
Sparsification of

Submodular Functions

Mathematical Institute

University of Oxford

A dissertation submitted for the degree of

Master of Science
Mathematics and Foundations of Computer Science

August 31, 2022

J Kudla

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Submodularity . 4

2.2 Sparsification . 7

3 The Core Algorithm 8

3.1 Sparsifying Any Decomposable Function 8

3.2 The Submodular Case . 14

4 Improved Sparsifier Constructions 21

4.1 Low Curvature . 22

4.1.1 Approximate Ψ-Maximisation 22

4.1.2 Knapsack-Constrained Ψ-Maximisation 24

4.1.3 Assembling a Sparsifier . 34

4.2 Bounded Arity . 38

4.2.1 The Arity of a Submodular Function 38

4.2.2 Computing The Peak Contributions 38

4.2.3 Application to Hypergraph Cut Sparsification 41

4.3 Sparsifier in the Limit . 43

5 Generalised Submodular Sparsification 49

5.1 Introducing K-Submodular Functions 50

5.2 K-Set Functions of Bounded Arity 51

5.2.1 Notions of Arity and Reducibility 51

5.2.2 Peak Contributions For Arity Reducible Classes 52

5.2.3 K-Submodular Functions . 55

5.2.4 Generalised Skew Bisubmodular Functions 56

6 Conclusion 60

Bibliography 62

i

Chapter 1

Introduction

Ambitions to cast algorithmic problems as instances of more general problems are

perhaps as old as the discipline of combinatorial optimisation itself. A prominent

example is the hierarchy of problems depicted in Fig. 1.1. Finding maximum bipartite

matchings in unweighted graphs is possible efficiently by the Hopcroft-Karp algorithm

[HK73]. The maximum bipartite matching problem turns out to be a special case

of maximum flow, which can be solved a bit less efficiently by numerous algorithms,

the Edmonds-Karp algorithm being just one example [Cor+09]. Maximum flow, in

turn, appears as a special case of minimum-cost flow, which again is a special case

of linear programming [AMO93]. As one moves further up the line of generalisation,

running time guarantees are generally sacrificed. However, a huge advantage becomes

evident: More general algorithms solve a broader class of problems and can be used in

a “blackbox” fashion, as opposed to specialised algorithms which are only applicable

to a very specific problem.

linear-programming

min-cost-flow

max-flow / min-cut

max-bipartite-matching

Figure 1.1: Hierarchy of increasingly more general problems with increasingly worse
known running time bounds

In this spirit, if we focus on graph cuts, coverage and facility location problems, we

discover that they all boil down to the minimisation or maximisation of submodular

functions. This common generalisation is well-studied and still a hot research topic,

1

investigated from different perspectives. While there is a lot of work on the general

minimisation and maximisation problems, including hardness results and approxima-

tion algorithms, the use of sparsification as a technique to approximately represent

a decomposable submodular function seems rather new. It has been described by

Rafiey and Yoshida [RY22] and applied as a preprocessing step to improve previously

known algorithms for various combinatorial optimisation problems.

However, it is worth noting that “sparsifying” objects is a celebrated technique in

algorithm design that dates back more than 25 years and has been successfully applied

to many problems: From the “Sparsification Lemma” for k-SAT by Impagliazzo and

Paturi [IP01] over the sparsification of cuts in graphs [BK96; LS18] and hypergraphs

[SY19; KK15; CKN20] to the sparsification of submodular functions [RY22].

The objective of this dissertation is pushing the research towards efficient sparsifier

constructions for important classes of submodular functions and beyond. We con-

stantly ask the question whether and how a known-to-exist sparsifier of a certain size

can be constructed efficiently, giving the computational aspect a key role in this work.

Existence Proofs and Efficient Algorithms

The general sparsification algorithm introduced in Chapter 3, referred to as the core

algorithm in this work, has a linear running time dependence on the size of the domain,

which is exponential for submodular functions. No significant speed-up is known for

the general submodular case. In fact, even for monotone submodular functions there a

hardness result by Bai et al. [Bai+16] that rules out a polynomial-time approximation

of the ratio of such functions up to a factor better than
√
n under P 6= NP, implying

that our core algorithm most likely cannot be implemented in polynomial time.

This motivates the study of special cases that do admit a sparsifier of small size and its

construction in polynomial time at the same time. In this work, we demonstrate that

important classes of submodular functions appearing in applications such as (hyper-)

graph cuts and sensor placement are instances of these special cases.

Structure and Highlighted Results

After giving background on submodular functions and sparsification, we present our

results in three technical chapters. Since the central definitions are only introduced

in the next chapter, we concisely summarise our contributions in the beginning of

2

each corresponding chapter rather than listing them here in full detail. Therefore,

the reader is advised to read the beginnings of Chapter 3, 4 and 5 for an overview of

all original results in this work. Among those, we want to highlight:

� Fixes in response to the work by Rafiey and Yoshida [RY22]: We disprove

their size bounds by a counterexample and show that they are indeed correct

under the additional assumption of monotonicity. Moreover, we extend their

algorithm beyond submodular functions and fix an invalid step in their proof.

� New polynomial-time constructions of small sparsifiers for the important classes

of submodular functions of low curvature and bounded arity. The low curvature

class can perhaps be tackled under knapsack constraints as well, which a paper

by Perrault et al. [Per+21] suggests. However, their algorithm and its analysis

are flawed; we disprove this part of their paper and work towards a correction.

� Polynomial-time construction of small sparsifiers for classes of set functions

that are efficiently minimisable and arity reducible, the letter being a notion we

introduce to capture the essential requirements of our sparsifier construction.

Specifically, we show that k-submodular of bounded arity are of this type.

Finally, we conclude with open questions and possible directions for future research.

3

Chapter 2

Preliminaries

In this chapter, we define terms and introduce notations for the technical part of the

dissertation. This also involves some background information and motivation where

appropriate. Terms and notations specific to a particular section are introduced where

needed, hence they are not part of this chapter. Furthermore, this chapter is intended

to make the dissertation more self-contained and accessible to a broader audience of

readers who are not familiar with the concepts of submodularity and sparsification.

2.1 Submodularity

The most important objects studied in this work are submodular functions. Given a

ground set E, a function f : 2E → R is referred to as set function. If f satisfies

f(A) + f(B) ≥ f(A ∪B) + f(A ∩B) (2.1)

for all A,B ⊆ E, we say that f is submodular. If equality holds for arguments, we f

is modular. This is restrictive in the sense that it implies f(S) =
∑

e∈S we for some

weights (we)e∈E, which is why modular functions are sometimes called linear.

Given a set function f : 2E → R, we define the marginal gain of adding an element

e ∈ E to a set S ⊆ E as

∆e (f | S) := f(S ∪ {e})− f(S).

We also define ∆T (f | T) := f(S∪{T})−f(S), the marginal gain of augmenting a set

S with an entire set T of items. Marginal gains play in important role in the study

of submodular functions, which our work reflects. More specifically, we make use

of the diminishing returns property – an equivalent characterisation of submodular

functions. It states that the gain of adding an element does not increase as we enlargen

the set it is added to.

4

x
S V \ S

(a) Gain of adding x to the cut S

x
T V \ T

(b) Gain of adding x to the cut T

Figure 2.1: Diminishing Returns Property in Graph Cuts

Fact 2.1 (Diminishing Returns Property). Let f : 2E → R be a set function. Then

f is submodular if and only if

∆e (f | T) ≤ ∆e (f | S)

for all T ⊇ S and e /∈ T .

This fact is well-known in the field and easy to prove yet a non-trivial second per-

spective on submodular functions. Viewing them through the lens of the diminishing

returns property is insightful in many proofs and applications.

Example 2.2. Given an undirected graph G = (V,E), we define the cut function

F : 2V → R, S 7→ |E(S, V \ S)|

where E(S, V \S) denotes the set of edges {u, v} such that u ∈ S and v ∈ V \S. An

elegant way of showing that F is submodular is by establishing Fact 2.1. To this end,

consider S ⊆ T ⊆ V and x ∈ V \T . We show that ∆x (F | T) ≤ ∆x (F | S). Observe

that ∆x (F | S) is the number of edges incident to x that are cut when moving x

from V \ S to S, see the orange edges in Fig. 2.1a. The same reasoning applies to T .

However, all endpoints of non-orange edges belong to T as well (since T ⊇ S), plus

possibly a few more (see Fig. 2.1b), thereby reducing the number of orange edges. We

conclude that F satisfies the diminishing returns property, hence it is submodular.

We say that a set function f : 2E → R is monotone if f(T) ≥ f(S) for all T ⊇ S and

normalised if f(∅) = 0. Note that f is monotone if and only if all marginal gains are

non-negative, i. e., ∆e (f | S) ≥ 0 for all S ⊆ E and e /∈ S.

For a submodular function f : 2E → R, the set

B(f) :=
{
x ∈ RE | ∀S ⊆ E : x(S) ≤ f(S) and x(E) = f(E)

}
5

can be shown to be a polyhedron and is called the base polyhedron of f . In this

definition, x(S) :=
∑

e∈S xe. Moreover, we let 1e ∈ RE denote the unit vector w. r. t.

the coordinate e ∈ E. This extends to subsets S ⊆ E via 1S :=
∑

e∈S 1e. For any

polyhedron P , we let EX(P) denote the set of extreme points of P . In particular,

EX(B(f)) is the set of extreme points of the base polyhedron of f . It can be shown

that EX(B(f)) is finite and non-empty for any submodular function f [Fuj91].

Given a ground set E of size n, the space required to represent a (submodular)

function f : 2E → R explicitly is generally exponential in n. Therefore, submodular

functions are often studied in the evaluation oracle model : We assume an oracle that,

given any set S ⊆ E, returns the value f(S) in time O(EO). It is not only sensible

to choose this model to cope with memory limitations but also for the reason of

flexibility, since this model helps abstracting away from the concrete implementation

of the evaluation oracle (there might be different ways to implement it).

In the evaluation oracle model, it is sensible to consider the minimisation and maximi-

sation problems, i. e., the problems of computing sets S ⊆ E attaining minS⊆E f(S)

and maxS⊆E f(S), The maximisation problem is known to be NP-hard, for instance

by a trivial reduction from max-cut. The following algorithms are notable:

� Polynomial-time algorithm to compute minS⊆E f(S) exactly. This is a cele-

brated result by Grötschel, Lovász and Schrijver [GLS81]. Their algorithm uses

the ellipsoid method. Later on, fully combinatorial polynomial-time algorithms

have been described [Sch00; IFF01; Orl07], the fastest we know being the algo-

rithm by Orlin [Orl07] running in time O ((n6 + n5 · EO) log n).

� Greedy (1− 1/e)-approximation for maxS⊆E,|S|≤k f(S) by Nemhauser, Wolsey

and Fisher [NWF78], i. e., the maximisation of f subject to a cardinality con-

straint |S| ≤ k (for any k ≤ n, so k = n yields the unconstraint problem).

Polynomial-time submodular minimisation is paramount to many of the algorithms

in this work. We frequently use submodular minimisation as a subroutine when

designing sparsification algorithms. The ideas behind the second algorithm become

relevant in Section 4.1 as they can be exploited to approximately maximise the ratio

of two submodular functions with special properties.

6

2.2 Sparsification

Given a domain D, we call a function F : D → R decomposable if F can be written

as the point-wise sum F = f1 + · · · + fN , that is, F (S) =
∑N

i=1 fi(S) for all S ∈ D,

of “smaller” functions f1, . . . , fN . The fi’s are referred to as constituents of the

decomposition F = f1 + · · · + fN . In many applications, F is submodular and can

be written as a sum of submodular fi’s that often have “simpler” evaluation oracles

and smaller representations, as well as stronger properties (e. g. codomain {0, 1}).

The idea of sparsification is to select a small number M � N of the fi’s, say

fi1 , . . . , fiM , that approximately represent F on D or a subdomain D′ ⊆ D of our

interest. Simply taking F = fi1 + · · · + fiM is obviously insufficient as it leads to an

underestimation of F that may be very small and not within a reasonable bound of

F , no matter how cleverly we choose fi1 , . . . , fiM . This observation and the desire

for flexibility and generality suggest a weighted approach that turns out to allow for

many interesting results treated in this dissertation. Perhaps most importantly, the

notion of sparsifier coinincides with notions previously defined in the literature, e. g.

with cut sparsifiers when specialising to graph cuts.

Guided by these observations, we call a vector w = (w1, . . . , wN) ∈ RN an ε-sparsifier

for F if the inequality

(1− ε)F (S) ≤ F ′(S) ≤ (1 + ε)F (S) (2.2)

holds for all S ∈ D, where F ′(S) :=
∑N

i=1 wifi(S). The size of w

size(w) := |{i ∈ {1, . . . , N}} | wi 6= 0}|

is the number of non-zero entries in w.

7

Chapter 3

The Core Algorithm

In this chapter, we describe the core of all sparsification algorithms – a randomised

sampling rountine initially described by Rafiey and Yoshida [RY22] for submodular

functions. We observe that it is largely independent of submodularity, leading to a

more general sparsification algorithm for decomposable functions. The part where

submodularity becomes relevant is carefully analysed in this chapter. Most of it

closely follows Section 3 of [RY22].

Contributions:

� Generalised sparsification algorithm and analysis beyond submodular functions,

fixing an invalid step in the analysis by Rafiey and Yoshida [RY22].

� Concentration bound: In addition to the correctness proof and bound on the

expected size of the resulting sparsifier, we establish a concentration bound

revealing that it is very unlikely to exceed 3/2-times the expected size.

� Peak contributions counterexample: Rafiey and Yoshida [RY22] claim that∑N
i=1 pi ≤ Bn for any function F = f1 + · · ·+ fN with submodular fi’s, where

B = max1≤i≤N |EX(B(fi))|. We disprove this claim by giving a counterexample,

rendering most size bounds in the paper invalid. For monotone fi’s, however,

we show that
∑N

i=1 pi ≤ Bn indeed holds.

We have to stress here that the core algorithm forms the fundamental building block

of our sparsification results presented in the succeeding parts of this work.

3.1 Sparsifying Any Decomposable Function

Consider a domain D, which is the power set D = 2E in the case of set functions.

Further suppose F : D → R≥0 is decomposable as F =
∑N

i=1 fi, where fi : D → R≥0

for each 1 ≤ i ≤ N . SinceD might be very large, we assume that each fi is represented

by an evaluation oracle that takes time O(EOi) to respond on a single element A ∈ D.

8

The algorithm we present here constructs an ε-sparsifier for any decomposable func-

tion F =
∑N

i=1 fi : D → R≥0 probabilistically. It crucially relies on sampling functions

with probabilities proportional to the ratios

pi = max
A∈D

F (A)6=0

fi(A)

F (A)
(3.1)

for each 1 ≤ i ≤ N . Computing and in many interesting cases even approximating

the pi’s is by far the hardest step on the way to constructing a sparsifier. Therefore,

major parts of this work revolve around the pi’s. For better recognition and more

intuitive understanding, we refer to them as peak contributions – since pi describes,

on a scale from 0 to 1, the maximum contribution of fi to F when an element A ∈ D
is chosen in favour of fi.

As suggested above, the algorithmic idea is to sample each function fi with a certain

probability κi that is proportional to pi. If fi is sampled, i. e., it is decided that fi shall

be part of the sparsifier, it is included in the sparsifier with weight 1/κi, making its

expected weight equal to E [wi] = κ ·1/κi = 1 – its weight in the initial decomposition.

The procedure with all technical details is outlined in Algorithm 1. We will prove

that it is correct and establish guarantees on size and running time in the following,

before turning to the special case of submodular functions.

Algorithm 1 The Core Sparsification Algorithm

Input: Function F = f1 + · · · + fN with fi : D → R≥0 given by evaluation oracles;
error tolerance parameters ε, δ ∈ (0, 1)

Output: Vector w ∈ RN such that
� P [w is an ε-sparsifier] ≥ 1− δ,
� E [size(w)] = O

(
log |D|+log 1

δ

ε2

∑N
i=1 pi

)
where pi = max A∈D

F (A)6=0

fi(A)
F (A)

,

� P
[
size(w) ≤ 3

2
E [size(w)]

]
≥ 1− 4ε2.

1: w ← (0, . . . , 0)

2: κ← 3 log
(

2|D|
δ

)
/ε2

3: for i = 1, . . . , N do
4: pi ← max A∈D

F (A)6=0

fi(A)
F (A)

. compute peak contribution (here: naively)

5: κi ← min{1, κpi} . cap at 1 as κi is a probability

6: wi ←

{
1/κi with probability κi

0 with probability 1− κi
. sample weight of fi

7: end for
8: return w

Theorem 3.1. Algorithm 1 outputs a vector w ∈ RN such that

9

(i) P [w is an ε-sparsifier] ≥ 1− δ,

(ii) E [size(w)] = O
(

log |D|+log 1
δ

ε2

∑N
i=1 pi

)
where pi = max A∈D

F (A)6=0

fi(A)
F (A)

,

(iii) P
[
size(w) ≤ 3

2
E [size(w)]

]
≥ 1− 4ε2.

