
1 1 1 0.0000 Direct calculations
2 1 1 0.0000 Direct calculations
3 2 3 0.2642 Direct calculations
4 1 2 0.2500 Direct calculations
5 1 3 0.3170 Direct calculations
6 1 3 0.2642 Direct calculations
7 2 27 0.3396 split into |cat3⟩ and |cat6⟩
8 1 6 0.3231 split into |cat4⟩ and |cat6⟩
9 1 9 0.3522 split into |cat5⟩ and |cat6⟩
10 1 9 0.3170 split into |cat6⟩ and |cat6⟩
11 2 243 0.3602 split into |cat3⟩ and |cat10⟩
12 1 18 0.3475 split into |cat4⟩ and |cat10⟩
13 1 27 0.3658 split into |cat5⟩ and |cat10⟩
14 1 27 0.3396 split into |cat6⟩ and |cat10⟩
15 2 2187 0.3698 split into |cat3⟩ and |cat14⟩
16 1 54 0.3597 split into |cat4⟩ and |cat14⟩
17 1 81 0.3729 split into |cat5⟩ and |cat14⟩
18 1 81 0.3522 split into |cat6⟩ and |cat14⟩
19 2 19683 0.3754 split into |cat3⟩ and |cat18⟩
20 1 162 0.3670 split into |cat4⟩ and |cat18⟩
21 1 243 0.3774 split into |cat5⟩ and |cat18⟩
22 1 243 0.3602 split into |cat6⟩ and |cat18⟩
23 2 177147 0.3790 split into |cat3⟩ and |cat22⟩
24 1 486 0.3719 split into |cat4⟩ and |cat22⟩
25 1 729 0.3804 split into |cat5⟩ and |cat22⟩
26 1 729 0.3658 split into |cat6⟩ and |cat22⟩
27 2 1594323 0.3816 split into |cat3⟩ and |cat26⟩
28 1 1458 0.3753 split into |cat4⟩ and |cat26⟩
29 1 2187 0.3826 split into |cat5⟩ and |cat26⟩
30 1 2187 0.3698 split into |cat6⟩ and |cat26⟩
31 2 14348907 0.3835 split into |cat3⟩ and |cat30⟩
32 1 4374 0.3780 split into |cat4⟩ and |cat30⟩
33 1 6561 0.3842 split into |cat5⟩ and |cat30⟩
34 1 6561 0.3729 split into |cat6⟩ and |cat30⟩
35 2 129140163 0.3849 split into |cat3⟩ and |cat34⟩
36 1 13122 0.3800 split into |cat4⟩ and |cat34⟩
37 1 19683 0.3855 split into |cat5⟩ and |cat34⟩
38 1 19683 0.3754 split into |cat6⟩ and |cat34⟩
39 2 1162261467 0.3861 split into |cat3⟩ and |cat38⟩
40 1 39366 0.3816 split into |cat4⟩ and |cat38⟩

64

A.5 Multiple Copies of Stars

|starn⟩ Copies Terms ≈ α Method
1 6 8 0.2500 Direct-calculation
2 1 2 0.3333 Catification
3 4 57 0.3648 Star fusion with two copies of |star3⟩
4 2 14 0.3857 Star fusion with two copies of |star4⟩
5 6 7290 0.3564 efficient split into |star1⟩ and |cat6⟩
6 1 6 0.3693 Catification into |cat6⟩
7 4 4382 0.3780 Star fusion with two copies of |star7⟩
8 2 129 0.3897 Star fusion with two copies of |star8⟩
9 6 5314410 0.3724 efficient split into |star1⟩ and |cat10⟩
10 1 18 0.3791 Catification into |cat10⟩
11 4 347320 0.3835 Star fusion with two copies of |star11⟩
12 2 1160 0.3915 Star fusion with two copies of |star12⟩
13 6 3874204890 0.3792 efficient split into |star1⟩ and |cat14⟩
14 1 54 0.3837 Catification into |cat14⟩
15 4 27810049 0.3864 Star fusion with two copies of |star15⟩
16 2 10422 0.3926 Star fusion with two copies of |star16⟩
17 6 2824295364810 0.3830 efficient split into |star1⟩ and |cat18⟩
18 1 162 0.3863 Catification into |cat18⟩
19 4 2236501135 0.3882 Star fusion with two copies of |star19⟩
20 2 93677 0.3932 Star fusion with two copies of |star20⟩
21 6 2058911320946490 0.3854 efficient split into |star1⟩ and |cat22⟩
22 1 486 0.3880 Catification into |cat22⟩
23 4 180272119162 0.3895 Star fusion with two copies of |star23⟩
24 2 842358 0.3937 Star fusion with two copies of |star24⟩
25 6 1500946352969991210 0.3871 efficient split into |star1⟩ and |cat26⟩
26 1 1458.0 0.3893 Catification into |cat26⟩
27 4 14550292599195 0.3904 Star fusion with two copies of |star27⟩
28 2 7576349 0.3940 Star fusion with two copies of |star28⟩
29 6 1.094e+ 21 0.3883 efficient split into |star1⟩ and |cat30⟩
30 1 4374 0.3902 Catification into |cat30⟩
31 4 1175404270123638 0.3911 Star fusion with two copies of |star31⟩
32 2 68153528 0.3943 Star fusion with two copies of |star32⟩
33 6 7.977e+ 23 0.3892 efficient split into |star1⟩ and |cat34⟩
34 1 13122 0.3908 Catification into |cat34⟩
35 4 95006833833682880 0.3917 Star fusion with two copies of |star35⟩
36 2 613142596 0.3945 Star fusion with two copies of |star36⟩
37 6 5.815e+ 26 0.3900 efficient split into |star1⟩ and |cat38⟩
38 1 39366 0.3914 Catification into |cat38⟩
39 4 7682471058401394418 0.3921 Star fusion with two copies of |star39⟩
40 2 5516538960 0.3946 Star fusion with two copies of |star40⟩

