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Abstract

It is currently an open problem in isogeny-based cryptography to efficiently compute
supersingular elliptic curves without revealing their endomorphism ring or other in-
formation that might be used as trapdoor. Various ideas have been proposed in the
literature, but as presented there, none of them is currently able to solve the prob-
lem. In our work, we focus on the second approach from [Boo+22], which is based
on root-finding of specialized modular polynomials.

We found a special case in which we can answer an important question posed in the
original work, namely to quantify the probability of the computed curve being super-
singular. Our case also seems suitable for computations, and its success probability
is higher than we expect it to be in the generic case. Furthermore, we present a
modification of the original scheme, and argue why it might allow more efficient com-
putations. However, both of these still suffer from the main problem of the original
idea, namely that there is currently no way to efficiently work with the considered
polynomial systems. Still, our analysis reveals some of the underlying structure, and
we hope that further research might find a way to make this practical.

[Boo+22] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa,
Steven D. Galbraith, Sabrina Kunzweiler, et al. Failing to hash into supersingular
isogeny graphs. Cryptology ePrint Archive, Report 2022/518. 2022. URL: https:
//ia.cr/2022/518.
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Chapter 1

Introduction

The continuing progress in the construction of quantum computers has pushed the development
of post-quantum cryptographic schemes into the center of attention. One approach is isogeny-
based cryptography, which relies on the theory of elliptic curves and their isogenies. Founded
on ideas of Couveignes, Rostovtsev and Stolbunov [Cou06; RS06; Sto10], a variety of different
schemes have been proposed since then. This includes the well-known, although recently broken
[CD22], key exchange protocol SIDH [FJP11].

Although the pioneering works have been based on ordinary curves, a majority of later
schemes uses supersingular curves. Hence, it is a natural question how to computationally
generate supersingular curves in implementations. The good new is that methods based on
complex multiplication [Bré07] together with random walks allow us to find uniformly random
supersingular curves even over prime fields of exponentially large characteristic. However, this
method has a drawback. Namely, whoever generates a curve using this algorithm can easily find
its endomorphism ring, which can be used as a trapdoor for various cryptographically relevant
problems [Eis+18].

In many cases like encryption, this is not a problem at all, since the person generating the
curve has access to the secret anyway, for example because they are a legitimate party in the
communication. However, even for SIDH (before it was broken), there were some subtle security
problem related to the torsion-point attacks, that could be prevented by other, trapdoor-free
ways of finding starting curves. Furthermore, many applications, for example in blockchain
environments or for more sophisticated primitives [Feo+19; BF20], are insecure if any party
has knowledge of a trapdoor for the starting curve. Hence, these scenarios currently require a
trusted third party, that generates a curve using one of the known approaches, and then forgets
about the additional information produced in the process. Therefore, there is natural interest in
methods to eliminate this trusted third party, by finding algorithms that generate supersingular
curves, for whom the endomorphism ring problem is as hard as for random curves - even when
the randomness used for the generation is known. This is currently an open problem.

Katherine Stange’s idea Some approaches have been proposed in [Boo+22] and also in
[MMP22], most of them trying to exploit special structure to find roots of very large polynomials.
However, for each approach so far there are some serious obstacles that must be overcome before
it might be practical. In this work, we focus on the second idea from [Boo+22], which is proposed
by Katherine Stange. Basically, it relies on the observation that elliptic curves with fixed-degree
isogenies to their Galois conjugate are supersingular with higher probability. Further, they
propose an approach based on modular polynomials and resultants that can find a random curve



with two isogenies of different, fixed degree to their Galois conjugate. However, as mentioned in
[Boo+22], there are two main problems with this approach.

First, it is not clear how strong the correlation between having fixed-degree isogenies to the
conjugate and the supersingularity is. The paper contains an estimate under the assumption
that the existence of isogenies is in a certain sense independent, but this estimate does not
completely match their experimental data. Furthermore, in the case of taking two isogenies of
different degree, the correlation seems to be too weak for the idea to work properly. According
to their heuristic, it can be fixed by using three different isogenies, but this is also not proven,
and computationally more expensive than the two-isogeny variant.