Proof. We show part (i) first by showing that each A ∈ D satisfies

P [(1− ε)F (A) ≤ F ′(A) ≤ (1 + ε)F (A)] ≥ 1− δ

|D|
. (3.2)

An application of the union bound over all |D| elements1 of the domain then proves

the claim. Note that

E [F ′(A)] = E

[
N∑
i=1

wifi(A)

]
=

N∑
i=1

E [wi] fi(A) =
N∑
i=1

fi(A) = F (A) (3.3)

since E [wi] = κi ·1/κi+(1−κi) ·0 = 1. Therefore, the inequality indicating “success”

above is equivalent to (1 − ε)E [F ′(A)] ≤ F ′(A) ≤ (1 + ε)E [F ′(A)], i. e., that F ′(A)

lies within a factor of 1± ε of its expectation. The next step is to establish

P [|F ′(A)− E [F ′(A)]| ≥ ε · E [F ′(A)]] ≤ 2e−ε
2κ/3. (3.4)

This is essentially done by recognising that the terms wifi(A) can be regarded as

independent random variables with a bounded range [0, a] for some a ≤ F (A)/κ.

However, we cannot simply mimic the proof by Rafiey and Yoshida [RY22] here as it

includes an invalid step. They claim that max1≤i≤N wifi(A) = max1≤i≤N
fi(A)
κpi

, which

is not necessarily true when κi = 1 (remember that κi = min{1, κpi}). In this case,

wi = 1/κi = 1, so wifi(A) = fi(A), which exceeds fi(A)
κpi

for κpi > 1. This in fact

shows that their inequality goes in the wrong direction.

Fotunately, this issue can be circumvented by considering the indices i with κpi > 1

separately. Let I := {i ∈ {1, . . . , N} | κpi > 1} and Ī := {1, . . . , N} \ I. Moreover,

define Zi := wifi(A) for all 1 ≤ i ≤ N , Z :=
∑

i∈I Zi and Z̄ :=
∑

i∈Ī Zi. We have

F ′(A) =
N∑
i=1

Zi =
∑
i∈I

Zi +
∑
i∈Ī

Zi = Z + Z̄

1Over all elements A ∈ D such that F (A) 6= 0 to be precise. If F (A) = 0, we know that fi(A) = 0
for all 1 ≤ i ≤ N , so Eq. (3.3) and Eq. (3.4) trivially hold. We do not consider such sets A in our
analysis and encourage the reader to think of A ∈ D with F (A) > 0 for the rest of the analysis.

10

where the first part
∑

i∈I Zi =
∑

i∈I fi(A) is deterministic as we have wi = 1 with

probability κi = min{1, κpi} = 1 for each i ∈ I. Thus,

F ′(A)− E [F ′(A)] =
N∑
i=1

wifi(A)−
N∑
i=1

fi(A)

=
∑
i∈I

wifi(A) +
∑
i∈Ī

wifi(A)−
∑
i∈I

fi(A)−
∑
i∈Ī

fi(A)

= Z +
∑
i∈Ī

wifi(A)− Z −
∑
i∈Ī

fi(A)

=
∑
i∈Ī

wifi(A)−
∑
i∈Ī

fi(A)

=
∑
i∈Ī

Zi −
∑
i∈Ī

E [Zi]

= Z̄ − E
[
Z̄
]

by Eq. (3.3), the partitioning {1, . . . , N} = I ∪ Ī, definition of the Zi’s, Z and Z̄, and

linearity of expectation. We conclude that Eq. (3.4) is equivalent to

P
[∣∣Z̄ − E

[
Z̄
]∣∣ ≥ ε · E [F ′(A)]

]
≤ 2e−ε

2κ/3. (3.5)

Since fi(A) ≥ 0 for all 1 ≤ i ≤ N , observe that

E
[
Z̄
]

=
∑
i∈Ī

fi(A) ≤
∑
i∈Ī

fi(A) +
∑
i∈I

fi(A) =
N∑
i=1

fi(A) = F (A) = E [F ′(A)] , (3.6)

where the last step is by Eq. (3.3). We now bound P
[∣∣Z̄ − E

[
Z̄
]∣∣ ≥ ε · E [F ′(A)]

]
by

an application of the Chernoff-Hoeffding bound [MR95] in the version of Theorem 2.2

in [RY22]. A check of the preconditions reveals that the Zi’s are independent random

variables (since the wi’s are sampled independently). Letting a := maxi∈Ī Zi, the Zi’s

with i ∈ Ī all have range [0, a]. Choosing µ := E [F ′(A)] ≥ E
[
Z̄
]
, we conclude

P
[∣∣Z̄ − E

[
Z̄
]∣∣ ≥ εµ

]
≤ 2e−

ε2µ
3a

⇐⇒ P
[∣∣Z̄ − E

[
Z̄
]∣∣ ≥ ε · E [F ′(A)]

]
≤ 2e−

ε2F (A)
3a .

(3.7)

This is very close to Eq. (3.5). Indeed, the last we need is an upper bound on a. To

accomplish this, note that

Zi = wifi(A) =
fi(A)

κpi
≤ fi(A)

κmaxS⊆E
fi(S)
F (S)

≤ fi(A)

κfi(A)
F (A)

=
F (A)

κ

11

for all i ∈ Ī. Thus, maximising over all i ∈ Ī reveals a = maxi∈Ī Zi ≤ F (A)/κ.

Substituting this into Eq. (3.7) yields Eq. (3.5). The RHS 2e−ε
2κ/3 becomes ≤ δ

|D|

when choosing κ = 3 log
(

2|D|
δ

)
/ε2 as in Algorithm 1 above, proving Eq. (3.2).

Part (ii) is a simple computation. The events {wi 6= 0} occur with probability κi, so

E [size(w)] = E

[
N∑
i=1

[wi 6= 0]

]
=

N∑
i=1

P [wi 6= 0] =
N∑
i=1

κi ≤
N∑
i=1

κpi = κ

N∑
i=1

pi,

where κ = 3 log
(

2|D|
δ

)
/ε2 = O

(
log |D|+log 1

δ

ε2

)
by the choice in Algorithm 1. Hence the

overall bound E [size(w)] = O
(

log |D|+log 1
δ

ε2

∑N
i=1 pi

)
.

Part (iii) is shown as follows. Let [wi 6= 0] be an indicator random variable for the

event {wi 6= 0}, i. e., [wi 6= 0] = 1 if wi 6= 0 and [wi 6= 0] = 0 if wi = 0. The variance

of a sum of independent random variables is the sum of their variances. Thus,

Var [size(w)] = Var

[
N∑
i=1

[wi 6= 0]

]
=

N∑
i=1

Var [[wi 6= 0]]

where Var [[wi 6= 0]] = E [[wi 6= 0]2] − E [[wi 6= 0]]2 = κi − κ2
i for each 1 ≤ i ≤ N . It

follows that Var [size(w)] =
∑N

i=1 (κi − κ2
i) ≤

∑N
i=1 κi = E [size(w)].

Thus, by Chebyshev’s inequality,

P

[
|size(w)− E [size(w)]| ≥ 1

2
E [size(w)]

]
≤ Var [size(w)](

1
2
E [size(w)]

)2 ≤
4

E [size(w)]
,

which is ≤ 4ε2 because E [size(w)] ≥ 1/ε2: If κi = 1 for some i (i. e. I 6= ∅), we

know that E [size(w)] =
∑N

i=1 κi ≥ 1 ≥ 1/ε2 (recall ε ∈ (0, 1)). If κi < 1 for all i (i. e.

I = ∅), we have E [size(w)] =
∑N

i=1 κi = κ
∑N

i=1 pi
(?)

≥ κ ≥ 1/ε2, where (?) is justified

by the following bound.

Claim: We always have
∑N

i=1 pi ≥ 1.

Fix an arbitrary element A∗ ∈ D with F (A) 6= 0. Then

N∑
i=1

pi =
N∑
i=1

max
A∈D

F (A) 6=0

fi(A)

F (A)
≥

N∑
i=1

fi(A
∗)

F (A∗)
=

1

F (A∗)

N∑
i=1

fi(A
∗) =

1

F (A∗)
· F (A∗) = 1.

Noting P
[
size(w) ≥ 3

2
E [size(w)]

]
≤ P

[
|size(w)− E [size(w)] | ≥ 1

2
E [size(w)]

]
≤ 4ε2

(as the former implies the latter) completes the proof.

12

Remark 3.2. Algorithm 1 can be invoked with δ = O(1/nc) so that it yields an ε-

sparsifier with high probability. This only influences the running time by a constant

factor c because of the dependence on log 1
δ
.

Remark 3.3. If the size of the sparsifier is of primary interest, running Algorithm 1 a

couple of times and taking the smallest vector w (w. r. t. size(w)) leads to a procedure

that, for any fixed ε > 0, returns a sparsifier of size O
(

log |D|+log 1
δ

ε2

∑N
i=1 pi

)
after a

logarithmic number of iterations. This is a consequence of part (iii). Notice that

it might be necessary to choose δ appropriately to also guarantee that the solution

indeed is an ε-sparsifier with high probability.

Corollary 3.4. In the setting of Algorithm 1, let p̂1, . . . , p̂N ∈ R≥0 satisfy p̂i ≥ pi for

all 1 ≤ i ≤ N . If Algorithm 1 is executed with the p̂i’s instead of pi = max A∈D
F (A)6=0

fi(A)
F (A)

in line 6, it returns a vector w ∈ RN such that

(i) P [w is an ε-sparsifier] ≥ 1− δ,

(ii) E [size(w)] = O
(

log |D|+log 1
δ

ε2

∑N
i=1 p̂i

)
,

(iii) P
[
size(w) ≤ 3

2
E [size(w)]

]
≥ 1− 4ε2.

Proof. All steps in the proof of Theorem 3.1 can be mimicked. For part (i), the magic

happens when estimating the quantity a, where

fi(A)

κ ·maxS∈D
fi(S)
F (S)

≤ fi(A)

κ · fi(A)
F (A)

=
F (A)

κ

is established for all i ∈ Ī. Since p̂i ≥ pi for each i, we have

wifi(A) =
fi(A)

κ · p̂i
≤ fi(A)

κ · pi
,

for each i with κp̂i ≤ 1, hence the same bound a ≤ F (A)/κ follows. The indices i

with κp̂i < 1 can be handled without any modifications. Part (ii) is exactly the same.

Part (iii) is also largely the same, except for the claim
∑N

i=1 pi ≥ 1 that needs to be

checked for the p̂i’s. However, this is trivial, as
∑N

i=1 p̂i ≥
∑N

i=1 pi ≥ 1.

At a first glance, this result may seem amazing – it implies that any constant-factor

approximation of the pi’s will do the job, leading to the same asymptotic bounds.

However, in the general setting of functions f1, . . . , fN : D → R≥0, there is no way

of obtaining this much faster than the exact pi’s. Even in the case where all fi’s are

submodular, the pi’s are hard to approximate. It is a major part of this dissertation to

13

investigate classes of submodular functions that do admit an efficient approximation

of the peak contributions.

Remark 3.5 (Trivial Execution). In general, the best upper bound we know on the

peak contributions is pi ≤ 1. Thus, Corollary 3.4 tells us that it is correct to invoke

Algorithm 1 with p̂i = 1 for all 1 ≤ i ≤ N . Indeed, in Section 3.2 we will see an

example where p̂i = 1 for every 1 ≤ i ≤ N . Since κ > 1 for ε ∈ (0, 1), we then have

κi = min{1, κpi} = 1. This results in the initial decomposition, i. e., Algorithm 1

essentially computes nothing – a sparsifier is not for free!

There are various ways to implement Algorithm 1, leading to different running time

bounds. In the most general scenario where no further assumptions are made, two

models seem reasonable:

� Individual Oracles: An evaluation oracle for each fi with response time O(EOi).

� Individual Oracles + Sum Oracle: Each fi is given by an evaluation oracle with

response time O(EOi) and there is an additional evaluation oracle for F with

response time O(EOΣ).

Observe how the second model captures the first: If we have no additional information,

we can assume EOΣ =
∑N

i=1O(EOi) since F (A) can be computed as
∑N

i=1 fi(A) after

obtaining fi(A) for each 1 ≤ i ≤ N from the respective oracle.

The main work to be done for Algorithm 1 to successfully construct a (small) sparsifier

is the computation or approximation of the peak contributions. A large part of this

dissertation is devoted to this problem for various special cases and under different

assumptions. In the most general setting investigated in this chapter, we are required

to compute pi by iterating through all A ∈ D, which takes time at least Ω(|D|).

The running time of a naive implementation is in O
(
N |D|

∑N
i=1 EOi

)
.

3.2 The Submodular Case

We introduced the core algorithm as a general tool for the sparsification of decompos-

able functions, extending far beyond submodular functions. However, if the functions

involved are submodular, Rafiey and Yoshida [RY22] prove a more precise size bound

by bounding the sum
∑N

i=1 pi of the peak contributions. Unfortunately, this proof

seems wrong and we will provide a counterexample. The good news is that it turns

out to be correct if monotonicity is given – an important special case that is shown

14

computationally tractable by an O(
√
n)-approximation of the peak contributions us-

ing the ellipsoid method [RY22; Bai+16]. Together with the bound
∑N

i=1 pi ≤ Bn

(where B is a quantity described later that is independent of N) we establish here,

Theorem 3.1 part (ii) simplifies to E [size(w)] = O
(
B
n2+n log 1

δ

ε2

)
if all fi’s are mono-

tone, which is O
(
Bn2

ε2

)
for fixed δ. This section takes a deeper look into the structure

of submodular functions, mainly involving extreme points of base polyhedra.

We begin by citing a result that characterises the extreme points of the base polyhe-

dron of a submodular function.

Theorem 3.6 (Extreme Point Theorem [Fuj91]). Let f : 2E → R be submodular. A

point y ∈ B(f) is an extreme point of B(f) iff for a maximal chain (w. r. t. inclusion)

C : ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E

of 2E we have yei = f(Si)− f(Si−1) for i = 1, . . . , n, where {ei} = Si \ Si−1.

For convenience, we introduce the notation EX(P) to denote the set of extreme points

of a polyhedron P . In particular, EX(B(f)) is the set of extreme points of the base

polyhedron of a submodular function f .

Corollary 3.7. Let f : 2E → R be submodular and monotone. Then EX(B(f)) ⊆ RE≥0,

i. e., any extreme point of the base polyhedron has only non-negative coordinates.

Proof. Suppose y ∈ EX(B(f)) is an extreme point of the base polyhedron. By

Theorem 3.6, there is a maximal chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E such that

yei = f(Si)− f(Si−1) for 1 ≤ i ≤ n, where {ei} = Si \ Si−1. By monotonicity,

yei = f(Si)− f(Si−1) = f(Si−1 ∪ {ei})− f(Si−1) ≥ f(Si−1)− f(Si−1) = 0

for each 1 ≤ i ≤ n. Since the chain is maximal, each element e ∈ E occurs as some

ei, implying ye ≥ 0 for all e ∈ E.

The next statement expresses the values f(A) of a submodular function in terms of

a maximisation over the base polyhedron.

Lemma 3.8. Let f : 2E → R be normalised submodular. Then

f(A) = max
y∈EX(B(f))

〈y, 1A〉

for all A ⊆ E.

15

Proof. The inequality maxy∈EX(B(f)) 〈y, 1A〉 ≤ f(A) is immediate since any y ∈ B(f)

satisfies y(S) ≤ f(S) for all S ⊆ E, including S = A. Hence

〈y, 1A〉 =
∑
e∈E

ye · 1A(e) =
∑
e∈A

ye = y(A) ≤ f(A).

To see that the value f(A) is actually attained, we construct a suitable extreme

point using Theorem 3.6. Suppose A = {e1, . . . , ek}. Order the remaining elements

arbitrarily, so E \ A = {ek+1, . . . , en}. Now define a maximal chain

C : ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E

by letting Si := {e1, . . . , ei} for 0 ≤ i ≤ n. Next, we set

yei := f(Si)− f(Si−1)

for 1 ≤ i ≤ n, which defines a vector y ∈ RE that – by construction – happens to be

an extreme point of B(f) by Theorem 3.6. Moreover, it satisfies

y(A) =
∑
e∈A

ye =
k∑
i=1

yei =
k∑
i=1

(f(Si)− f(Si−1)) = f(Sk)− f(∅) = f(Sk) = f(A)

as f is normalised. Thus, y witnesses that maxy∈EX(B(f)) 〈y, 1A〉 ≥ f(A).

Now we have all tools required to establish an upper bound on
∑N

i=1 pi, making the

size bound in Theorem 3.1 part (ii) simpler and more expressive. However, we first

disprove the bound
∑N

i=1 pi ≤ Bn claimed by Rafiey and Yoshida (c. f. Claim 3.3

in [RY22], proof in the appendix) by counterexample. Afterwards, we show that the

bound holds if all constituent functions are monotone.

The counterexample is inspired by Cohen et al. [Coh+17], who use it to establish a

lower bound on the size of a cut sparsifier. This is exactly what we need to disprove∑N
i=1 pi ≤ Bn: The ability to isolate edges in order to have peak contributions of 1.

Consider the directed complete bipartite graph G = (V,E) with bipartition V = L∪R
where L = {u1, . . . , u5}, R = {v1, . . . , v5} and E = L×R as depicted in Fig. 3.1. For

each edge e = (u, v) ∈ E, we define a cut function

fe : 2V → R, S 7→

{
1 if u ∈ S and v /∈ S,
0 otherwise.

It is well-known (and not hard to see) that the fe’s are submodular. In fact, we will

later prove this in the more general setting of r-uniform hypergraphs, see Fact 4.16.

16

u1

u2

u3

u4

u5

v1

v2

v3

v4

v5

Figure 3.1: Graph G where each edge can be isolated by a cut

The sum F :=
∑

e∈E fe is known as the (directed) cut function of G, since F (S)

is the number of edges cut connecting a vertex in S to a vertex outside S. Let

pe = maxS⊆V
fe(S)
F (S)

denote the peak contributions of the fe’s.