65

Bibliography

[1] Most balanced minimum cuts. Discrete Applied Mathematics, 158(4):261–276,

February 2010. Publisher: North-Holland.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin,

Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao,

David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto

Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen,

Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve

Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoff-

mann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang

Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey

Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark,

Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew

McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh

Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu,

Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Ri-

effel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger,

Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher,

Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zal-

cman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a

programmable superconducting processor. Nature, 574(7779):505–510, October

2019. Number: 7779 Publisher: Nature Publishing Group.

[3] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and

Mark Howard. Simulation of quantum circuits by low-rank stabilizer decompo-

sitions. Quantum, 3:181, September 2019. arXiv:1808.00128 [quant-ph].

[4] Sergey Bravyi and David Gosset. Improved Classical Simulation of Quantum

Circuits Dominated by Clifford Gates. Physical Review Letters, 116(25):250501,

June 2016. Publisher: American Physical Society.

66

[5] Sergey Bravyi, David Gosset, and Yinchen Liu. How to simulate quan-

tum measurement without computing marginals. Physical Review Letters,

128(22):220503, June 2022. arXiv:2112.08499 [quant-ph].

[6] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-Case

Complexity Versus Approximate Simulation of Commuting Quantum Computa-

tions. Physical Review Letters, 117(8):080501, August 2016. Publisher: American

Physical Society.

[7] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Achieving quan-

tum supremacy with sparse and noisy commuting quantum computations. Quan-

tum, 1:8, April 2017. arXiv:1610.01808 [quant-ph].

[8] Bob Coecke and Ross Duncan. A graphical calculus for quantum observables.

page 4.

[9] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course

in Quantum Theory and Diagrammatic Reasoning. Cambridge University Press,

Cambridge, 2017.

[10] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van de Wetering. Graph-

theoretic Simplification of Quantum Circuits with the ZX-calculus. Quantum,

4:279, June 2020. arXiv:1902.03178 [quant-ph].

[11] David Eppstein. Quasiconvex Analysis of Backtracking Algorithms. arXiv e-

prints, page cs/0304018, April 2003. ADS Bibcode: 2003cs........4018E.

[12] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved Approx-

imation Algorithms for Minimum Weight Vertex Separators. SIAM Journal on

Computing, 38(2):629–657, January 2008. Publisher: Society for Industrial and

Applied Mathematics.

[13] Richard P. Feynman. Simulating physics with computers. International Journal

of Theoretical Physics, 21(6):467–488, June 1982.

[14] Daniel Gottesman. The Heisenberg Representation of Quantum Computers, July

1998. arXiv:quant-ph/9807006.

[15] Aram W. Harrow and Ashley Montanaro. Quantum Computational Supremacy.

Nature, 549(7671):203–209, September 2017. arXiv:1809.07442 [quant-ph].

67

[16] Cupjin Huang, Fang Zhang, Michael Newman, Junjie Cai, Xun Gao, Zhengxiong

Tian, Junyin Wu, Haihong Xu, Huanjun Yu, Bo Yuan, Mario Szegedy, Yaoyun

Shi, and Jianxin Chen. Classical Simulation of Quantum Supremacy Circuits,

May 2020. arXiv:2005.06787 [quant-ph].

[17] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Dia-

grammatic Reasoning. Electronic Proceedings in Theoretical Computer Science,

318:229–241, May 2020. arXiv:1904.04735 [quant-ph].

[18] Aleks Kissinger and John van de Wetering. Reducing the number of non-Clifford

gates in quantum circuits. Physical Review A, 102(2):022406, August 2020. Pub-

lisher: American Physical Society.

[19] Aleks Kissinger and John van de Wetering. Simulating quantum circuits with ZX-

calculus reduced stabiliser decompositions, September 2021. arXiv:2109.01076

[quant-ph].