The second problem is that in order to avoid vulnerabilities, the algorithm has to work with
modular polynomials of exponential degree. Currently, no way to exploit special structure is
known that would allow us to do this efficiently.

Our contribution In our research, we tried to address both problems. Namely, we were able
to find a special case of the two-isogeny variant, in which the fraction of supersingular elliptic
curves is provably big enough. More concretely, we present the following result.

Proposition 1 (First Result). Letl be a small prime, f be an odd integer and e an even integer
such that I° = O(p). Then a random elliptic curve over Fp2 with a cyclic 1 -isogeny and any
l¢-isogeny to its Frobenius conjugate is supersingular with probability exponentially close to 1.

Taking the degrees of the isogenies to be prime powers might additionally have computational
advantages, as it allows us to decompose the isogeny into a sequence of smaller ones.

The second problem seems to be more difficult, and we did not find an algorithm that is
efficient enough. However, we also propose a variant of the original idea, and argue that the
structure of the corresponding polynomials looks like it might make computations simpler. This
new method is based on the following statement, which is our second main result.

Proposition 2 (Second Result). Let ly,...,1, be a small primes with []1l; > 2p. Then a ran-
dom elliptic curve over IF), such that there are three l;-isogenous curves over Fp2 for each i is
supersingular with probability exponentially close to 1.

Finally, we also present some classical results from the theory underlying isogeny graphs, in
the hope of making them more accessible to cryptographers. Most of the standard mathematical
literature on the subject (e.g. [Cox13]) usually focuses on the case of elliptic curves over C, and
the finite field setting used in cryptography introduces some additional subtleties. The finite field
setting and its connection to the classical, complex setting are rarely treated, and then in works
like [Deud1] or [Wat69], which are quite challenging. For example, the work of Deuring [Deu4l]
is quite old and written in German, while the work of Waterhouse [Wat69] treats the much more
general theory of abelian varieties, and uses a great deal more algebraic geometry than necessary
for elliptic curves. To summarize, (relatively) elementary proofs for some classical results seem
to be missing in the crypto literature, and we also want to bridge this gap in this work.



Chapter 2
Isogeny graphs

Before we start with the discussion of isogeny graphs and their mathematical structure, we shortly
introduce the required foundations on elliptic curves. However, since these do not bear directly
on our work, and are usually developed using heavy algebraic geometry, we do not include proofs
for this part. The reader is referred to the standard work on the subject [Sil09]. We also include
references to this work for each statement.

2.1 Foundations of Elliptic Curves and Isogenies

2.1.1 Elliptic Curves and the group law

Consider a field k with algebraic closure k. An elliptic curve is a nonsingular projective curve
of genus 1 together with a special point O. If the characteristic of k is not 2 or 3, each elliptic
curve F is isomorphic to a projective plane curve given by an affine equation of the form

E:y’=2>+Az+ B

such that the special point is the projective point at infinity O = (0 : 1 : 0) [Sil09, Prop. IIL.3.1].
Furthermore, an isomorphism class of elliptic curves is uniquely determined by its j-invariant
[Sil09, Prop. I11.1.4], defined as

(44)°
—16(4A3 + 27B3)

§(E) == —1728

Since isomorphic curves have the same properties in all aspects that matter for this work, we
will use the terms elliptic curves and isomorphism classes of elliptic curves interchangeably from
now on. In particular, note that whenever we count elliptic curves with special properties, we
only count isomorphism classes.