We will now establish how this example violates
∑

e∈E pe ≤ Bn. First,

B = max
e∈E
|EX(B(fe))| = 2

as each base polyhedron B(fi) has two extreme points. An easy way to see this goes

by Theorem 3.6. For any maximal chain ∅ = V0 ⊂ V1 ⊂ · · · ⊂ Vn = V , we have

fe(Vi+1)− fe(Vi) =

1 if Vi+1 \ Vi = {u} and v /∈ Vi,
−1 if Vi+1 \ Vi = {v} and u ∈ Vi,
0 otherwise.

Thus, the only extreme points are y and y′, where ye = 0 for all e ∈ E, and y′u = 1,

y′v = −1, y′e = 0 for all e ∈ E \ {u, v}. Since G has 10 vertices and the vertex set

V = L ∪ R is the ground set, Claim 3.3 in [RY22] asserts that
∑

e∈E pe ≤ Bn = 20.

By showing pe = 1 for each e ∈ E, we establish∑
e∈E

pe = |E| = |L| · |R| = 5 · 5 = 25 > 20,

contradicting the assertion. Fix an edge e = {u, v}. Letting S := {u}∪ (R \ {v}), we

get fe(S) = 1 and fe′(S) = 0 for each edge e′ 6= e. The latter is because S either

� contains the right endpoint of e′ or

17

� does not contain the left endpoint of e′,

both cases leading to fe′(S) = 0 by definition of fe′ . Thus,

pe = max
A⊆V

fe(A)

F (A)
≥ fe(S)

F (S)
=

fe(S)

fe(S) +
∑

e′ 6=e fe′(S)
=

1

1 + 0
= 1,

implying pe = 1, as desired.

The following statement appears as Claim 3.3 in [RY22] with a very similar proof.

However, this proof only works if the coordinates of the extreme points of the base

polyhedra are non-negative. We give greater detail and explanations of the individual

steps and point out where exactly the non-negativity is needed, hence where the proof

in [RY22] fails. Corollary 3.7 ensures non-negativity when all fi’s are monotone. For

the following lemma, we specialise to D = 2E for some ground set E of size n.

Lemma 3.9. Let normalised, monotone submodular functions f1, . . . , fN : 2E → R be

given with peak contributions defined w. r. t. F = f1 + · · ·+ fN . Then
∑N

i=1 pi ≤ Bn,

where B = max1≤i≤N |EX(B(fi))| denotes the maximum number of extreme points of

the base polyhedra of the fi’s.

Proof. The key ingredient is Lemma 3.8. It gives us

N∑
i=1

pi =
N∑
i=1

max
A⊆E

fi(A)

F (A)
=

N∑
i=1

max
A⊆E

maxy∈EX(B(fi))〈y, 1A〉∑N
j=1 maxy∈EX(B(fj))〈y, 1A〉

(3.8)

using the definition of the pi’s. Since all fi’s are monotone, we know that y ∈ RE≥0 for

all y ∈ B(fi) for every 1 ≤ i ≤ N , so all terms 〈y, 1A〉 involved in the above equation

are non-negative. For non-negative numbers x1, . . . , xn ∈ R≥0, we always have

x1 + · · ·+ xn
n

(1)

≤ max
1≤i≤n

xi
(2)

≤ x1 + · · ·+ xn, (3.9)

i. e., the maximum lies between the average and the sum. This is a trick used in

the proof by Rafiey and Yoshida [RY22] that does not hold for general submodular

functions. Non-negativity plays an important role in a couple of steps in the remainder

of this proof. Applying (1) to the denominator and (2) to the numerator in Eq. (3.8),

we obtain

maxy∈EX(B(fi))〈y, 1A〉∑N
j=1 maxy∈EX(B(fj))〈y, 1A〉

≤
∑

y∈EX(B(fi))
〈y, 1A〉∑N

j=1
1

|EX(B(fj))|
∑

y∈EX(B(fj))
〈y, 1A〉

(3.10)

=

∑
e∈A
∑

y∈EX(B(fi))
ye∑

e∈A
∑N

j=1
1

|EX(B(fj))|
∑

y∈EX(B(fj))
ye
, (3.11)

18

where the equality step is by 〈y, 1A〉 =
∑

e∈A ye. Next, note that
∑

y∈EX(B(fi))
ye ≥ 0

and
∑N

j=1
1

|EX(B(fj))|
∑

y∈EX(B(fj))
ye ≥ 0 for all e ∈ A because ye ≥ 0 for all y ∈ B(fi)

and e ∈ E, so we can employ the inequality

x1 + · · ·+ xn
q1 + · · ·+ qn

≤ max
1≤i≤n

xi
qi

(3.12)

that applies to all non-negative numbers x1, . . . , xn, q1, . . . , qn ∈ R≥0, giving∑
e∈A
∑

y∈EX(B(fi))
ye∑

e∈A
∑N

j=1
1

|EX(B(fj))|
∑

y∈EX(B(fj))
ye
≤ max

e∈A

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
. (3.13)

Combining this with Eq. (3.10) and Eq. (3.11), we can extend Eq. (3.8) to

N∑
i=1

pi ≤
N∑
i=1

max
A⊆E

max
e∈A

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
(3.14)

=
N∑
i=1

max
e∈E

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
(3.15)

≤
N∑
i=1

∑
e∈E

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
, (3.16)

where Eq. (3.15) follows because maximising over all A ⊆ E and e ∈ A is the same as

maximising over all e ∈ E here, since the RHS only depends on e. Eq. (3.16) follows

from Eq. (3.9) again – with all quotients being non-negative because the numerators

and denominators are. A few algebraic steps get us to the claim now. Swapping∑N
i=1 . . . with

∑
e∈E . . . and using |EX(B(fj))| ≤ max1≤`≤n |EX(B(f`))| = B, we get

N∑
i=1

∑
e∈E

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
(3.17)

=
∑
e∈E

N∑
i=1

∑
y∈EX(B(fi))

ye∑N
j=1

1
|EX(B(fj))|

∑
y∈EX(B(fj))

ye
(3.18)

≤
∑
e∈E

N∑
i=1

∑
y∈EX(B(fi))

ye
1
B

∑N
j=1

∑
y∈EX(B(fj))

ye
(3.19)

=
∑
e∈E

B = Bn, (3.20)

leading to the claimed
∑N

i=1 pi ≤ Bn via Eq. (3.14), Eq. (3.15) and Eq. (3.16).

What makes this lemma interesting is that the bound
∑N

i=1 pi ≤ Bn does not depend

on N . In cases where sparsification is interesting, we usually have N � n.

19

Remark 3.10. If all fi’s are monotone, we can at least say the following, which

Rafiey and Yoshida [RY22] already observed. There is an algorithm based on the

ellipsoid method that, given two monotone submodular functions f, g : 2E → R≥0,

approximates maxA⊆E
f(A)
g(A)

up to a factor of O(
√
n log n) in polynomial time (see

Theorem 3.4 in [RY22] and [Bai+16]). It can be used to obtain approximations

p̂1, . . . , p̂N such that pi ≤ p̂i ≤ O(
√
n log n)pi for 1 ≤ i ≤ N . By Corollary 3.4,

we can execute Algorithm 1 with the p̂i’s and obtain an ε-sparsifier of expected size

O
(
n+log 1

δ

ε2

∑N
i=1 p̂i

)
in polynomial time. Since the fi’s are monotone, Lemma 3.9

applies and the bound becomes O
(
Bn2.5 logn

ε2

)
for fixed δ.

20

Chapter 4

Improved Sparsifier Constructions

This chapter treats efficient constructions of small sparsifiers in three scenarios.

Section 4.1 concerns decomposable submodular functions where the constituents are

of low curvature. In Section 4.2, we investigate a similar setting where the con-

stituents are of bounded arity. Lastly, we introduce a relaxed notion of sparsification

in Section 4.3 and show that such relaxed sparsifiers can be efficiently constructed

for any submodular function. All results are obtained by finding an efficient way

to compute or approximate the peak contributions, which are then fed into the core

algorithm for a sparsifier.

Contributions:

� Sparsifier of expected size O
(

n+log 1
δ

(1−ecF−1)ε2
∑N

i=1 pi

)
in polynomial time if all fi’s

have low curvature, which becomes O
(

Bn2

(1−ecF−1)ε2

)
for fixed δ if all fi’s are

monotone. In this case, a sparsifier of even smaller size can be constructed in

the knapsack-constrained setting where F (S) ≤ B for some budget B ≥ 0.

� As part of the knapsack-constraint sparsification, we show that Algorithm 2 in

[Per+21] is flawed and disprove the analysis by providing a counterexample. We

propose a way to bypass this issue for most instances of knapsack-constrained

ratio maximisation, making the aforementioned sparsifier construction in the

knapsack-constrained setting possible for most instances.

� Sparsifier of expected size O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
in polynomial time if all fi’s have

bounded arity and their effective supports are known. The bound becomes

O
(
Bn2

ε2

)
for fixed δ if all fi’s are monotone, matching a lower bound known for

submodular functions, see Remark 1.3 in [RY22] and Bai et al. [Bai+16].

� Sparsifier of expected size O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
under a relaxed notion of sparsi-

fication that in a way converges to the notion we have used so far as n→∞.

21

4.1 Low Curvature

For a monotone, non-negative submodular function f : 2E → R≥0, we define its

curvature (sometimes called total curvature [Von10]) as

cf := 1−min
S⊆E

min
e∈E\S

∆e (f | S)

∆e (f | ∅)

= 1−min
S⊆E

min
e∈E\S

f(S ∪ {e})− f(S)

f({e})− f(∅)
.

Notice how the quotient compares the marginal gains of adding an element e to the

sets S and ∅, respectively. The curvature always satisfies 0 ≤ cf ≤ 1, with the upper

bound being justified by the diminishing return property ∆e (f | S) ≤ ∆e (f | ∅).

Also note that cf = 0 precisely in the case where f is modular – cf can be seen as a

measure of how close f is to a modular function.

Remark 4.1. One may raise concerns about division by zero if f({e}) = 0. Although

this is indeed possible, such elements behave trivially: Submodularity of f implies

f(S ∪ {e}) − f(S) ≤ f({e}) − f(∅) = 0, hence f(S ∪ {e}) ≤ f(S) for any set S.

By monotonocity, it also holds f(S ∪ {e}) ≥ f(S), hence f(S ∪ {e}) = f(S). Thus,

whenever we add element e, the value of f is not influenced. In other words, we might

restrict ourselves to the subset E>0 = {e ∈ E | f({e}) > 0} ⊆ E.

The curvature cf can take values in the interval [0, 1]. We say that f has low curvature

if cf < 1. This is sometimes referred to as bounded curvature because the quotients

of marginal gains are bounded away from 1. It turns out that low curvature is a

powerful property that allows us to efficiently approximate the peak contributions up

to a constant factor, leading to an efficient execution of the core algorithm.

4.1.1 Approximate Ψ-Maximisation

Given non-negative, monotone submodular functions f and g, Perrault et al. [Per+21]

show that maxS⊆E f(S)/g(S) can be approximated by a simple greedy algorithm

within a constant factor if cg < 1. In fact, this greedy algorithm works not only for

the quotient f/g but for any quasiconvex operation Ψ(·, ·) that is non-decreasing in

the first argument.

We note that a function f : R2 → R is quasiconvex if

f (αx+ (1− α)x′, αy + (1− α)y′) ≤ max{f(x, y), f(x′, y′)}

22

for all x, y, x′, y′ ∈ R and α ∈ [0, 1]. Since convexity requires the same inequality

with α · f(x, y) + (1 − α) · f(x′, y′) (a weighted average!) on the RHS, we see that

quasiconvexity is a weaker notion (as the weighted average is at most the maximum).

Why is it useful to be able to approximate maxS⊆E Ψ(f(S), g(S)) instead of just

the quotient? Apart from challenge of seeking the most general result, quasiconvex

2-variables functions that are non-decreasing in the first argument cover interesting

choices such as the difference function Ψ = f − g or Ψ = f −√g.

We refer to the problem of maximising Ψ(f(S), g(S)) over S ⊆ E for a quasiconvex

function Ψ : R2 → R that is non-decreasing in its first argument as Ψ-maximisation.

It is instructive to sketch the greedy algorithm by Perrault et al. [Per+21] here. The

idea is to start with the empty set S0 = ∅ and successively build a (maximal) chain

∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E by adding the elements of E in an order chosen by a

greedy policy. At any step k, this policy chooses an element ek ∈ E \Sk−1 not chosen

before such that the quotient of marginal gains on f and g w. r. t. Sk−1 is maximal.

After building the chain, the best set Sk w. r. t. the function S 7→ Ψ(f(S), g(S)) is

selected as output. See Algorithm 2 for a formal description of this algorithm.

Algorithm 2 Approximate Ψ-maximisation in the submodular case

Input: Monotone submodular functions f, g : 2E → R≥0; quasiconvex 2-variables
function Ψ that is non-decreasing in the first argument

Output: S ⊆ E with Ψ((1− ecg−1) f(S∗), g(S∗)) ≤ Ψ(f(S), g(S)) for any S∗ ⊆ E
1: S0 ← ∅
2: for k = 1 to n do
3: ek ← arg maxe∈E\Sk−1

∆e(f |Sk−1)

∆e(g|Sk−1)

4: Sk ← Sk−1 ∪ {ek}
5: end for
6: S ← arg max0≤k≤n Ψ(f(Sk), g(Sk))
7: return S

The following guarantee is known.

Theorem 4.2 ([Per+21]). Let f, g : 2E → R≥0 be non-negative, monotone submodular

functions. Let Ψ be a quasiconvex 2-variables function that is non-decreasing in the

first argument. Then, for any S∗ ⊆ E, the output S of Algorithm 2 satisfies

Ψ(
(
1− ecg−1

)
f(S∗), g(S∗)) ≤ Ψ(f(S), g(S)).

23

We note that 0 ≤ 1 − ecg−1 ≤ 1 − 1/e, where 1 − ecg−1 → 0 as cg → 1, i. e., the

approximation factor tends to 0 as g approaches the end of the low curvature regime.

On the other side, the best case is a (1− 1/e)-approximation if g is modular.

Two prominent choices for such a function Ψ are the quotient Ψ(f, g) = f/g and the

difference Ψ(f, g) = f − g, both defined pointwise. We are particularly interested in

the quotient, for which Theorem 4.2 guarantees

(
1− ecg−1

) f(S∗)

g(S∗)
=

(1− ecg−1) f(S∗)

g(S∗)
≤ f(S)

g(S)
,

hence S gives an (1 − ecg−1)-approximation of the maximum quotient (by choosing

S∗ = arg maxA⊆E f(A)/g(A)). Before we apply Algorithm 2 to construct sparsifiers,

we turn our focus onto the second algorithm Perrault et al. [Per+21] describe in their

paper. We reveal a flaw and suggest a new algorithm that fixes the issue for most

instances. We apply it in Section 4.1.3 to sparsification under knapsack constraints.

4.1.2 Knapsack-Constrained Ψ-Maximisation

The algorithm and its analysis by Perrault et al. (Algorithm 2 in [Per+21]) are flawed.

This section consists of two parts:

(A) We present a counterexample revealing an invalid step in the analysis and giving

evidence that the algorithm might fail to achieve the claimed approximation

guarantee. Perrault confirmed1 that their algorithm is indeed flawed.

(B) PTAS-style (1− ε) (1− ecg−1)-approximation running in polynomial time for

fixed ε and cg for knapsack-constrained ratio maximisation that achieves the

approximation guarantee under an additional assumption.

Remark 4.3. Part (B) can be considered a partial fix of the flawed algorithm by

Perrault et al. [Per+21]. Personal communications2 make it seem challenging to fix

the approach. Our algorithm in part (B) stands in the light of these difficulties and is

the only algorithm for ratio maximisation under knapsack constraints that we know.

(A) Let E = {e1, . . . , e5} be a ground set of five elements. We define corresponding

“base values” ef1 , . . . , e
f
5 and eg1, . . . , e

g
5 as in Table 4.1. The base values govern the

1Personal communications on August 25, 2022 and August 28, 2022
2Pierre Perrault on August 25, 2022 and August 28, 2022; Julien Codsi on August 29, 2022

24

definitions of submodular functions f, g : 2E → R≥0 as follows:

f(S) :=
∑
e∈S

f(ef)

g(S) := −|S|
2

30
+
∑
e∈S

g(eg)
(4.1)

Next, we demonstrate that f and g fulfill all assumptions made by Perrault et al. in

their paper [Per+21].

e1 e2 e3 e4 e5

efi 2 2 2 2 10

egi 1 1 1 1 41

Table 4.1: Definition of the counterexample’s base values

Fact 4.4. The functions f and g defined in Eq. (4.1) are both submodular and mono-

tone. Moreover, the curvature of g is cg = 3/10 < 1.

Proof. The submodularity of f is immediate as it is a sum of weights efi of elements

ei in S, i. e., f is modular. For g, we check the diminishing returns property. Let

T ⊇ S and e /∈ T . Then

∆e (g | T) = g(T ∪ {e})− g(T)

=

(
−|T ∪ {e}|

2

30
+
∑
h∈T

g(hg) + g(eg)

)
−

(
−|T |

2

30
+
∑
h∈T

g(hg)

)

=
|T |2

30
− (|T |+ 1)2

30
+ g(eg)

and ∆e (g | S) ≤ |S|2
30
− (|S|+1)2

30
+g(eg) by the same steps. By S ⊆ T , we have |S| ≤ |T |,

hence |T |
2

30
− (|T |+1)2

30
≤ |S|2

30
− (|S|+1)2

30
, implying ∆e (g | T) ≤ ∆e (g | S).