[20] Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simu-

lation of quantum circuits with partial and graphical stabiliser decompositions,

February 2022. arXiv:2202.09202 [quant-ph].

[21] Stefanos Kourtis, Claudio Chamon, Eduardo Mucciolo, and Andrei Ruckenstein.

Fast counting with tensor networks. SciPost Physics, 7(5):060, November 2019.

[22] Tuomas Laakkonen. New stabiliser decompositions of cats states. Private Com-

munication, 2022.

[23] Richard J. Lipton and Robert Endre Tarjan. A Separator Theorem for Planar

Graphs. SIAM Journal on Applied Mathematics, 36(2):177–189, April 1979.

Publisher: Society for Industrial and Applied Mathematics.

[24] Dániel Marx. Parameterized graph separation problems. Theoretical Computer

Science, 351(3):394–406, February 2006.

[25] Ramis Movassagh. Quantum supremacy and random circuits, November 2020.

arXiv:1909.06210 [cond-mat, physics:hep-th, physics:math-ph, physics:quant-

ph].

[26] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information: 10th Anniversary Edition, December 2010. ISBN: 9780511976667

Publisher: Cambridge University Press.

68

[27] Feng Pan, Keyang Chen, and Pan Zhang. Solving the Sampling Problem of the

Sycamore Quantum Circuits. Physical Review Letters, 129(9):090502, August

2022. Publisher: American Physical Society.

[28] Paul Raymond-Robichaud. A local-realistic model for quantum theory. Proceed-

ings of the Royal Society A: Mathematical, Physical and Engineering Sciences,

477(2250):20200897, June 2021. Publisher: Royal Society.

[29] Fanz Rendl and Renata Sotirov. The min-cut and vertex separator problem.

Computational Optimization and Applications, 69(1):159–187, January 2018.

[30] Peter Sanders and Christian Schulz. Think Locally, Act Globally: Highly Bal-

anced Graph Partitioning. In Vincenzo Bonifaci, Camil Demetrescu, and Alberto

Marchetti-Spaccamela, editors, Experimental Algorithms, Lecture Notes in Com-

puter Science, pages 164–175, Berlin, Heidelberg, 2013. Springer.

[31] Sebastian Schlag, Vitali Henne, Tobias Heuer, Henning Meyerhenke, Peter

Sanders, and Christian Schulz. k-way Hypergraph Partitioning via n-Level Re-

cursive Bisection. In 2016 Proceedings of the Meeting on Algorithm Engineering

and Experiments (ALENEX), Proceedings, pages 53–67. Society for Industrial

and Applied Mathematics, December 2015.

[32] David B. Shmoys. Cut Problems And Their Application To Divide-And-Conquer,

1996.

[33] John van de Wetering. ZX-calculus for the working quantum computer scientist,

December 2020. arXiv:2012.13966 [quant-ph].

[34] Thorsten B. Wahl and Sergii Strelchuk. Simulating quantum circuits using effi-

cient tensor network contraction algorithms with subexponential upper bound,

August 2022. arXiv:2208.01498 [cond-mat, physics:hep-th, physics:quant-ph].

69

	Introduction to Quantum Computing and the ZX-Calculus
	Basic notation
	ZX-Calculus
	ZX-diagrams
	Spiders
	Hadamard Box
	Cups, Caps and Swaps
	Symmetries and OCM
	Generalisation of Quantum Circuit

	ZX-Calculus
	Fragments
	Simplifications Algorithm

	Simulation Through Stabiliser Decomposition
	Time Complexity of Partial Decomposition

	Graph Cuts Decompositions
	Hardness
	Heuristics
	Balanced Vertex Separators
	(Hyper)graph Partitioning
	Extracting vertex separators
	Hypergraph Partitioning

	Small Separators

	Subgraph Complement Cuts

	Finding New Decompositions
	Combining cat states decompositons
	Cuts
	Splits
	Combining both

	Star States
	Catification
	Cuts (Star version)
	Splits (Star version)
	Results

	Multiple Copies of Cats and Stars
	star1 Split
	Star Fusion
	Results

	Decomposition of Large Stars

	Where to Apply Decompositions
	Where to apply the trivial decomposition?
	Where to apply star fusion?

	Combining All the Decompositions
	Our algorithm

	Numerical Experiments
	Implementation
	Benchmarks
	Random IQP
	Random Clifford+T
	Other Families

	Results
	IQPs
	Random Clifford+T

	-0.3cmWeak Simulation Techniques
	Qubit-per-Qubit
	Gate-per-Gate
	Speeding up the algorithm

	Relation to graph cuts
	More Numerical Results

	Conclusions
	List of best decompositions
	Laakkonen's new decompositons
	Single Copy of a Cat State
	Single Copy of a Star State
	Multiple Copies of Cats
	Multiple Copies of Stars

	Bibliography