The reason that makes elliptic curves so important is that they are abelian varieties, i.e.
become groups in a way compatible with the geometric structure. There are different charac-
terizations of this group law, the most explicit being its representation by polynomials. More
concretely, if the curve is given by an affine equation y?> = 2® + Az + B, then the sum of two
affine points P = (21 :y1 : 1) and Q = (22 : y2 : 1) is given as

P+Q= (>‘2N —zyp® — o )\(21‘1#2 + zop® — )\2) — M3)



where
A:p) = (Y2 —y1: 22 —x1) if 21 # 29
) (322 + A: 2yy) if 11 =29

Moreover, we declare the special point O to be the identity element of the group. The nontrivial
result is now that this defines a group law on the set of points of E [Sil09, Prop. I11.2.2]. A
more theoretical characterization of the group law is given by [Sil09, Prop. 111.3.4], which states
that the above operation + is the same as the group law induced by a natural isomorphism
E =~ Pic(E) from the points of E to its Picard group.

The two most important subgroups of the group E are now the n-torsion group

En):={PeFE| P+..+P=0}

n times

and the subgroup of k-rational points
E(k):={Pe€E|P=(x:y:z) for some z,y,z € k}

A property of elliptic curves that can be used for some slightly exotic cryptographic primitives
(like identity-based crypto, or the verifiable delay function we present in Section 3.2) is the Weil
pairing. Let m > 2 be an integer (coprime to p = char(k) if char(k) # 0). Then there exists a
map, the m-th Weil pairing

em : E[m] x E[m] = i

where 1, € C* is the group of m-th roots of unity. It has the following properties (see [Sil09,
Prop. I11.8.1]):

o ¢y, is bilinear, i.e. €, (S+S5",T) = €,(5,T)en (S, T) and similar for the second argument.
o e, is alternating, i.e. €, (T,T) = 1.

e e, is nondegenerate, i.e. if e,,(S,-) is the constant map O, then S = O.

2.1.2 Isogenies

An isogeny between two elliptic curves E and E’ is a morphism (in the sense of algebraic geom-
etry) that maps O to O. The first important result is that an isogeny is automatically a group
homomorphism [Sil09, Thm I11.4.8]. The simplest example of an isogeny is the multiplication-
by-m map on an elliptic curve F

[m]:E—-E, P—P+..+P
————

m times

An isogeny ¢ : E — E’ is closely connected to the field extension k[E]/¢.k[E’], where 1), :
k[E'] — k[FE] is the associated map of k-algebras. The degree of 1 is then given by the degree of
this field extension (it is always finite), and 1 is said to be separable, if k[E]/¢.k[E'] is. Similarly,
we can define the separability degree of an isogeny. It is a fact of algebraic geometry that both
degree and separability degree behave multiplicatively under composition. Furthermore, the
separability degree of an isogeny is equal to the size of its kernel [Sil09, Thm II1.4.10]. Tt is
common to call isogenies of degree m also m-isogenies.

Studying again the example of the multiplication-by-m isogeny [m] : E — E, one can show
that this has degree m?2. Its kernel is obviously the subgroup E[m], and thus, if [m] is separable,



we see that E[m] = (Z/mZ)?. We will explain what happens in the case that [m] is inseparable
in the next section.

A very important result on isogenies is that they can be classified by their kernel ker(¢)) C E,
which is always a finite group. More concretely, up to isomorphism, there is a one to one
correspondence

{Pairs (1, E') where ¢ : E — E’ is a separable isogeny} — {Finite subgroups G < E}
(E',4) — ker(y)

In particular, for a finite subgroup G < F there is a unique (up to isomorphism) elliptic curve
E’ and separable isogeny ¢ : E — E’ with kernel G. We also denote E’ by E/G, as that is the
group structure on E’ by the isomorphism theorem (morphisms of projective irreducible curves
are always surjective).

Furthermore, this correspondence is compatible with the inclusion of finite subgroups as
follows. If G; < G2 < FE are two finite subgroups, then the unique separable isogeny v : £ —
E/Gs with kernel Go factors through the isogeny ¢ : E — E/Gi, i.e. there is an isogeny
p: E/Gy — E /G5 such that the diagram

v

commutes. An analogous statement also holds for inseparable isogenies. If char(k) = p, then an
inseparable isogeny ¢ : E — E’ always factors through the p-th power Frobenius 7 : E — E®)
(which is of course purely inseparable), where E®) is the elliptic curve with all coefficients of
the defining equation raised to the p-th power. Note that can also define the operation -(») on
isogenies, by again raising each coefficient in the defining polynomials to the p-th power. This
way, -(P) becomes an endofunctor on the category of elliptic curves over IF‘p and their isogenies.