For monotonicity, we see that efi ≥ 0 for i = 1, . . . , 5, hence f is monotone as the sum

of efi ’s. For g, we have already derived an expression for ∆e (g | T) with T ⊆ E and

e /∈ T above. Using it, the fact that egi ≥ 1 for i = 1, . . . , 5 and |T | ≤ 4, we conclude

∆e (g | T) =
|T |2

30
− (|T |+ 1)2

30
+ g(eg) ≥ |T |

2

30
− (|T |+ 1)2

30
+ 1 ≥ 42

30
− 52

30
+ 1 ≥ 0,

so g is monotone. Lastly, the curvature of g is by definition

cg = 1−min
T⊆E

min
e∈E\T

∆e (g | T)

∆e (g | ∅)
= 1−min

T⊆E
min
e∈E\T

g(eg)− 2|T |+1
30

g(eg)− 1
30

25

after simplifying, in particular |T ∪ {e}|2 − |T |2 = (|T |+ 1)2 − |T |2 = 2|T | + 1. One

may now work out cg by substituting in all 25 = 32 subsets T and all candidates

e /∈ T , amounting to more ∼ 100 expressions to evaluate. However, the bound

g(eg)− 2|T |+1
30

g(eg)− 1
30

≥
g(eg)− 9

30

g(eg)− 1
30

≥
1− 9

30

1− 1
30

=
7

10

immediately reveals that cg ≤ 1 − 7/10 = 3/10. Moreover, in the above inequality

chain, equality is attained for T = {e2, e3, e4, e5} and e = e1, hence cg = 3/10.

Let’s work out the sets S2, S3, . . . the algorithm by Perrault et al. constructs for the

knapsack-constrained ratio maximisation instance given by f , g, Ψ = f/g and the

budget B = 100. It first computes

S2 = arg max
|S|≤3,g(S)≤B

Ψ (f(S), g(S)) ,

i. e. an optimal solution with at most three elements. It is not hard to see that exactly

the 3-element subsets of {e1, e2, e3, e4} are optimal, all giving an objective value of

f({e1, e2, e3})
g({e1, e2, e3})

=
2 + 2 + 2

1 + 1 + 1− 32

30

=
6

3− 9
30

=
20

9
.

Next, independent of S2, the algorithm computes S3 as the greedy-maximisation of f

under |S| ≤ 3. This is easily seen to be e5 plus two other arbitrary elements, say e1 and

e2, giving f({e1, e2, e5}) = 2+2+10 = 14 and g({e1, e2, e5}) = 1+1+41−32/30 > 42.

Finally, the algorithm enters its for-loop for k ≥ 4 and sets S4 = {e1, e2, e3, e5} as

well as S5 = {e1, e2, e3, e4, e5}.

Now turn the focus onto the analysis, see Appendix D in [Per+21]. Right in the

beginning, the assumption |S∗| > 3 is made, where S∗ is an optimal solution. This is

sound because the algorithm would output an optimal solution if |S∗| ≤ 3 (because

of S2). Our instance in fact corresponds to the |S∗| > 3 case, as {e1, e2, e3, e4} is the

unique optimal solution. In the next step, the wrong claim is made: According to

Perrault et al., there is an index ` ≥ 3 such that g(S`) ≤ g(S∗) ≤ g(S`+1). Since g is

monotone, this means g(S∗) ≥ g(S3) in particular. However,

g(S∗) = g({e1, e2, e3, e4}) = 1 + 1 + 1 + 1− 42

30
< 41− 12

30
= g({e5}) = g(S3),

rendering this step invalid. We note that this cannot even be fixed by scaling g(S∗) by

some constant, as the discrepancy between g(S∗) and g(S3) can be made arbitrarily

26

large. Later in the analysis, the facts that g(S∗) is squeezed between g(S`) and g(S`+1)

and that ` ≥ 3 are required in several steps.

In conclusion, the analysis is flawed and makes it at least questionable whether the

algorithm achieves the claimed approximation factor of 1 − ecg−1. Although this

is the case in our example (1 − ecg−1 is slightly more than 1/2, while S2 provides a

26/27-approximation), we leave disproving or verifying this for all instances to further

investigations.

(B) We solve the knapsack-constrained ratio maximisation problem by a PTAS-

style algorithm that combines the unconstrained Ψ-maximisation by Perrault et al.

[Per+21] with a partial enumeration wrapper and some combinatorial observations.

The overall algorithm and its analysis are quite different from the proposed but flawed

algorithm Perrault et al. provide. Refer to Algorithm 4 for a formal description of

the complete algorithm.

Theorem 4.5. Let f, g : 2E → R≥0 be monotone submodular functions with g of

low curvature. Further let B ≥ 0 be a non-negative budget and ε > 0. Algorithm 4

outputs a set S ⊆ E always satisfying g(S) ≤ B and also satisfying

(1− ε)
(
1− ecg−1

) f(S∗)

g(S∗)
≤ f(S)

g(S)

for any S∗ ⊆ E with g(S∗) ≤ B for which the following condition (?) holds true.

(?) For some constant3 0 ≤ c < 1, there does not exist any subset S∗+ ⊆ S∗ with

∆e (g | ∅) > B(1−c)
max{ 2+ε

ε
,5} for all e ∈ S∗+ and g(S∗+) > cB.

The running time is polynomial in n for fixed ε, cg and c.

Our proof strategy involves three steps. First, we introduce the notions of heavy

and light elements. We then proceed to showing that any feasible solution can only

contain a small number of heavy elements, allowing us to brute-force over the set

of heavy elements contained in an optimal solution. In this light, Lemma 4.6 is the

underlying reason why partial enumeration works on this problem. Next, we show the

rather technical Lemma 4.7 that allows us to reduce a solution S (satisfying certain

properties) to a solution SL ⊆ S that is almost as good but guaranteed to be found

by Algorithm 4. After proving both lemmas, we show that Algorithm 4 is correct if

all elements are light, which is captured by Theorem 4.8. This already proves the

3The running time is not polynomial as a function of c.

27

special case c = 0 of Theorem 4.5. We will then put everything together for a full

proof of Theorem 4.5.

Given the function g, budget B and a parameter L ≥ 1, we call an element e ∈ E
(g,B, L)-light if

∆e (g | ∅) ≤ B

L
.

Otherwise, e is (g,B, L)-heavy. The distinction between heavy and light elements

drives the partial enumeration step that brute-forces over all possible heavy elements

an optimal solution could contain.

Lemma 4.6. Any set S ⊆ E with g(S) ≤ B contains at most L/(1 − cg) many

(g,B, L)-heavy elements.

Proof. Fix a set S ⊆ E with g(S) ≤ B and let S+ ⊆ S denote the subset of (g,B, L)-

heavy elements in S. By definition, it holds

∆e (g | ∅) >
B

L

for all e ∈ S+. Label the elements of S+ as S+ = {e+
1 , . . . , e

+
k }. We then have

g(S) ≥ g(S+) ≥ g(S+)− g(∅) =
k∑
i=1

∆e+i

(
g | {e+

1 , . . . , e
+
i−1}

)
≥

k∑
i=1

(1− cg) ∆e+i
(g | ∅)

≥
k∑
i=1

(1− cg)B
L

=
(1− cg)B|S+|

L
.

Since we also have g(S) ≤ B, it follows that (1−cg)B|S+|
L

≤ B, hence |S+| ≤ L
1−cg .

Lemma 4.7. Suppose g(∅) ≤ λB for a constant 0 ≤ λ < 1 and L ≥ 5/(1− λ). Let

S ⊆ E− be a set of (g,B, L)-light elements satsifying
(
1− 1

L

)
B < g(S) ≤ B. Then

there exists a subset SL ⊆ S such that g(S) ≤
(
1− 1

L

)
B and(

1− 2

(1− λ)L− 1

)
f(S)

g(S)
≤ f(SL)

g(SL)
. (4.2)

Proof. The idea is partitioning the elements of S into k groups S = G1∪· · ·∪Gk such

that 1
L
B < g(Gi) − g(∅) < 2

L
B for each 1 ≤ i ≤ k. Such a partition is constructed

according to Algorithm 3. We establish the following properties:

28

(i) It holds 1
L
B ≤ g(Gi)− g(∅) < 2

L
B for each 1 ≤ i ≤ k.

(ii) We always have k ≥ 1
2

((1− λ)L− 1) groups.

Combining both properties will then allow us to prove the lemma.

Algorithm 3 Partitioning S into groups G1, . . . , Gk

1: procedure partition(S, B, L)
2: k ← 0
3: while G1 ∪ · · · ∪Gk 6= S do
4: k ← k + 1
5: Gk ← ∅
6: while g(Gk)− g(∅) < 1

L
B do

7: Select e ∈ S \ (G1 ∪ · · · ∪Gk) arbitrarily
8: Gk ← Gk ∪ {e}
9: end while

10: end while
11: return G1, . . . , Gk

12: end procedure

For (i), it is crucial to remember that all elements e ∈ S are (g,B, L)-light, so

∆e (g | ∅) ≤ 1
L
B for all e ∈ S. Since partition in Algorithm 3 stops adding elements

to Gk once g(Gk)−g(∅) ≥ 1
L
B, we trivially have the lower bound but also obtain the

upper bound by considering the last element e ∈ S that is added to Gk. It satisfies

g(Gk)− g(∅) = g((Gk \ {e}) ∪ {e})− g(Gk \ {e}) + g(Gk \ {e})− g(∅)

= ∆e (g | Gk \ {e}) + g(Gk \ {e})− g(∅)

≤ ∆e (g | ∅)︸ ︷︷ ︸
≤ 1
L
B

+ g(Gk \ {e})− g(∅)︸ ︷︷ ︸
< 1
L
B

<
2

L
B.

For (ii), we examine the “way” from g(∅) to g(S) and use (i) to bound the number of

groups necessary to get to g(S) from below. To this end, we express g(G1 ∪ · · · ∪Gk)

as a telescoping sum and use the submodularity of g to obtain an upper bound:

g(G1 ∪ · · · ∪Gk)− g(∅) =
k∑
i=1

g(G1 ∪ · · · ∪Gi)− g(G1 ∪ · · · ∪Gi−1)

≤
k∑
i=1

g(Gi)− g(∅) ≤
k∑
i=1

2

L
B =

2kB

L
.

29

The third step is by (i) and the second step follows from the submodularity of g

applied to G≤i−1 := G1 ∪ · · · ∪Gi−1 (we also set G≤i := G1 ∪ · · · ∪Gi) and Gi:

g(G≤i) + g(∅) = g(G≤i−1 ∪Gi) + g(G≤i−1 ∩Gi) ≥ g(G≤i−1) + g(Gi)

⇐⇒ g(G≤i)− g(G≤i−1) ≥ g(Gi)− g(∅)

Since g(S) = g(G1 ∪ · · · ∪Gk), we also have the lower bound

g(G1 ∪ · · · ∪Gk)− g(∅) = g(S)− g(∅) ≥
(

1− 1

L

)
B − λB =

(
1− 1

L
− λ
)
B

by the assumptions g(S) ≥
(
1− 1

L

)
and g(∅) ≤ λB. Putting upper bound and lower

bound together, we conclude that(
1− 1

L

)
B − λB ≤ 2kB

L
,

which implies (ii) after a few algebraic transformations.

We are now ready to show the existence of SL ⊆ S satisfying Eq. (4.2). Set

SL := arg max
S∈S

f(S)

g(S)
where S :=

 ⋃
i∈{1,...,k}\{j}

Gi | j ∈ {1, . . . , n}

 .

In words, we select SL among the candidates
⋃
i∈{1,...,k}\{j}Gi, i. e., uniting all groups

except for one and maximising over the group not included. There are two cases.

Case 1: ∆Gj (f | ∅) ≤ 1
k
f(S) for some group Gj.

In this case, SL =
⋃
i∈{1,...,k}\{j}Gi does the job. This is because

f(S) = f(G1 ∪ · · · ∪Gk) = ∆Gj

(
f |
⋃
i 6=j

Gi

)
+ f

(⋃
i 6=j

Gj

)

≤ ∆Gj (f | ∅) + f

(⋃
i 6=j

Gj

)

≤ 1

k
f(S) + f

(⋃
i 6=j

Gj

)
,

implying f(SL) ≥ f
(⋃

i 6=j Gj

)
≥
(
1− 1

k

)
f(S).

30

Case 2: ∆Gj (f | ∅) > 1
k
f(S) for all groups Gj.

For the sake of contradiction, assume f
(⋃

i 6=j Gj

)
<
(
1− 1

k

)
f(S) for all j. Then

f(S)− f(∅) = f(G1 ∪ · · · ∪Gk)− f(∅)

=
k∑
j=1

∆Gj

(
f |
⋃
i 6=j

Gj

)

=
k∑
j=1

f(G1 ∪ · · · ∪Gk)− f

(⋃
i 6=j

Gj

)

>
k∑
j=1

f(S)−
(

1− 1

k

)
f(S)

= f(S),

which is clearly a contradiction as f(S)− f(∅) ≤ f(S). Consequently, there must be

a group Gj such that f
(⋃

i 6=j Gj

)
≥
(
1− 1

k

)
f(S).

It remains to put things together. By monotonicity, we have g(SL) ≤ g(S) and thus

f(SL)

g(SL)
≥
(
1− 1

k

)
f(S)

g(S)
=

(
1− 1

k

)
f(S)

g(S)
,

proving the lemma as k ≥ 1
2

((1− λ)L− 1) by (ii).

Theorem 4.8 (Knapsack-Constrained Ratio Maximisation Lite). Let f, g : 2E → R≥0

be monotone submodular functions with g of low curvature. Let B ≥ 0 be a non-

negative budget, ε > 0 and 0 ≤ c < 1 such that g(∅) ≤ cB. Define L :=
max{ 2+ε

ε
,5}

1−c .

Further suppose all elements e ∈ E are (g,B, L)-light. max-ratio-light(E, f, g, B)

in Algorithm 4 outputs a set S ⊆ E such that g(S) ≤ B and

(1− ε)
(
1− ecg−1

) f(S∗)

g(S∗)
≤ f(S)

g(S)

for all S∗ ⊆ E with g(S∗) ≤ B.

Proof. Fix S∗ ⊆ E with g(S∗) ≤ B. Since all elements are (g,B, L)-light, we know

that max-ratio-light behaves as if there was no knapsack constraint as long as

g(S`) ≤
(
1− 1

L

)
B, as each element e` can add no more than 1

L
B to the value of

g. In this case, max-ratio-light coincides with Algorithm 2. Therefore, if we

have g(S∗) ≤
(
1− 1

L

)
B, we know that max-ratio-light will output an (1− ecg−1)-

approximation to S∗ by Theorem 4.2 as if there was no knapsack constraint involved.

31

Algorithm 4 Approximate Ratio Maximisation under Knapsack Constraints

Input: Monotone submodular functions f, g : 2E → R≥0 with g of low curvature;
budget B ≥ 0; error parameter ε > 0; 0 ≤ c < 1

Output: S ⊆ E such that g(S) ≤ B and (1− ε) (1− ecg−1) f(S∗)
g(S∗)

≤ f(S)
g(S)

for all

S∗ ⊆ E with g(S∗) ≤ B.
1: S ← ∅
2: L← max{ 2+ε

ε
,5}

1−c
3: E+ ← {e ∈ E | e is (g,B, L)-heavy}
4: E− ← {e ∈ E | e is (g,B, L)-light}
5: for all H ⊆ E+ with |H| ≤ L

1− cg
do

6: Define f̂ : 2E
− → R≥0, A 7→ f(A ∪H)

7: Define ĝ : 2E
− → R≥0, A 7→ g(A ∪H)

8: S− ←max-ratio-light(E−, f̂ , ĝ, B)

9: if f(S−∪H)
g(S−∪H)

> f(S)
g(S)

then

10: S ← S− ∪H
11: end if
12: end for
13: return S
14: procedure max-ratio-light(E, f , g, B)
15: S0 ← ∅
16: U ← E
17: for ` = 1 to n do
18: e` ← arg maxe∈U

∆e(f |S`−1)

∆e(g|S`−1)

19: if g(S`−1 ∪ {e`}) ≤ B then
20: S` ← S`−1 ∪ {e`}
21: else
22: S` ← S`−1

23: end if
24: U ← U \ {e`}
25: end for
26: return arg max0≤`≤n

f(S`)
g(S`)

27: end procedure

32

Let’s turn to the more interesting case g(S∗) >
(
1− 1

L

)
B. Since g(∅) ≤ cB, L ≥ 5

1−c

by definition and the fact that all elements in S∗ ⊆ E are (g,B, L)-light, we observe

that the requirements of Lemma 4.7 are satisfied with λ := c and S∗ (in the role of

S). As a consequence, we get the existence of SL ⊆ S with g(SL) ≤
(
1− 1

L

)
B and(

1− 2

(1− c)L− 1

)
f(S∗)

g(S∗)
≤ f(SL)

g(SL)
.

The factor on the LHS is

1− 2

(1− c)L− 1
≥ 1− 2

(1− c) 2+ε
ε(1−c) − 1

= 1− 2
2+ε
ε
− 1

= 1− ε,

hence (1 − ε)f(S∗)
g(S∗)

≥ f(SL)
g(SL)

. Now, we apply the same argument to SL as we have

applied in the g(S∗) ≤
(
1− 1

L

)
case above. max-ratio-light will behave exactly

the same as Algorithm 2 until g(S`) >
(
1− 1

L

)
B. Before this happens, however, an

(1− ecg−1)-approximation of SL has been found according to Theorem 4.2. Thus, the

output S of max-ratio-light is an (1− ecg−1)-approximation of SL, which in turn

is a (1− ε)-approximation of S∗. Thus, S is a (1− ε) (1− ecg−1)-approximation of

S∗, as desired.

Remark 4.9. If c = 0 in the statement of Theorem 4.5, we see that the assumption

(?) asserts that there is no set S∗+ ⊆ S∗ with ∆e (g | ∅) > B

max{ 2+ε
ε
,5} for all e ∈ S∗+

such that g(S∗+) > 0. This simplifies to the equivalent assertion: There is no element

e ∈ S∗ with ∆e (g | ∅) > B

max{ 2+ε
ε
,5} . If all elements e ∈ E are (g,B, L)-light for

L = max
{

2+ε
ε
, 5
}

(which is the choice of L when c = 0), (?) is always satisfied.

Hence, Theorem 4.8 proves Theorem 4.5 if c = 0.

We will now give a proof of Theorem 4.5 for general values of 0 ≤ c < 1. This is the

point where the partial enumeration wrapper in Algorithm 4 comes into play.

Proof of Theorem 4.5. Fix S∗ ⊆ E with g(S∗) ≤ B. The idea of the whole partial

enumeration technique is the ability to split S∗ into a heavy and a light part. Let

S∗+ := S∗ ∩ E+ and S∗− := S∗ ∩ E−, where

E+ = {e ∈ E | e is (g,B, L)-heavy}

E− = {e ∈ E | e is (g,B, L)-light}

as in Algorithm 4. By the extra assumption, g(S∗+) ≤ cB. Moreover, monotonicity

implies g(S∗+) ≤ g(S∗) ≤ B, so |S∗+| ≤ L/(1 − cg) by Lemma 4.6. Therefore, the

33

for-loop iterating over all H ⊆ E+ with |H| ≤ L/(1− cg) will eventually hit H = S∗+.

In this iteration, max-ratio-light(E−, f̂ , ĝ, B) is invoked, where f̂(A) = f(A∪S∗+)

and ĝ(A) = g(A ∪ S∗+) for all A ⊆ E−. In particular, ĝ(∅) = g(S∗+) ≤ cB. Moreover,

all items in E− are (ĝ, B, L)-light:

∆e (ĝ | ∅) = ĝ({e})− ĝ(∅) = g(S∗+ ∪ {e})− g(S∗+) = ∆e

(
g | S∗+

)
≤ ∆e (g | ∅) ≤ B

L
.

Here, the last step follows because e ∈ E− is (g,B, L)-light by construction. Finally,

ĝ is monotone as well and also has low curvature because

∆e (ĝ | A)

∆e (ĝ | ∅)
=
g(A ∪ S∗+ ∪ {e})− g(A ∪ S∗+)

g(S∗+ ∪ {e})− g(S∗+)
≥
g(A ∪ S∗+ ∪ {e})− g(A ∪ S∗+)

g({e})− g(∅)
≥ 1− cg

where the first inequality follows by the diminishing returns property and the second

step by the fact that g has curvature cg. We conclude that ĝ has curvature cĝ ≤ cg.

Putting all these observations together, we see that Theorem 4.8 applies. Thus, the

set S− returned by max-ratio-light(E−, f̂ , ĝ, B) satisfies

(1− ε)
(
1− ecĝ−1

) f̂(S∗−)

ĝ(S∗−)
≤ f̂(S−)

ĝ(S−)
(4.3)

and ĝ(S−) ≤ B for S∗− in particular (as ĝ(S∗−) = g(S∗+ ∪ S∗−) = g(S∗) ≤ B). Putting

S∗+ and S− together will result in a feasible, near-optimal solution: The feasiblity is

easily checked via g(S∗+ ∪ S−) = ĝ(S−) ≤ B. For the approximation ratio, note that

f(S∗+ ∪ S−)

g(S∗+ ∪ S−)
=
f̂(S−)

ĝ(S−)

as well as 1 − ecĝ−1 ≥ 1 − ecg−1 and combine it with Eq. (4.3). This shows that

S∗+ ∪ S− is indeed a (1 − ε)(1 − ecg−1)-approximation of S∗. We finally remark that

Algorithm 4 optimises over all S− ∪H and thus outputs a solution of value at least
f(S∗+∪S−)

g(S∗+∪S−)
, thereby achieving the bound stated in Theorem 4.5.

4.1.3 Assembling a Sparsifier

Algorithm 2 and Algorithm 4 come in useful when approximating peak contributions.

We first treat the case of monotone submodular functions f1, . . . , fN : 2E → R≥0 of

low curvature without any knapsack constraints. The aim is to approximate the peak

contributions pi = maxA⊆E
fi(A)
F (A)

for all 1 ≤ i ≤ N . If all fi’s have curvatures cfi < 1,

34

so has F by Lemma 4.12 shown at the end of this section. Consequently, we can

apply Algorithm 2 to find sets A1, . . . , AN such that

(
1− ecF−1

)
pi =

(
1− ecF−1

) fi(A∗i)
F (A∗i)

≤ fi(Ai)

F (Ai)
≤ fi(A

∗
i)

F (A∗i)
= pi

where A∗i = arg maxS⊆E fi(S)/F (A) for 1 ≤ i ≤ N . If we use the quantities

p̂i :=
1

1− ecF−1

fi(Ai)

F (Ai)

instead of the exact pi’s in Algorithm 1, it does still work (as p̂i ≥ pi, so Corollary 3.4

applies) and, noting that p̂i ≤ pi/ (1− ecF−1), the size bound becomes

E [size(w)] = O

(
n+ log 1

δ

ε2

N∑
i=1

p̂i

)

= O

(
n+ log 1

δ

ε2

N∑
i=1

pi
1− ecF−1

)

= O

(
n+ log 1

δ

(1− ecF−1) ε2

N∑
i=1

pi

)

= O

(
Bn
(
n+ log 1

δ

)
(1− ecF−1) ε2

)

which is the original bound with an additional 1/ (1− ecF−1) factor. Here, the first few

steps are using the general bound stated in Theorem 3.1 part (ii), while the last step

specialises to the monotone submodular case using Lemma 3.9. For constant δ, we

get the simplified bound E [size(w)] = O
(

Bn2

(1−ecF−1)ε2

)
, which is almost as good as the

existence result stated by Theorem 3.1 and in [RY22], both specialised to monotone

functions. Furthermore, if we are interested in polynomial-time computability, this

bound is much better than what we get in other special cases such as theO
(
Bn2.5 logn

ε2

)
size bound for monotone functions (see Remark 3.10), which approximates the peak

contributions up to a O (
√
n log n) factor by the ellipsoid method [Bai+16], while our

algorithm in the low curvature case uses a simple greedy algorithm.

Remark 4.10. When defining the p̂i’s, it becomes evident (again) why we require

cF < 1. Low curvature is necessary for the p̂i’s to be well-defined.

Remark 4.11. There is a good reason to not disregard 1/ (1− ecF−1) as a constant

in the size bound. It is mainly because we consider N as part of the input. Thus,

as N grows, we add more functions fi to the decomposition whose curvatures define

35

the curvature of F . If the sequence (cfi)i≥1 converges to 1 (but never hits it), the

curvature of F = f1 + · · ·+fN can be seen to converge to 1 as well, making the factor

1/ (1− ecF−1) approach +∞. From this perspective, it is by no means constant.

Now turn to the knapsack-constrained setting, where monotone submodular functions

f1, . . . , fN : 2E → R≥0 of low curvature and a budget B ≥ 0 are given. The goal is to

sparsify F = f1 + · · ·+ fN only the subdomain

D≤B := {A ⊆ E | F (A) ≤ B}

where the value of F does not exceed the budget B. To make it clear, given ε > 0,

we want a sparsifier w = (w1, . . . , wN) such that

(1− ε)F (A) ≤ F ′(A) ≤ (1 + ε)F (A)

for all A ∈ D≤B. Such a sparsifier on D≤B is clearly superior w. r. t. size. We have

pi = max
A∈D≤B

fi(A)

F (A)
≤ max

A⊆E

fi(A)

F (A)
,

so the expected size O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
from Theorem 3.1 is smaller (or equal, in the

worst case) than it would be for a sparsifier over the full domain 2E.

To realise such a construction, our goal is approximating the values maxA∈D≤B
fi(A)
F (A)

up

to a factor of O (1/ (1− ecF−1)). Since we do not care about the additional constant

factor, we choose ε = 1/2 to make
Bmax{ 2+ε

ε
,5}

1−c as small as possible, i. e. equal to 5B
1−c ,

in order to get the most out of Theorem 4.5. Now we see that Algorithm 4 guarantees

a 1
2

(1− ecF−1)-approximation if the condition

(?) There is a constant 0 ≤ c < 1 for which there exists an optimal

solution S∗ ∈ arg maxS∈D≤B
fi(S)
F (S)

such that the elements e ∈ S∗ with

∆e (g | ∅) ≤ 5B
1−c form a set S∗+ with g(S∗+) ≤ cB

is satisfied. In particular, (?) holds if ∆e (g | ∅) ≤ B/5 for all e ∈ E. Given (?), we

can run Algorithm 4, obtain outputs A1, . . . , AN ∈ D≤B for i = 1, . . . , N , and use

them to define

p̂i :=
1

1
2

(1− ecF−1)

fi(Ai)

F (Ai)

for all 1 ≤ i ≤ N . Then, as before in the unconstrained case, pi ≤ p̂i ≤ 1
2

(1− ecF−1) pi

for all 1 ≤ i ≤ N . Applying Algorithm 1 and Corollary 3.4, we get an ε-sparsifier

36

of expected size O
(

n+log 1
δ

(1−ecF−1)ε2
∑N

i=1 pi

)
, which is asymptotically the same as in the

unconstrained case but with pi’s only defined over the subdomain D≤B.

Finally, as promised earlier, we are left to prove that cF < 1 if F = f1 + · · ·+ fN and

all fi’s have low curvature. It can be seen that the curvature cF of F is at most the

maximum of the curvatures cfi of the fi’s.

Lemma 4.12. Let f1, . . . , fN : 2E → R≥0 be monotone, non-negative submodular

functions with curvatures cf1 , . . . , cfN < 1. Then the sum F = f1 +· · ·+fN is a mono-

tone, non-negative submodular function with curvature cF ≤ max{cf1 , . . . , cfN} < 1.

Proof. Let cmax := max{cf1 , . . . , cfN} be the maximum curvature among f1, . . . , fN .

We consider the quotient ∆e (F | S) /∆e (F | ∅) to get a bound on the curvature cF

of F . Using F = f1 + · · ·+ fN , it can be rewritten and estimated as

∆e (F | S)

∆e (F | ∅)
=

∑N
i=1 fi(S ∪ {e})−

∑N
i=1 fi(S)∑N

i=1 fi({e})−
∑N

i=1 fi(∅)

=

∑N
i=1

fi(S∪{e})−f(S)
fi({e})−fi(∅)

(fi({e})− fi(∅))∑N
i=1 fi({e})− fi(∅)

≥

∑N
i=1 minA⊆E mine′ /∈A

(
fi(A∪{e′})−f(A)

fi({e′})

)
(fi({e} − f(∅)))∑N

i=1 fi({e})− fi(∅)

=

∑N
i=1(1− cfi) (fi({e})− fi(∅))∑N

i=1 (fi({e})− fi(∅))

≥
∑N

i=1(1− cmax) (fi({e})− fi(∅))∑N
i=1 (fi({e})− fi(∅))

= 1− cmax.

Taking the minimum over all S ⊆ E, e /∈ S, we still end up with a positive number

≥ 1− cmax. Thus, cF ≤ 1− (1− cmax) = cmax < 1. Lastly, as a sum of monotone set

functions, F is monotone.

37

4.2 Bounded Arity

4.2.1 The Arity of a Submodular Function

An improvement in both size and construction time of the ε-sparsifier is possible if

the submodular function F in question can be decomposed as F = f1 + · · ·+ fN into

fi’s of bounded arity. This covers a broad range of submodular functions such as cut

functions. We will first motivate the bounded arity special case and then present our

algorithm that computes the peak contributions in a brute-force fashion.

To motivate the bounded arity property, consider a set function f : 2E → R. Instead

of writing f(S) for S ⊆ E to describe the values of f , we may encode S as a binary

vector of |E| coordinates. Let E = {e1, . . . , en} and set the ith coordinate of the

vector corresponding to S to 1 iff ei ∈ S. This standard identification allows us

to write f(x1, . . . , xn) for (x1, . . . , xn) ∈ {0, 1}n to describe the values of f . From

this perspective, it is intuitive to say that f has arity a if its values only depend

on a arguments. It is worth noting that this representation aligns with how one

would represent f in the context of constraint satisfaction problems, as part of a

valued constraint language [KTŽ15]. Tieing this back to the initial notation f(S), we

recognise that f having arity a means there exists a set C ⊆ E of size |C| = a such

that f(S) = f(S ∩C) for all S ⊆ E. That is exactly the definition we choose to work

with. In this setting, we call C the effective support of f .

4.2.2 Computing The Peak Contributions

Turning back to sparsification, we start from a decomposition F = f1 + · · · + fN of

a submodular function F into submodular functions f1, . . . , fN of arity ≤ a for some

constant a. Let C1, . . . , CN denote the effective supports of f1, . . . , fN , respectively.

In order to construct a sparsifier, we want to apply Algorithm 1. To do so efficiently,

we need to be able to compute the peak contributions, i. e., maximise the quotients
fi(A)
F (A)

over all A ⊆ E for each 1 ≤ i ≤ N . Since the numerators only depend on how A

intersects the Ci’s – which are of constant size – we might brute-force this intersection

and minimise the denominator w. r. t. an extra constraint.

Remark 4.13. To make this idea work, it is vital for us to know the Ci’s. There

might be scenarios where all fi’s are known to have bounded arity while the elements

they are supported on are not computationally available. However, if f is monotone

and non-negative, the effective support can be found by testing each element e ∈ E

38

for f({e}) > f(∅). If the test fails, we know that e does not influence the values of

f and hence does not belong to its effective support.

Algorithm 5 Computing the peak contributions for fi’s of bounded arity

Input: Functions f1, . . . , fN with effective supports C1, . . . , CN of size ≤ a
Output: pi = maxA⊆E

fi(A)
F (A)

for each 1 ≤ i ≤ N
1: for i = 1, . . . , N do
2: pi ← 0
3: for all H ⊆ Ci do
4: Compute a minimiser A∗ of F̂ : 2E\Ci → R, A 7→ F (A ∪H)

5: pi ← max
{
pi,

fi(H)

F̂ (A∗)

}
6: end for
7: end for
8: return p1, . . . , pN

Refer to Algorithm 5 for a formal description of how the peak contributions are com-

puted. For each 1 ≤ i ≤ N , the quantity pi is computed as follows. We first choose

a set H ⊆ Ci and then restrict ourselves to sets A ⊆ E with A ∩ Ci = H. This

implies fi(A) = fi(A ∩ Ci) = fi(H) as Ci is the effective support of fi. Hence, we

are left with the quotient fi(H)/F (A) that has to be maximised over all A ⊆ E with

A ∩ Ci = H. Since the numerator no longer depends on A, the objective becomes

minimising F (A) subject to A ∩ Ci = H. It turns out that this is just a submodular

minimisation problem of an auxiliary function F̂ . The following statement is key to

the correctness of this approach.

Lemma 4.14. Let f, F : 2E → R be submodular functions and let C ⊆ E denote the

effective support of f . Then

max
A⊆E

f(A)

F (A)
= max

H⊆C

f(H)

minA⊆E\C F̂ (A)

where F̂ : 2E\C → R, A 7→ F (A ∪H).

Proof. “≤” Let A∗ be a maximiser of the LHS. Set H := A∗ ∩ C and A := A∗ \ C.

We now have

f(A∗)

F (A∗)
=

f (A∗ ∩ C)

F ((A∗ \ C) ∪ (A∗ ∩ C))
=

f(H)

F ((A∗ \ C) ∪H)
=
f(H)

F̂ (A)

with H ⊆ C and A ⊆ E \ C, so this is certainly ≤ the RHS above.

39

“≥” Let (H∗, A∗) a maximising pair of the RHS. Letting A := A∗ ∪H∗, we get

f(H∗)

F̂ (A∗)
=

f(A ∩ C)

F (A∗ ∪H)
=
f(A)

F (A)
,

which is always ≤ the LHS as it maximises over all A.

One more observation allows us to give a more precise size bound on the sparsifier in

the bounded arity case. By Theorem 3.1, the ε-sparsifier produced by Algorithm 1

is of expected size O
(

log |E|+log 1
δ

ε2

∑N
i=1 pi

)
, where

∑N
i=1 pi ≤ Bn by Lemma 3.9, if

the fi’s are all monotone. In general, the quantity B might be huge. However, if

the functions all have bounded arity, we can show that B = O(1), allowing for an

ε-sparsifier of expected size O(n2/ε2) in case of monotone constituent functions –

assuming δ is constant. The following statement claimed but not shown in [RY22]

shows a bound on B that is independent of n or N but just depends on the arity.

Lemma 4.15. Suppose f : 2E → R is submodular with arity ≤ a. Then the base

polyhedron B(f) has at most 2a
2

extreme points, i. e., |EX(B(f))| ≤ 2a
2
.