Sometimes we will mention cyclic isogenies, which are isogenies of cyclic kernel. Hence, for
an isogeny ¢ : E — E', being cyclic is equivalent to the fact that ¢ does not factor through [m]
for any integer m > 2.

The final notion we require in this context is the one of the dual isogeny. Since the ker-
nel of an isogeny ¢ : E — E’ is a subgroup of size deg,(¢)), we see that it is contained in
E[deg(v)] = ker[deg(t))]. Now the previous correspondence shows that 1 factors through through
the multiplication map [deg(v)], via an isogeny "

[deg ()]

P 0
FE E' FE

The isogeny 1/3 : B/ — F has then the same degree as 1, and is called the dual isogeny of .
Interestingly, the dual isogeny behaves like an adjoint w.r.t. the Weil pairing, i.e.

em(S’ (b(T)) = em(é(s)’ T)

for an isogeny ¢ : E — E’ and the m-th Weil pairing e,,, of F resp. E’ (see [Sil09, Prop. 111.8.2]).



2.1.3 The endomorphism ring

For an elliptic curve E, we write from now on End(FE) for the set of isogenies E — FE. Via
composition and pointwise addition, this becomes a (possibly noncommutative) unital ring. The
existence of the multiplication-by-m isogeny implies that there is a ring homomorphism

Z — End(E)

As it turns out, this is always injective [Sil09, Prop. 111.4.2], hence the endomorphism ring has
characteristic 0. Much more is known about the endomorphism ring, though. In particular, there
is the following theorem

Theorem 3. Let E be an elliptic curve over k. Then End(FE) is one of the following
e The ring of integers Z.
e An order in a quadratic imaginary number field.
o An order in the quaternion algebra ramified exactly at p and oo, where p = char(k).

If char(k) = 0, only the first two are possible. Similarly, if char(k) # 0, only the last two are
possible.

For a proof, see e.g. [Sil09, Corollary II1.9.4].

Ifk C Fp, we call the curve E ordinary in the second case and supersingular in the third
case. There are some other fundamental differences between those two types, as displayed in the
following table. Denote by 7g the g-th power Frobenius, where E is defined over F,.

ordinary supersingular
[p] has separability degree p [p] is totally inseparable
Elp] = Z/pZ Elp] = {0}
End(FE) is commutative End(F) is not commutative
Tr(rg) 20 mod p Tr(rg) =0 mod p
g separable g totally inseparable
p 1 d(End(E)) and p | d(Z[rg)) p | d(Zlrs)

Note that the trace ! of the Frobenius endomorphism Tr(ng) is of some importance, as (in
the ordinary case) it determines the quadratic imaginary number field that contains End(FE).
Furthermore, there is the relationship

Tr(re) = ¢+ 1 - #E(F,)
There is also the famous theorem by Hasse [Sil09, Thm V.1.1] which states that
[#E(F,) —q—1/<2yq

In particular, this implies that |Tr(7g)| < 2,/gq. Furthermore, if £/F, is ordinary, the discrimi-
nant of the order End(F) divides the discriminant d(Z[rg]), as Z[rg] C End(E). Now it follows
that —4¢ < d(End(E)) < 0 in this case, because d(Z[rg]) = Tr(rg)? — 4q.

1By trace, we mean either the trace in the quadratic imaginary number field, or the reduced trace in the
quaternion algebra. In particular, if 75 = £p (the supersingular setting with E/]sz ), we have Tr(mg) = +2p.