Proof. By Theorem 3.6, a point x ∈ B(f) is an extreme point iff there is a maximal

chain ∅ = S0 ⊂ S1 ⊂ · · · ⊂ Sn = E with x(ei) = f(Si)−f(Si−1) for 1 ≤ i ≤ n, where

{ei} = Si \Si−1. Letting C denote the effective support of f , these equations become

x(ei) = f(Si ∩ C)− f(Si−1 ∩ C). Now ei /∈ C implies

Si ∩ C = (Si−1 ∪ {ei}) ∩ C = Si−1 ∩ C,

hence x(ei) = f(Si ∩ C)− f(Si−1 ∩ C) = f(Si−1 ∩ C)− f(Si−1 ∩ C) = 0. Therefore,

only the coordinates corresponding to elements e ∈ C can be non-zero. For any such

coordinate e ∈ C, we have

x(e) = f(S ∪ {e})− f(S) = f ((S ∪ {e}) ∩ C)− f(S ∩ C)

where S is the (unique) set in the maximal chain e is added to. Now observe that

the RHS can attain at most 2a possible values: One for each subset S ⊆ C. This is

because the value is completely determined by how S intersects C.

Putting it all together, we have at most a non-zero coordinates with at most 2a

different values for each of them. Counting all combinations, we retrieve an upper

bound of (2a)a = 2a
2

candidates for x. Thus, B(f) has at most 2a
2

extreme points.

40

4.2.3 Application to Hypergraph Cut Sparsification

The motivation of submodular sparsification partly arises from the sparsification of

graph cuts, which have been extensively studied not only for graphs but also for

hypergraphs [SY19; KK15; CKN20]. In the following, we use the results derived in

Section 4.2.2 to construct a hypergraph cut sparsifier in polynomial time.

Given an r-uniform hypergraph G = (V,E), we define an individual cut function

fe : 2V → R, S 7→

{
1 if 0 < |S ∩ e| < r,

0 otherwise
(4.4)

for each hyperedge e ∈ E. Letting F :=
∑

e∈E fe, it is not hard to see that F (S)

equals the number of hyperedges “cut” by S, i. e., whose endpoints are non-trivially

split among S and E \ S. We remark that F is submodular as a sum of submodular

functions, with the fe’s being submodular by Fact 4.16.

Fact 4.16. Let G = (V,E) be an r-uniform hypergraph and let e ∈ E. The function

fe defined in Eq. (4.4) is submodular.

Proof. We establish the diminishing returns property ∆v (fe | T) ≤ ∆v (fe | S) for all

T ⊇ S and v /∈ T . To this end, observe that

∆v (fe | A) =

1 if |e ∩ A| = 0,

0 if 0 < |e ∩ A| < r,

−1 if |e ∩ A| = r

for any set A ⊆ V and v ∈ e\A. Observe that ∆v (fe | A) is non-increasing as |e∩A|
increases. Since |e∩T | ≥ |e∩S| by T ⊇ S, we get ∆v (fe | T) ≤ ∆v (fe | S) if v ∈ e\T
(hence v ∈ e \ S). If v ∈ V \ (T ∪ e), i. e., v /∈ e, the quantities |e ∩ S| and |e ∩ T | do

not change upon adding v, so ∆v (fe | T) = ∆v (fe | S) = 0, which also satisfies the

diminishing returns property. We conclude that fe is submodular by Fact 2.1.

In order to apply the results from Section 4.2.2 and efficiently construct a small

sparsifier, we need that the fe’s have bounded arity and we need to know their effective

supports. Fix a hyperedge e ∈ E. We claim that fe has effective support e. This

is best seen by Eq. (4.4): The value fe assigns to S is 1 if 0 < |S ∩ e| < r and 0

otherwise. In particular, it depends only on S ∩ e (in fact, only the size of it), hence

fe(S) = fe(S∩e) for any S ⊆ V . Since G is r-uniform, we know that |e| = r, so fe has

arity r. If the uniformness of G is regarded as a constant, the fe’s have bounded arity

and we can apply Algorithm 5 to compute the peak contributions of the fe’s w. r. t.

41

F =
∑

e∈E fe. This, in a last step, allows us to compute an ε-sparsifier of expected

size O
(
n+log 1

δ

ε2

∑
e∈E pe

)
via Algorithm 1. Unfortunately, it is not clear how to get

a non-trivial and expressive bound on the sum
∑

e∈E pe of peak contributions, since

the result by Rafiey and Yoshida [RY22] has been disproven in Section 3.2 and only

holds for monotone functions, which the hypergraph cut functions fe do not belong

to.

42

4.3 Sparsifier in the Limit

We have seen how to construct (in exponential time) an ε-sparsifier of expected size

O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
in the submodular case. In this section, we address the question

of achieving this size bound in polynomial time under a slightly weaker notion of

ε-sparsifier. Since all ideas work not only on submodular functions but apply to the

more general setting of a decomposable set function F : 2E → R, we present all steps

in this general setting and finally return to submodular functions for a more precise

size bound. Given a decomposable set function F : 2E → R with F = f1 + · · · + fN ,

define a relaxed ε-sparsifier as a vector w ∈ RN such that

(1− ε)F (S) ≤ F ′(S) ≤ (1 + ε)F (S) (4.5)

for all S ∈ S, where S ⊆ 2E is a set of |S| ≥
(
1− 1

n

)
2n elements, n = |E|, and

F ′ =
∑N

i=1 wifi. As before, we let size(w) denote the number of non-zero entries in

w. The notion of a relaxed ε-sparsifier follows the idea of satisfying the guarantee

Eq. (4.5) for almost all subsets S ⊆ E. More precisely, we only allow an 1/n-fraction

of subsets to violate it. Although 2n/n → ∞ as n → ∞, the fraction of subsets

satisfying Eq. (4.5) is |S|
|2E | ≥

(1− 1
n)2n

2n
→ 1 as n → ∞, which explains the term

“sparsifier in the limit”.

As in Section 4.1 and 4.2, the approach comes down to estimating peak contributions.

For each 1 ≤ i ≤ N and S ⊆ E, we define the ratio

%i(S) :=
fi(S)

F (S)
. (4.6)

In light of this definition, we notice that pi = maxS⊆E %i(S). The rank of a set S ⊆ E

w. r. t. fi is then defined via

ri(S) :=
1

2n
|{A ⊆ E | %i(A) < %i(S)}| , (4.7)

i. e. the fraction of sets ranking strictly lower than S in the ratio %i(·).

The estimation of the pi’s is done by a simple randomised procedure:

� Sample A1, . . . , Am ⊆ E independently uniformly at random.

� For 1 ≤ j ≤ m, compute the ratios %i(Aj).

� Take p̂i := max1≤j≤m %i(Aj) as an estimate of pi.

43

Unlike in the situation of Corollary 3.4, the inequality p̂i ≥ pi does not hold for

the p̂i’s (unless p̂i = pi, which happens if a maximizer of %i(·) is sampled). This

implies the proof of Theorem 3.1, part (i) fails, at least when attempting to establish

Eq. (4.5) for all sets S ⊆ E. However, if we only impose it for an
(
1− 1

n

)
-fraction of

the sets, we can exploit that p̂i ≥ %i(S) for almost all S ⊆ E. This is implemented

in Algorithm 6.

Algorithm 6 Relaxed Sparsification Algorithm

Input: Set function F = f1 + · · ·+fN : 2E → R with fi’s given by evaluation oracles;
parameters ε, δ ∈ (0, 1)

Output: Vector w ∈ RN such that
� P [w is a relaxed ε-sparsifier] ≥ 1− 1/nc for any constant c > 0,

� E [size(w)] ≤ O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
where pi = max A⊆E

F (A)6=0

fi(A)
F (A)

.

1: w ← 0
2: m← d2nN ((c+ 2) log n+ logN)e
3: κ← 3 log

(
2nc

δ

)
/ε2

4: for i = 1, . . . , N do
5: Sample A1, . . . , Am independently and uniformly at random
6: p̂i ← max1≤j≤m %i(Aj)
7: κi ← min{1, κp̂i}

8: wi ←

{
1/κi with probability κi

0 with probability 1− κi
9: end for
10: return w

The main goal for the rest of this section is showing that the output w of Algorithm 6

is a relaxed ε-sparsifier with high probability, and of small expected size.

Theorem 4.17. Let c > 0. For any ε, δ ∈ (0, 1), Algorithm 6 outputs a vector

w ∈ RN such that

(i) P [w is a relaxed ε-sparsifier] ≥ 1− 1

nc
,

(ii) E [size(w)] = O
(
n+log 1/δ

ε2

∑N
i=1 pi

)
,

where – as before – pi = maxS⊆E %i(S) for 1 ≤ i ≤ N .

The second claim

E [size(w)] ≤ O

(
n+ log 1

δ

ε2

N∑
i=1

pi

)

44

follows from the analysis of Algorithm 1 and the fact that p̂i ≤ pi for all 1 ≤ i ≤ N .

As for the first claim, we start with a statement about the ratios %i(·), ranks ri(·) and

how randomly chosen sets perform.

Lemma 4.18. Let m ≥ 0 and A1, . . . , Am be sampled independently uniformly at

random. Further suppose p̂i = max1≤j≤m %i(Aj) for 1 ≤ i ≤ N . Then:

(i) For any X, Y ⊆ E, we have ri(X) < ri(Y) iff %i(X) < %i(Y).

(ii) It holds P [%i(S) > p̂i] ≤ ri(S)m for each S ⊆ E.

Proof. We prove (i) first. Suppose X, Y ⊆ E fulfill ri(X) < ri(Y). This is equivalent

to |RX | < |RY | if we let

RX := {A ⊆ E | %i(A) < %i(X)} and RY := {A ⊆ E | %i(A) < %i(Y)} .

Hence, there exists an element Z ∈ RY \ RX . Note that this already follows from

|RX | < |RY |, we do not need the stronger statement RX ⊂ RY . By definition of RX

and RY , this implies %i(Z) ≥ %i(X) and %i(Z) < %i(Y), hence %i(X) < %i(Y).

For the other direction, observe that %i(X) < %i(Y) implies RX ⊆ RY , and moreover,

that X ∈ RY \ RX , hence the inclusion is strict and the size inequality follows.

For (ii), the event {%i(S) > p̂i} occurs exactly when all the events {%i(S) > %i(Aj)}
for 1 ≤ j ≤ m occur. Since all Aj are sampled independently, we get

P [%i(S) > p̂i] = P

[
m⋂
j=1

{%i(S) > %i(Aj)}

]
=

m∏
j=1

P [%i(S) > %i(Aj)] ,

so it suffices to show P [%i(S) > %i(Aj)] ≤ ri(S) for each 1 ≤ j ≤ m. The number of

sets A with %i(A) < %i(S) equals 2n · ri(S) by definition of ri(S). Thus,

P [%i(S) > %i(Aj)] ≤
2n · ri(S)

2n
= ri(S)

by the fact that Aj is sampled uniformly at random.

Let’s call a set S ⊆ E high-ranked if ri(S) ≥ 1 − 1
2nN

for at least one 1 ≤ i ≤ N .

Otherwise, we call S low-ranked.

Lemma 4.19. There are most 2n−1/n high-ranked sets S ⊆ E.

45

Proof. For each 1 ≤ i ≤ N , let

Hi :=

{
S ⊆ E | ri(S) ≥ 1− 1

2nN

}
be the family of high-ranked sets with “witness” i. It follows that H :=

⋃N
i=1Hi is

precisely the family of high-ranked sets. Fix an arbitrary 1 ≤ i ≤ N . We aim to

bound the size of Hi. Let S− ∈ Hi be an element of Hi of minimal rank. Thus,

ri(S) < ri(S
−) iff S /∈ Hi. By part (i) of Lemma 4.18, this condition is equivalent

to %i(S) < %i(S
−). By definition of ri(·), there are precisely 2n · ri(S−) such sets S.

Thus,

∣∣2E \ Hi

∣∣ = 2n · ri(S−) ≥ 2n
(

1− 1

2nN

)
which implies |Hi| ≤ 2n

2nN
= 2n−1

nN
. Thus, we conclude

|H| =

∣∣∣∣∣
N⋃
i=1

Hi

∣∣∣∣∣ ≤
N∑
i=1

2n−1

nN
= N · 2n−1

nN
=

2n−1

n
,

which proves the claim.

Finally, we prove a statement very close to the correctness of Algorithm 6. It asserts

that for any low-ranked set S, the rankings w. r. t. all %i(·)’s are in the desired range

with high probability.

Lemma 4.20. Let c > 0. If S ⊆ E is low-ranked and m ≥ 2nN (c log n+ logN)

samples are taken to estimate p̂i, then P [∀i : %i(S) ≤ p̂i] ≥ 1− 1

nc
.

Proof. Fix c > 0 and a low-ranked set S ⊆ E. Consider the failure probability

P [∃i : %i(S) > p̂i], which by the union bound and Lemma 4.18 part (ii) is at most

P [∃i : %i(S) > p̂i] ≤
N∑
i=1

P [%i(S) > p̂i] ≤
N∑
i=1

ri(S)m.

Since S is low-ranked, we know that ri(S) < 1− 1
2nN

for each 1 ≤ i ≤ N . Hence,

ri(S)m ≤
(

1− 1

2nN

)m
≤
(

1− 1

2nN

)2nN(c logn+logN)

≤

[(
1− 1

2nN

)2nN
]c logn+logN

≤ (1/e)c logn+logN = n−cN−1.

46

Summing over 1 ≤ i ≤ N , we obtain
∑N

i=1 ri(S)m ≤ n−c. Thus, for the success event,

P [∀i : %i(S) ≤ p̂i] ≥ 1−
N∑
i=1

ri(S)m ≥ 1− n−c = 1− 1

nc
,

as desired.

Lemma 4.21. Let n ≥ 2, c > 0. Choosing m ≥ 2nN ((c+ 2) log n+ logN), the

family

S := {S ⊆ E | ∀i : %i(S) ≤ p̂i}

consists of |S| ≥
(
1− 1

n

)
2n sets with probability ≥ 1− 1

nc
.

Proof. For each S ⊆ E, define an indicator random variable

1S :=

{
1 if S ∈ S,
0 if S /∈ S

encoding membership of S. Then the indicator random variables IS := 1−1S encode

non-membership of S. For any low-ranked S ⊆ E, we have

E [IS] = E [1− 1S] = P [S /∈ S] = 1− P [S ∈ S]

= 1− P [∀i : %i(S) ≤ p̂i] ≤ 1−
(

1− 1

nc+2

)
=

1

nc+2

by Lemma 4.20. Letting L ⊆ 2E denote the family of low-ranked sets, we have

E

[∑
S∈L

IS

]
=
∑
S∈L

E [IS] ≤ |L|
nc+2

≤ 2n

nc+2
.

Thus, by Markov’s inequality,

P

[∑
S∈L

IS ≥
2n−1

n

]
≤

E
[∑

S∈L IS
]

2n−1/n
≤ 2n

nc+2

n

2n−1
=

2

nc+1
≤ 1

nc
.

Overall, if the event
{∑

S∈L IS ≥
2n−1

n

}
does not occur, so

∑
S∈L IS <

2n−1

n
, we con-

clude that

|S| =
∑
S⊆E

1S ≥
∑
S∈L

1S =
∑
S∈L

(1− IS)

= |L| −
∑
S∈L

IS >

(
1− 1

2n

)
2n − 2n−1

n
=

(
1− 1

n

)
2n

by Lemma 4.19, L ⊆ 2E and
∑

S∈L IS < 2n−1

n
. Since

{∑
S∈L IS ≥

2n−1

n

}
does not

occur with high probability, we get the bound |S| ≥
(
1− 1

n

)
2n with high probability,

too.

47

Proof of Theorem 4.17. Part (ii) we have shown earlier. Part (i) essentially follows

from Lemma 4.21. Since Algorithm 6 uses

m = d2nN ((c+ 2) log n+ logN)e ≥ 2nN ((c+ 2) log n+ logN) ,

the set S = {S ⊆ E | ∀i : %i(S) ≤ p̂i} satisfies P
[
|S| ≥

(
1− 1

n

)
2n
]
≥ 1 − n−c. Fol-

lowing the proof of Theorem 3.1, we get that

(1− ε)F (S) ≤ F ′(S) ≤ (1 + ε)F (S)

for all S ∈ S. Thus, with probability at least 1− n−c, there are
(
1− 1

n

)
2n many sets

satisfying the above inequality. Hence, w is a relaxed ε-sparsifier.

48

Chapter 5

Generalised Submodular
Sparsification

This short chapter transfers results for submodular functions of bounded arity from

Section 4.2 to more general classes of functions, such as the well-studied k-submodular

functions [WŽ16; KTŽ15; FI05; MO21]. Section 5.1 is a technical introduction to k-

submodular functions, featuring definitions and basic properties. In Section 5.2, we

generalise the bounded arity special case to k-submodular functions and beyond.

Contributions:

� Introduction arity reducible classes, a property that captures the closure of a

class of set functions under the formation of auxiliary functions.

� ~α-bisubmodular functions of bounded arity admit the construction of a small

sparsifier in polynomial time. This includes bisubmodular functions.

� Sparsifier construction for k-submodular functions of bounded arity that scales

in its running time with the fastest known algorithms for (approximate) k-

submodular minimisation.

49

5.1 Introducing K-Submodular Functions

The idea of k-submodular functions is having a function f(S1, . . . , Sk) of k variables

defined on the domain of disjoint subsets of the ground set E that admits a pair

(t,u) of appropriate operations such that

� k = 1 corresponds to submodular functions, and

� useful properties such as the diminishing returns property are preserved.