Finally, note that in a supersingular elliptic curve, we always have [p] = er?, where now
7 : E — E® the the p-th power Frobenius and e is an automorphisms of E. However, it is not
too hard to show [Sil09, Thm IIT.10.1] that

2 if j(E) #0,1728
#Aut(E) = {4 if j(E) = 1728
6 ifj(E)=0

in the case char(k) # 2,3. Thus we see that either j(E) € {0,1728} or [p] = 72, and so in both
cases that j(E) € Fp2. In other words, every supersingular curve is isomorphic to a curve over
F,.

p

2.2 The ordinary isogeny graph

In cryptography, we are of course not just interested in abstract structure of elliptic curves and
isogenies, but also in computing with them. A fundamental algorithm based on the Velu formulas
allows to compute the curve F/G and the isogeny F — E/G for a finite subgroup G < F in
time polynomial in #G. However, in the general case, there is no way how one can represent or
compute an isogeny of exponentially large degree. This is where one can do cryptography, since
for smooth-degree isogenies v, we can factor them into a sequence of small degree isogenies, and
evaluate them one after the other. However, if this factorization is not known, it seems very hard
to evaluate the isogeny.

The underlying structure of this approach (and others) can now be captured by the l-isogeny
graph I';(F,), for a prime ! # p. For this chapter, and the rest of this work, we assume p =
char(k) # 2, 3.

Definition 4. Denote by I';(k) the graph whose vertices are isomorphism classes of elliptic
curves over k, and the edges are the degree [ isogenies (again up to isomorphism 2) between
them (with multiplicity).

Since there is never an isogeny between ordinary and supersingular curves, each connected
component of I';(F,) contains either only ordinary or supersingular curves. Hence, we will call
them ordinary and supersingular connected components, respectively. Furthermore, the existence
of the dual isogeny shows that this graph is undirected. We also know that if p # 2,3 and [ # p,
the graph FZ(IF‘p) is (I + 1)-regular except at the j-invariants 0 and 1728, since there are exactly
[ + 1 subgroups of order [ in E[l] = (Z/IZ)?.

Note that when doing computations with this graph, we identify each vertex with the j-
invariant of the corresponding curves. This makes it easy to work with isomorphism classes of
elliptic curves. Furthermore, we observe that I';(F,) has exactly ¢ vertices, since there are that
many j-invariants j € Fy.

We begin by analyzing the structure of the ordinary part of I';(F,), which (as we will see), is
quite different from the supersingular part. There is a very powerful description of this graph in
terms of the endomorphism rings of the ordinary curves. Since these are (usually non-maximal)
orders in quadratic imaginary number fields, whose theory is somewhat more complicated than
the one of maximal orders (which are Dedekind domains), we first study them a little.

2We say two isogenies ¢, 1) : E — E’ are isomorphic, if there are automorphisms 7 € Aut(E) and p € Aut(E’)
such that ¢ = pot or. Note that Aut(E) = {£1} unless j(E) € {0,1728} (assuming char(k) # 2, 3), so this case
occurs only at the two vertices with j-invariants 0 and 1728.



2.2.1 Imaginary quadratic orders

For this part, let O be an order in an imaginary quadratic number field K, and let Ok denote
the maximal order in K. What we will mainly do in this section is to show that ideal a < O
with norm 9(a) := [O : a] coprime to the index [O : O] behave “nicely”, i.e. similar to ideals
in a Dedekind domain. Furthermore, we will study the structure of the class group of O. First,
we state a version of the Chinese remainder theorem.

Lemma 5. Let a be a nonzero ideal of O. Then

O/a= @ 0,/a0,
P

For a proof of this, see e.g. [Neu92, Prop. 1.12.3]. From now on, write 9(a) for the norm of
an ideal a < O, i.e. M(a) := [O : a]. In the Dedekind ring Ok this is multiplicative, in the order
O, it is (in general) not.

Lemma 6. Let p < Ok be a prime with N(p) L [Ok : O). Then p has a set of generators in O.

Proof. Suppose p is a prime over p, and write O = Z[¢| for a generator ¢ of O. We use the
decomposition law in Dedekind ring extensions. Since N(p) L [Ok : O] are coprime, we can
apply it for the generator ¢ of O.

If MiPo(¢) = f(X)g(X) mod p splits, then have

pOr = (p, f(9))(p, 9(9))

and so the prime ideals over p are (p, f(¢)) and (p, g(¢)). If MiPo(¢) mod p is irreducible, then
have that pOp is prime and thus the only prime ideal over p. Hence, all prime ideals over p
(including p) have a set of generators in O. O

Since multiplication of ideals can be expressed by the product of their generators, we get the
following corollary.

Corollary 7. An ideal a < Ok of norm N(a) L [Ok : O] has a set of generators in O.

Proposition 8. Let p < O be a prime ideal with N(p) L [Og : O] and p' = pOk. Then
Op = (Ox)y-

Proof. We can choose a generator o of Ok and find Og = Z[a] as well as O = Z[f«a] where
[ =10k : O]. Thus f ¢ p and so f € O. Therefore a = fl1fa e Oy and so (Ok)py C Op. O

Lemma 9. If a < O with M(a) L f:=[Ok : O] then also M(aOk) L f. Conversely, if a < Ok
with N(a) L f, then also N(aN O) L f.

Proof. For the first statement, note that if M(a) L f, then also a L fO and so there is a relation
1 =a+ fbwitha € aand b € O. However, then 1 € aOg + fOk and so aOg L f, thus
*ﬁ(a(’)K) 1L f

On the other hand, for a < Ok with M(a) L f, we have the map

O — Ok/a, z+[z]

It clearly has kernel an O, and so we find that O/(aNO) C Ok /a. Thus N(aNO) | MN(a) and
it follows that M(a N O) L f. O



Instead of all ideals in O, we often only work with the set of invertible (fractional) ideals. A
fractional ideal a < O is invertible, if there is another fractional ideal b with ab = O. In contrast
to the set of all ideals, this is now a group. Clearly, every ideal a of the Dedekind ring Ok is
invertible.

This already gives a somewhat nice description of most ideals of the order O.

Proposition 10. Let J¢(O) resp. J¢(Ok) denote the monoid of invertible integral ideals of
norm L f =[O0k : O]. Then

jf(O)%jf(OK), a— aOg
is a monoid isomorphism with inverse
j'f(OK)%jf(O), a—an©

Proof. Clearly, this is a well-defined monoid homomorphism. Hence, we have to show that it is
bijective.

By Corollary 7, we know that any a < Ok with 9(a) L [Ok : O] has generators in O, thus
(aNO)Ok = a. This shows that aN O is a preimage of a, and so the map is surjective.

Assume now a,b < O with aOg = bOg and N(a), N(b) L f. We show that aO, = bO,, for
all primes p < O. Note that if 9(p) £ f, this holds trivially, as a0, = O, = bO,. Otherwise,
note that

a0y = a(Ok)p = a0k (Ok )y = bOk (Ok )y = b(Ok)p = 0O,

as Op = (Ok)p. This shows that aO, = bO, at all primes, so a = b and our map is injective.
Furthermore, since (a N O)Ok = a, we see that it has the inverse

J;(0Ok) = 34(0), a—anO
which must then be well-defined. O

Furthermore, we are interested in the class group of O, which is now the quotient of only the
invertible ideals of O modulo the principal ideals. The following statements are special cases of
the general theory in [Neu92, Chapter 1.§12].

Lemma 11. Write 3(O) for the group of invertible fractional ideals in O. Then there exists an
isomorphism

L G}K*/(’);F — J(0)
p

with 1(a)O, = (ap) for all prime ideals p < O and a = (ap),.

Proof. This proof is taken with some modifications from [Neu92, Prop. 1.12.9].

First, we show that for an invertible ideal a = (a1, ...,a,) have that aO, is principal. By
assumption, we have ab = (1) with b = (b1,...,b,,) and so 1 = > a;b;c; with ¢; € O. Clearly,
1 ¢ pO, and thus one a;bic; ¢ pO,, s0 a;b;c; € Oy is a unit. Therefore, we find that a0y = a; 0,
because for all x € aQy, have then zb;c; € abO, = O,, so

T = a; xbici(aibici)_l S aiOp
e e
€0, €05

Now we can see that there is a well-defined homomorphism

T 3(0) » @K* /O;
p



that maps an ideal a to the equivalence class of any generator of aQ,.