In this context, we say that a function f : D → R admits a pair (t,u) of binary

operations on D if

f(A) + f(B) ≥ f(A tB) + f(A uB)

for all A,B ∈ D. It turns out that this kind of generalisation respecting the above

properties does actually exist. We introduce it in this section and establish basic

properties that will come in handy later.

To ease notation, we use bold letters for entire k-tuples A = (A1, . . . , Ak) ∈ (k + 1)E

of disjoint sets A1, . . . , Ak. The notation (k + 1)E coinincides with the common

interpretation as the set of functions E → {0, 1, . . . , k} on purpose: Take a function

f : E → {0, 1, . . . , k}. Each element e ∈ E is mapped to the index of the argument

it belongs to, i. e., e ∈ Af(e). In other words, f(e) encodes the set it belongs to. In

this context, f(e) = 0 means e does not occur in any of the sets A1, . . . , Ak. The

one-to-one correspondence with the family of all k-tuples (A1, . . . , Ak) of disjoint sets

becomes obvious here. Moreover, we define component-wise set operations

A ∪B := (A1 ∪B1, . . . , Ak ∪Bk) A ∩B := (A1 ∩B1, . . . , Ak ∩Bk) (5.1)

and the partial order A ⊆ B := ∀i ∈ {1, . . . , k} : Ai ⊆ Bi, which is defined

component-wise, too, for all A,B ∈ (k + 1)E.

Now we can define k-submodularity. Following [WŽ16], a function f : (k + 1)E → R

is k-submodular if it admits the operations (t,u) defined by

A tB :=

(
(A1 ∪B1) \

⋃
i 6=1

(Ai ∪Bi) , . . . , (Ak ∪Bk) \
⋃
i 6=k

(Ai ∪Bi)

)
A uB := (A1 ∩B1, . . . , Ak ∩Bk)

for all A,B ∈ (k + 1)E. There are equivalent characterisations, for instance via the

old notion of submodularity and a monotonicity property; see [WŽ16] for a detailed

discussion.

50

5.2 K-Set Functions of Bounded Arity

In Section 4.2, we have seen how to construct an ε-sparsifier of small size (matching

the existence result from the core algorithm and Theorem 3.1) in polynomial time

for any decomposable submodular function F with constituents of constant arity.

The perhaps most natural question asks for the generalisation to k-submodular func-

tions. However, a closer examination of Algorithm 5 reveals that it only exploits the

submodularity of the input functions to conclude that the auxiliary function F̂ is

minimisable in polynomial time. Apart from that, it works for any decomposable set

function F : 2E → R of bounded arity. In this section, we build upon this observation

in order to

� introduce the arity reducible classes which capture the property of a class of

k-set functions (such as k-submodular functions) of being closed under forming

auxiliary functions F̂ ,

� establish that k-submodular functions form an arity reducible class,

� establish that ~α-bisubmodular functions [FTY14] (a generalisation of skew bisub-

modular functions [HKP14]) form an arity reducible class,

hence it is possible for any decomposable k-submodular or ~α-bisubmodular function

F with constituents of constant arity to construct an ε-sparsifier of small size with

a polynomial number of minimisation oracle calls. Since ~α-bisubmodular functions

admit a polynomial-time minimisation algorithm [FTY14], the aforementioned spar-

sifier construction can be implemented in polynomial time for them, including the

well-known bisubmodular functions.

The main work in this section revolves around computing the peak contributions

of the constituents of F , the decomposable k-set function under consideration. As

before, an ε-sparsifier with the guarantees stated in Corollary 3.4 is easily obtained

by Algorithm 1 once the peak contributions are known.

5.2.1 Notions of Arity and Reducibility

The definition of arity can be generalised to k-set functions. We say that a k-set

function f : (k+ 1)E → R has arity a if there is a set C ⊆ E of size |C| = a such that

f(S) = f(S1 ∩ C, . . . , Sk ∩ C) (5.2)

for all S ∈ (k + 1)E. As before, we call C the effective support of f .

51

Remark 5.1. If one is interested in the more general situation of a k-set function

f : (k + 1)E → R with argument-specific supports C1, . . . , Ck ⊆ E, i. e.

f(S) = f(S1 ∩ C1, . . . , Sk ∩ Ck),

of sizes |Ci| = ai, the above definition is still useful. Letting C :=
⋃k
i=1 Ci, we find

that C is an effective support of f of size |C| ≤ a1 + · · ·+ak, i. e., f has arity at most

a1 + · · ·+ ak. In particular, if a1, . . . , ak = O(1), we know that f has constant arity.

Thus, we will work with the notion of arity as it is captured by Eq. (5.2) above, since

the more general notion of argument-specific supports can be reduced to it.

Having decided on a notion of arity, we can define the family of arity reducible classes.

A class

C ⊆
⋃

E finite set

R(k+1)E (5.3)

of k-set functions1 is arity reducible if, for any finite set E, function F : (k+ 1)E → R

with F ∈ C, set C ⊆ E and disjoint sets H1, . . . , Hk ⊆ C, the “reduced” function

F̂ : (k + 1)E\C → R, (A1, . . . , Ak) 7→ (A1 ∪H1, . . . , Ak ∪Hk)

belongs to C as well, i. e., F̂ ∈ C.

Since our entire work is oblivious to the concrete elements of E, we may assume that

E = {1, . . . , n} for some integer n ≥ 1. This is accomplished by labelling the finitely

many elements of E in some arbitrary order. Eq. (5.3) then becomes

C ⊆
⋃
n≥1

R(k+1){1,...,n} ,

which might seem a bit more comprehensible.

5.2.2 Peak Contributions For Arity Reducible Classes

Fix k ≥ 1 and an arity reducible class C. Given the ability to minimise functions

from C, we can compute peak contributions for all constituents of a decomposable

function F if they have bounded arity. This is exactly what Algorithm 5 accomplishes

for the special case of submodular functions. Notation-wise, we let MIN(·) denote

a minimisation oracle for functions from the class C, i. e., for any f : (k + 1)E → R

with f ∈ C, MIN(f) := arg minA∈(k+1)E f(A) denotes a minimiser of f . The peak

contributions are then computed by Algorithm 7, which invokes MIN(·).

The correctness and efficiency of Algorithm 7 is established by the following theorem.

1For instance, the class of all k-submodular functions.

52

Algorithm 7 Computing Peak Contributions For Arity Reducible Classes

Input: Decomposable F = f1 + · · · + fN : (k + 1)E → R with F ∈ C and fi’s of
bounded arity with effective supports Ci; minimisation oracle MIN(·) for k-set
functions over E belonging to C

Output: Peak contributions pi = maxA∈(k+1)E
fi(A)
F (A)

for 1 ≤ i ≤ N
1: for i = 1 to N do
2: pi ← 0
3: for all H ∈ (k + 1)C do

4: Define F̂ : (k + 1)E\C → R, A 7→ F (A ∪H).

5: A∗ ←MIN(F̂)

6: pi ← max
{
pi,

fi(H)

F̂ (A∗)

}
7: end for
8: end for
9: return (p1, . . . , pN)

Theorem 5.2. Let F : (k + 1)E → R denote a decomposable k-set function with

F ∈ C that can be decomposed as F = f1 + · · · + fN such that each fi has effective

support Ci of size |Ci| ≤ a ∈ O(1). Then Algorithm 7

(i) correctly computes all peak contributions,

(ii) runs in time O (N ·MIN(n) · EO(F)), where MIN(n) denotes the maximum num-

ber of evaluation oracle calls the minimisation oracle MIN(·) takes to minimise

a function f ∈ C on any ground set of size ≤ n. Moreover, EO(F) is the

(maximum) time it takes to invoke the evaluation oracle of F once.

Proof. We prove correctness first. Note that

pi = max
A∈(k+1)E

fi(A)

F (A)

= max
A∈(k+1)E

fi(A1 ∩ C, . . . , Ak ∩ C)

F (A)

= max
H∈(k+1)C

max
A∈(k+1)E

∀j:Aj∩C=Hj

fi(H1, . . . , Hk)

F (A)

= max
H∈(k+1)C

fi(H) max
A∈(k+1)E\C

1

F (A ∪H)

= max
H∈(k+1)C

fi(H)

minA∈(k+1)E\C F (A ∪H)

= max
H∈(k+1)C

fi(H)

minA∈(k+1)E\C F̂ (A)
,

53

where the last expression is exactly what Algorithm 7 evaluates. The denominator

is computed by the invocation MIN(F̂) of the minimisation oracle, which is possible

because F̂ ∈ C by the arity reducibility of C. Notice that the for all-loop implements

the maximisation over all H ∈ (k + 1)C . This shows part (i).

For part (ii), consider the two nested for-loops. The outer for-loop runs for N

iterations, the inner one always for |(k + 1)C | ≤ (k + 1)a = O(1) iterations, as

a = O(1) and k is constant, too. In each iteration of the inner for-loop, there is

one call to the minimisation oracle, which takes at most MIN(n) invocations of the

evaluation oracle for F̂ . Each call to the evaluation oracle for F̂ can be implemented

by one call to the evaluation oracle for F by invoking it on A ∪ H, if the call was

requesting F̂ (A). Since the evaluation oracle of F takes time at most EO(F) per call,

the desired time bound follows.

Remark 5.3. We should stress here that the proof of Theorem 5.2 crucially relies

on C being an arity reducible class. Algorithm 7 invokes the minimisation oracle for

C on the auxiliary function F̂ . If F̂ was not a member of C, this step would not be

possible. As we will see, the setting of a class C with a minimisation oracle given for

all members of C is a very natural one. Examples include bisubmodular functions, ~α-

bisubmodular functions and – potentially – k-submodular functions for k ≥ 3, which

is an open question.

Given Theorem 5.2, it only remains to execute the core algorithm in order to obtain

an ε-sparsifier for the kind of function Theorem 5.2 applies to.

Corollary 5.4. Let F : (k+1)E → R denote a decomposable k-set function with F ∈ C
that can be decomposed as F = f1 + · · · + fN such that each fi has effective support

Ci of size |Ci| ≤ a ∈ O(1). Then, for any ε, δ > 0, Algorithm 1 instantiated with

peak contributions from Algorithm 7 outputs an ε-sparsifier with probability at least

1− δ. Moreover, the expected size of the ε-sparsifier is in O
(
n+log 1

δ

ε2

∑n
i=1 pi

)
, where

n = |E|. The running time is polynomial if MIN(n) is and all fi have polynomial-time

evaluation oracles.

Proof. Execute Algorithm 7 and then Algorithm 1 with the modification that the

pi’s are taken from the output of Algorithm 7. The correctness and claims about the

running time follow from Theorem 5.2 and Corollary 3.4.

We have now designed a framework that easily allows us to prove the existence of

polynomial-time sparsifier constructions for functions decomposable into constituents

54

of bounded arity. For any class C of interest, we have to check whether (a) it is arity

reducible, and (b) it admits a polynomial-time minimisation algorithm.

5.2.3 K-Submodular Functions

We apply our framework to k-submodular functions by proving that they form an arity

reducible class. Recall that it is an open problem whether k-submodular functions

can be minimised by a polynomial number of evaluation oracle calls. However, for

the cases k = 1 (submodular functions) and k = 2 (bisubmodular functions), this

question can be answered in the affirmative [GLS81; FI05]. It makes sense for us

to look at k-submodular functions for general k, since Corollary 5.4 is formulated

under the premise of a minimisation oracle. Thus, if it turns out that, for k ≥ 3, it

is indeed possible to minimise with polynomially many oracle calls, we immediately

get a sparsifier construction in polynomial time. In particular, this works for k-

submodular functions with additional properties, for which we might already know

how to minimise them efficiently. Last but not least, even if the minimisation oracle

at hand takes a superpolynomial number of oracle calls, the running time may still

be good enough.

It remains to prove that k-submodular functions form an arity reducible class.

Theorem 5.5. Let k ≥ 1. The class of k-submodular functions is arity reducible.

Proof. Consider any finite ground set E, let F : (k + 1)E → R be k-submodular.

Furthermore, let C ⊆ E and H ∈ (k + 1)C . We have to show that

F̂ : (k + 1)E\C → R, A 7→ F (A ∪H)

is k-submodular, too.

We verify that F̂ admits (t,u). Consider arbitrary S,T ∈ (k + 1)E\C . We simplify

the expressions for F̂ (S u T) and F̂ (S t T) in order to show the k-submodularity

inequality F̂ (S) + F̂ (T) ≥ F̂ (S tT) + F̂ (S uT) in a second step.

The term F̂ (S uT) can be transformed as

F̂ (S uT) = F̂ (S1 ∩ T1, . . . , Sk ∩ Tk)

= F ((S1 ∩ T1) ∪H1, . . . , (Sk ∩ Tk) ∪Hk)

= F ((S1 ∪H1) ∩ (T1 ∪H1), . . . , (Sk ∪Hk) ∩ (Tk ∪Hk))

= F ((S ∪H) u (T ∪H))

(5.4)

55

by the definition of F̂ and the De Morgan law from set theory.

The term F̂ (StT) is a bit more complex, making it helpful to consider each argument

separately. Fix any 1 ≤ i ≤ k. Notice that(
(Si ∪ Ti) \

⋃
j 6=i

(Sj ∪ Tj)

)
∪Hi

(1)
= (Si ∪ Ti ∪Hi) \

⋃
j 6=i

(Sj ∪ Tj)

(2)
= ((Si ∪Hi) ∪ (Ti ∪Hi)) \

⋃
j 6=i

(Sj ∪ Tj)

(3)
= ((Si ∪Hi) ∪ (Ti ∪Hi)) \

⋃
j 6=i

((Sj ∪Hj) ∪ (Tj ∪Hj))

where step (1) follows because Hi is disjoint from
⋃
j 6=i(Si ∪ Ti) (as Hi ⊆ C but

Si, Ti ⊆ E \ C), step (2) from elementary set theoretic laws, and step (3) from the

fact that the Hi’s are disjoint, so no element added by Hi can be removed by adding

the Hj’s for j 6= i to the \ operation. Applying the above transformation to each

argument, we conclude that F̂ (S tT) = F ((S ∪H) t (T ∪H)).

Combining Eq. (5.4) and F̂ (StT) = F ((S∪H)t(T∪H)) with the k-submodularity

of F , we obtain

F̂ (S tT) + F̂ (S uT) = F ((S ∪H) t (T ∪H)) + F ((S ∪H) u (T ∪H))

≤ F (S ∪H) + F (T ∪H)

= F̂ (S) + F̂ (T)

proving that F̂ is indeed k-submodular.

5.2.4 Generalised Skew Bisubmodular Functions

It turns out that we can extend the sparsification result for bisubmodular functions to

skew bisubmodular [HKP14] and even ~α-bisubmodular functions [FTY14], see below.

The motivation for generalised notions of bisubmodularity originates from the study

of Valued Constraint Satisfaction Problems (VCSPs). It can be shown [HKP14;

TŽ16] that submodularity and skew bisubmodilarity characterise (under P 6= NP)

computationally tractable VCSPs where the variables are allowed take three values.

If such a VCSP is not of this form, the NP-hard max-cut problem can be expressed.

As introduced in [HKP14], a function F : 3E → R is α-bisubmodular if

F (X) + F (Y) ≥ F (X ∩Y) + α · F (X ∪0 Y) + (1− α) · F (X ∪1 Y)

56

for all X = (X+, X−),Y = (Y+, Y−) ∈ 3E, where

X ∪0 Y := ((X+ ∪ Y+) \ (X− ∪ Y−) , (X− ∪ Y−) \ (X+ ∪ Y+)) ,

X ∪1 Y := (X+ ∪ Y+, (X− ∪ Y−) \ (X+ ∪ Y+)) .

If F is α-bisubmodular for some 0 ≤ α < 1, we call F skew bisubmodular. Notice

that 1-bisubmodular functions resemble exactly the bisubmodular functions. Huber

and Krokhin [HK14] constructed a convex extension akin to the Lovász extension

in the submodular case in order to show that skew bisubmodular functions can be

minimised by a polynomial number of evaluation oracle calls. This motivates the

hunt for more general settings that admit the same approach. Indeed, Fujishige,

Tanigawa and Yoshida [FTY14] found a natural generalisation of skew bisubmodu-

larity, the ~α-bisubmodularity for a pair ~α = (~α+, ~α−) of vectors ~α+, ~α− ∈ RE>0, that

admits an analogue of the Lovász extension over n-dimensional rectangles. Hence,

~α-bisubmodular functions can be minimised by a polynomial number of evaluation

oracle calls as well.

The formal definition presented in [FTY14] goes as follows. Fix a pair ~α = (~α+, ~α−)

of vectors ~α+, ~α− ∈ RE>0 and, for each 0 < t < 1, let Et = (Et,+, Et,−) ∈ 3E with

Et,+ :=

{
e ∈ E | ~α−(e)

~α+(e)
≤ t

}
and Et,− :=

{
e ∈ E | ~α+(e)

~α−(e)
≤ t

}
.

Moreover, we define a binary operation ∪t on 3E which is a variant of the union

operation ∪ on 3E as defined in Eq. (5.1). Let X ∪t Y := ((X ∪t Y)+, (X ∪t Y)−),

where

(X ∪t Y)+ := (X ∪0 Y)+ ∪ (Et,+ ∩ (X+ ∪ Y+) ∩ (X− ∪ Y−)) ,

(X ∪t Y)− := (X ∪0 Y)− ∪ (Et,− ∩ (X+ ∪ Y+) ∩ (X− ∪ Y−)) .

Finally, let 0 = t0 < t1 < · · · < tk+1 = 1 denote the distinct elements of the set{
min

{
~α−(e)
~α+(e)

, ~α+(e)
~α−(e)

}
| e ∈ E

}
∪ {0, 1}.

Now, a function F : 3E → R is called ~α-bisubmodular, if

F (X) + F (Y) ≥ F (X ∩Y) +
k∑
i=0

(ti+1 − ti)F (X ∪ti Y) (5.5)

for all X,Y ∈ 3E.

We address the sparsification question for ~α-bisubmodular functions by showing that

they form an arity reducible class. In combination with the minimisation result, we

conclude that ~α-bisubmodular functions of bounded arity can be sparsified efficiently.

57

Theorem 5.6. For any ~α = (~α+, ~α−) with ~α+, ~α− ∈ RE>0, the class of ~α-bisubmodular

functions is arity reducible.

Proof. Fix such a pair of vectors ~α = (~α+, ~α−) and let F be α-bisubmodular. More-

over, fix an effective support C ⊆ E and H ∈ 3C . To establish Eq. (5.5) for the

auxiliary function

F̂ : 3E\C → R, A 7→ F (A ∪H),

we also fix arbitrary X,Y ∈ 3E. Let’s decompose the RHS of Eq. (5.5) into its two

parts. The identity

F̂ (X ∩Y) = F ((X ∪H) ∩ (Y ∪H)) (5.6)

is derived by the exact same steps as in Eq. (5.4) because u and the component-wise

∩ coinincide. To establish the identities

F̂ (X ∪ti Y) = F ((X ∪H) ∪ti (Y ∪H)) (5.7)

for each 0 ≤ i ≤ k, we first show note that ∪0 is the same as t in the k = 2 case,

hence we get (X ∪0 Y) ∪H = (X ∪H) ∪0 (Y ∪H) by the same steps as we carried

out in the proof of Theorem 5.5. In addition, we have

Eti,+ ∩ (X+ ∪ Y+) ∩ (X− ∩ Y−)

= Eti,+ ∩ (X+ ∪ Y+ ∪H+) ∩ (X− ∪ Y− ∪H−)

= Eti,+ ∩ ((X+ ∪H+) ∪ (Y+ ∪H+)) ∩ ((X− ∪H−) ∪ (Y− ∪H−))

where the first step is by the fact that H+ ∩H− = ∅ and the second step is by the

idempotency law. Putting this and (X ∪0 Y) ∪H = (X ∪H) ∪0 (Y ∪H) together,

we obtain

((X ∪ti Y) ∪H)+

= (X ∪ti Y)+ ∪H+

=
(
(X ∪0 Y)+ ∪ (Eti,+ ∩ (X+ ∪ Y+) ∩ (X− ∩ Y−))

)
∪H+

=
(
(X ∪0 Y)+ ∪H+

)
∪ (Eti,+ ∩ ((X+ ∪H+) ∪ (Y+ ∪H+)) ∩ ((X− ∪H−) ∪ (Y− ∪H−)))

= ((X ∪H) ∪0 (Y ∪H))+

∪ (Eti,+ ∩ ((X ∪H)+ ∪ (Y ∪H)+) ∩ ((X ∪H)− ∪ (Y ∪H)−)) .

58

An analogous proof reveals the same identity for the − instead of the + component.

Therefore, (X ∪ti Y) ∪H = (X ∪H) ∪ti (Y ∪H), implying Eq. (5.7). We can now

finish the proof by stitching Eq. (5.6) and Eq. (5.7) together:

F̂ (X) + F̂ (Y) = F (X ∪H) + F (Y ∪H)

≥ F ((X ∪H) ∩ (Y ∪H)) +
k∑
i=0

(ti+1 − ti)F ((X ∪H) ∪ti (Y ∪H))

= F̂ (X ∩Y) +
k∑
i=0

(ti+1 − ti) F̂ (X ∪ti Y)

The first step is by definition of F̂ , the second by the ~α-bisubmodularity of F , and

the last step by Eq. (5.6) and Eq. (5.7). It follows that F̂ is indeed ~α-bisubmodular,

proving that ~α-bisubmodular functions form an arity reducible class.

59

Chapter 6

Conclusion

We have seen several new algorithms making the efficient construction of small spar-

sifiers possible mostly for but not limited to broad classes of submodular functions.

All algorithms build upon the core algorithm – a framework inspired by Rafiey and

Yoshida [RY22] that we introduced for the sparsification of general decomposable

functions, extending well beyond submodularity. This framework can be seen as a

universal sparsification tool that we specialised to several specific classes of functions

in order to gain more efficiency and better size bounds.

Moreover, by providing appropriate counterexamples, we revealed flaws in the papers

by Rafiey and Yoshida [RY22] and Perrault et al. [Per+21], the flaw in the latter

being admitted by the authors now. Regarding the flaws in both papers, we were

able to provide corrections under reasonable assumptions.

There are a lot more possible directions for future research than any conclusion could

reasonably mention. In fact, the research on sparsification links strongly to other

algorithmic problems related to submodularity all the way down to the fundamental

questions of complexity theory such as the P vs NP question [Bai+16]. For instance,

if we could minimise k-submodular functions in polynomial time, we were able to

efficiently construct small sparsifiers for k-submodular functions of bounded arity,

remember Section 5.2.

For these reasons, we suggest a selection of open questions that are closely related to

the results in this work and would form an interesting extension of it.

(1) k-submodular peak contributions: If F = f1 + · · · + fN : 2E → R≥0 with all

fi’s monotone submodular, we showed that
∑N

i=1 pi ≤ Bn in Lemma 3.9, where

B = max1≤i≤N |EX(B(fi))|. It is not clear whether and how this bound can be

generalised to k-submodular functions for k ≥ 2. Particularly interesting is the

question whether
∑N

i=1 pi = O(n) if all fi’s have bounded arity. This is the case for

k = 1 because B ≤ 2a
2

by Lemma 4.15.

60

(2) Ψ-maximisation for k-submodular functions: Matsuoka and Ohsaka [MO21] gen-

eralise the notion of curvature from submodular to k-submodular functions. Under

this definition, can Algorithm 2 be adapted to solve the Ψ-maximisation problem for

k-submodular functions? An obvious adaption would be to keep the same algorithm

but select a maximiser

(
e(`), i(`)

)
= arg max

(e,i)∈U×{1,...,k}

∆e,i

(
f | S(`−1)

)
∆e,i (g | S(`−1))

in each step. This modified algorithm always returns feasible solutions. But how

close are they to optimality?

(3) Ψ-maximisation under knapsack constraints: Can Algorithm 2 in [Per+21] be

fixed without any additional assumptions? If it exists, can such a fix be adapted to

k-submodular functions? In other words, can a similar algorithm as suggested in (2)

solve k-submodular Ψ-maximisation under knapsack constraints?

(4) In [RY22], Rafiey and Yoshida establish a tightness result suggesting that size

O
(
n+log 1

δ

ε2

∑N
i=1 pi

)
is essentially the best we can expect of an ε-sparsifier of a sub-

modular function in general. However, is it possible to obtain a better bound under

a relaxed notion of sparsification? The relaxed ε-sparsifiers introduced in Section 4.3

could serve as a starting point here.

(5) Bounded arity: Which classes of set functions are arity reducible and minimisable

in polynomial time? We got this for k-submodular functions with k ∈ {1, 2} as well

as ~α-bisubmodular functions. What about set functions that are not k-submodular,

e. g. functions satisfying a weaker notion of k-submodularity?

Solving any of these questions would not only lead to new sparsification results but

also potentially reveal improvements in various applications, from machine learning

to combinatorial optimisation.

61

Bibliography

[AMO93] Ravindra K. Ahuja, Thomas L Magnanti, and James B. Orlin. Network
Flows. Theory, Algorithms, and Applications. eng. Englewood Cliffs,
N.J: Prentice Hall, 1993. isbn: 978-0-13-617549-0.

[Bai+16] Wenruo Bai et al. “Algorithms for Optimizing the Ratio of Submodular
Functions”. In: Proceedings of The 33rd International Conference on
Machine Learning. Ed. by Maria Florina Balcan and
Kilian Q. Weinberger. Vol. 48. Proceedings of Machine Learning
Research. New York, New York, USA: PMLR, 20–22 Jun 2016,
pp. 2751–2759. url:
https://proceedings.mlr.press/v48/baib16.html.

[BK96] András A. Benczúr and David R. Karger. “Approximating s-t Minimum

Cuts in Õ(n2) Time”. In: Proceedings of the Twenty-Eighth Annual
ACM Symposium on the Theory of Computing, Philadelphia,
Pennsylvania, USA, May 22-24, 1996. Ed. by Gary L. Miller. ACM,
1996, pp. 47–55. doi: 10.1145/237814.237827.

[CKN20] Yu Chen, Sanjeev Khanna, and Ansh Nagda. “Near-linear Size
Hypergraph Cut Sparsifiers”. In: 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS). 2020, pp. 61–72. doi:
10.1109/FOCS46700.2020.00015.

[Coh+17] Michael B. Cohen et al. “Almost-Linear-Time Algorithms for Markov
Chains and New Spectral Primitives for Directed Graphs”. In:
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing. STOC 2017. Montreal, Canada: Association for Computing
Machinery, 2017, pp. 410–419. isbn: 9781450345286. doi:
10.1145/3055399.3055463.

[Cor+09] Thomas H. Cormen et al. Introduction to Algorithms, 3rd Edition. MIT
Press, 2009. isbn: 978-0-262-03384-8.

[FI05] Satoru Fujishige and Satoru Iwata. “Bisubmodular Function
Minimization”. In: SIAM Journal on Discrete Mathematics 19.4 (2005),
pp. 1065–1073. doi: 10.1137/S0895480103426339.

[FTY14] Satoru Fujishige, Shin-ichi Tanigawa, and Yuichi Yoshida. “Generalized
skew bisubmodularity: A characterization and a min–max theorem”. In:
Discrete Optimization 12 (2014), pp. 1–9. issn: 1572-5286. doi:
https://doi.org/10.1016/j.disopt.2013.12.001.

[Fuj91] “Submodular Systems and Base Polyhedra”. In: Submodular Functions
and Optimization. Ed. by Satoru Fujishige. Vol. 47. Annals of Discrete
Mathematics. Elsevier, 1991, pp. 17–108. doi:
https://doi.org/10.1016/S0167-5060(08)70127-4.

62

https://proceedings.mlr.press/v48/baib16.html
https://doi.org/10.1145/237814.237827
https://doi.org/10.1109/FOCS46700.2020.00015
https://doi.org/10.1145/3055399.3055463
https://doi.org/10.1137/S0895480103426339
https://doi.org/https://doi.org/10.1016/j.disopt.2013.12.001
https://doi.org/https://doi.org/10.1016/S0167-5060(08)70127-4

[GLS81] Martin Grötschel, Lovász László, and Alexander Schrijver. “The
Ellipsoid Method and its Consequences in Combinatorial Optimization”.
In: Combinatorica 1 (June 1981), pp. 169–197. doi:
10.1007/BF02579273.

[HK14] Anna Huber and Andrei Krokhin. “Oracle Tractability of Skew
Bisubmodular Functions”. In: SIAM Journal on Discrete Mathematics
28.4 (2014), pp. 1828–1837. doi: 10.1137/130936038.

[HK73] John E. Hopcroft and Richard M. Karp. “An n5/2 Algorithm for
Maximum Matchings in Bipartite Graphs”. In: SIAM J. Comput. 2
(1973), pp. 225–231. doi: https://doi.org/10.1137/0202019.

[HKP14] Anna Huber, Andrei Krokhin, and Robert Powell. “Skew
Bisubmodularity and Valued CSPs”. In: SIAM Journal on Computing
43.3 (May 2014), pp. 1064–1084. doi: 10.1137/120893549.

[IFF01] Satoru Iwata, Lisa Fleischer, and Satoru Fujishige. “A Combinatorial
Strongly Polynomial Algorithm for Minimizing Submodular Functions”.
In: J. ACM 48.4 (July 2001), pp. 761–777. issn: 0004-5411. doi:
10.1145/502090.502096.

[IP01] Russell Impagliazzo and Ramamohan Paturi. “On the Complexity of
k-SAT”. In: Journal of Computer and System Sciences 62.2 (2001),
pp. 367–375. issn: 0022-0000. doi:
https://doi.org/10.1006/jcss.2000.1727.

[KK15] Dmitry Kogan and Robert Krauthgamer. “Sketching Cuts in Graphs
and Hypergraphs”. In: Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science. ITCS ’15. Rehovot, Israel:
Association for Computing Machinery, 2015, pp. 367–376. isbn:
9781450333337. doi: 10.1145/2688073.2688093.

[KTŽ15] Vladimir Kolmogorov, Johan Thapper, and Stanislav Živný. “The
Power of Linear Programming for General-Valued CSPs”. In: SIAM
Journal on Computing 44.1 (2015), pp. 1–36. doi: 10.1137/130945648.

[LS18] Yin Tat Lee and He Sun. “Constructing Linear-Sized Spectral
Sparsification in Almost-Linear Time”. In: SIAM Journal on Computing
47.6 (2018), pp. 2315–2336. doi: 10.1137/16M1061850.

[MO21] Tatsuya Matsuoka and Naoto Ohsaka. “Maximization of Monotone
k-Submodular Functions with Bounded Curvature and
Non-k-Submodular Functions”. In: Proceedings of The 13th Asian
Conference on Machine Learning. Ed. by Vineeth N. Balasubramanian
and Ivor Tsang. Vol. 157. Proceedings of Machine Learning Research.
PMLR, 17–19 Nov 2021, pp. 1707–1722. url:
https://proceedings.mlr.press/v157/matsuoka21b.html.

[MR95] Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms.
Cambridge University Press, 1995. doi: 10.1017/CBO9780511814075.

[NWF78] George Nemhauser, Laurence Wolsey, and M. Fisher. “An Analysis of
Approximations for Maximizing Submodular Set Functions—I”. In:
Mathematical Programming 14 (Dec. 1978), pp. 265–294. doi:
10.1007/BF01588971.

63

https://doi.org/10.1007/BF02579273
https://doi.org/10.1137/130936038
https://doi.org/https://doi.org/10.1137/0202019
https://doi.org/10.1137/120893549
https://doi.org/10.1145/502090.502096
https://doi.org/https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/2688073.2688093
https://doi.org/10.1137/130945648
https://doi.org/10.1137/16M1061850
https://proceedings.mlr.press/v157/matsuoka21b.html
https://doi.org/10.1017/CBO9780511814075
https://doi.org/10.1007/BF01588971

[Orl07] James Orlin. “A Faster Strongly Polynomial Time Algorithm for
Submodular Function Minimization”. In: Mathematical Programming
118 (May 2007), pp. 240–251. doi: 10.1007/s10107-007-0189-2.

[Per+21] Pierre Perrault et al. On the Approximation Relationship between
Optimizing Ratio of Submodular (RS) and Difference of Submodular
(DS) Functions. Jan. 2021. doi: 10.48550/ARXIV.2101.01631.

[RY22] Akbar Rafiey and Yuichi Yoshida. “Sparsification of Decomposable
Submodular Functions”. In: Proceedings of the AAAI Conference on
Artificial Intelligence 36.9 (June 2022), pp. 10336–10344. doi:
10.1609/aaai.v36i9.21275.

[Sch00] Alexander Schrijver. “A Combinatorial Algorithm Minimizing
Submodular Functions in Strongly Polynomial Time”. In: Journal of
Combinatorial Theory, Series B 80.2 (2000), pp. 346–355. issn:
0095-8956. doi: https://doi.org/10.1006/jctb.2000.1989.

[SY19] Tasuku Soma and Yuichi Yoshida. “Spectral Sparsification of
Hypergraphs”. In: Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2019, San Diego, California,
USA, January 6-9, 2019. Ed. by Timothy M. Chan. SIAM, 2019,
pp. 2570–2581. doi: 10.1137/1.9781611975482.159.

[TŽ16] Johan Thapper and Stanislav Živný. “The Complexity of Finite-Valued
CSPs”. In: Journal of the ACM 63.4 (Nov. 2016), pp. 1–33. doi:
10.1145/2974019.

[Von10] Jan Vondrak. “Submodularity and curvature: the optimal algorithm”.
In: RIMS Kôkyûroku Bessatsu (Jan. 2010).

[WŽ16] Justin Ward and Stanislav Živný. “Maximizing K-Submodular
Functions and Beyond”. In: ACM Trans. Algorithms 12.4 (Aug. 2016).
issn: 1549-6325. doi: 10.1145/2850419.

64

https://doi.org/10.1007/s10107-007-0189-2
https://doi.org/10.48550/ARXIV.2101.01631
https://doi.org/10.1609/aaai.v36i9.21275
https://doi.org/https://doi.org/10.1006/jctb.2000.1989
https://doi.org/10.1137/1.9781611975482.159
https://doi.org/10.1145/2974019
https://doi.org/10.1145/2850419

	Introduction
	Preliminaries
	Submodularity
	Sparsification

	The Core Algorithm
	Sparsifying Any Decomposable Function
	The Submodular Case

	Improved Sparsifier Constructions
	Low Curvature
	Approximate -Maximisation
	Knapsack-Constrained -Maximisation
	Assembling a Sparsifier

	Bounded Arity
	The Arity of a Submodular Function
	Computing The Peak Contributions
	Application to Hypergraph Cut Sparsification

	Sparsifier in the Limit

	Generalised Submodular Sparsification
	Introducing K-Submodular Functions
	K-Set Functions of Bounded Arity
	Notions of Arity and Reducibility
	Peak Contributions For Arity Reducible Classes
	K-Submodular Functions
	Generalised Skew Bisubmodular Functions

	Conclusion
	Bibliography