Clearly, it is injective, since if a0y, # bO, for any prime p, then a # b.

It is thus left to show that :~! is also surjective. The following proof is taken with some
modifications from [Neu92, Prop. 1.12.2].

Let (ap)p € B, K7/O; and set a := [, a;Op. We claim that 1™ Ha) = (ap)y. Clearly we
have a0, C a,Oy, so it is left to show the inclusion 2.

By multiplying both (aq)q and a with an appropriate constant, we can assume that all aq € O.
Furthermore, all but finitely many aq € Of, so assume wlog those are aq = 1.

Let b € O\ {0} with baq/a, € O for all finitely many q, aq # 1.

Now the Chinese remainder theorem gives us ¢ € O such that

c=b modp and c=bay/a, modg® forq#p,aq#1

where £ > 1 is an integer such that qk(’)q C aqOy. Technically, c is only unique modulo
pN ﬂq#’aq#l g, but we are satisfied with any representative.

Now note that ¢/b € O}. Therefore, we can choose d € O\ p with dc/b € O. Hence, also
€:=dc/be€ O, and € € 0. We claim that aye € a and the claim follows.
We have

e aye € a,O, since e € O C O,.
p pUp p

o ape € a0, for q # p, aq # 1 since apc/b = aq mod q¥, thus ayc/b € aqO4 and finally
ape = daye/b € aqOy.

o ape € aqOy for q with aq = 1, since ap, € € O, thus ape € O C Oy = aq04.
The claim follows. O
This lemma is a very useful characterization of invertible ideals.

Lemma 12. The map
Cl(0) — Cl(Ok)

induced by the map

@K*/O; — @K*/(OK); (ap)p = (agno)q
P q

and Lemma 11 is surjective.

Proof. Consider the set S of primes p < O such that 91(p) £ d(O). Our proof will explicitly
consider what happens at a prime q < Ok over a prime p € O. We then use that there are only
finitely many such primes, and construct a preimage locally at those. Finally, we remark that at
all other primes, the claim is trivial, as O and Ok look the same at q (see Prop. 10).

For a prime p € S, let now qq, ..., g, be the primes over p in Og. Then there is

8% e ai\ (a?ulJa)
q

where q runs over all finitely many primes of Ok which lie over some prime in S. This is possible,
since (Ok)q, is a PID.
Now we have that
Vg, (Bi) =1 and wvq(B;) =0

10



Hence, for any fractional, invertible ideal a of @’ we can multiply it by the BZ-(p) to achieve that
vq, (@) = vg,(a) whenever q; and q; lie over the same prime p € S
Furthermore, we can achieve that
eq | vq(a) where eq is the ramification degree of q over Q

Note that this is trivial for all primes q except those over a prime in S, as the others have norm
coprime to d(O), so coprime to d(Ok) and are thus unramified, i.e. eq = 1.
Now by Lemma 11, we find an invertible, fractional ideal b of O with

bO, = pral@)/eq O, where q is a prime of O over p € S, over a prime number p
and (by Lemma 8)
bO, = a(Ok), where qis a prime of Ok over a prime p ¢ S

Now we clearly have
b(Ok)q = a(Ok)q

for all primes q of O, thus [b] maps to [a] under C1(O) — Cl(Ok). O
We are now ready for our first description of Cl(O).

Lemma 13. Let f =[Ok : O] and assume that Oy = {£1}. There is an exact sequence

1 = @r;/0; L clo) L oK) — 1
p

where Ry, is the localization of Ok at the multiplicative set O \ p.

Proof. This proof is inspired by [Neu92, Prop. 1.12.11], but we have completely rewritten it to
avoid the heavy use of homological algebra.
First, note that we have already shown the surjectivity of the map

g:Cl(O) = Cl(Ok)

in Lemma 12.
Next, note that the isomorphism ¢ : €9, K*/Op — 3(O) induces a map

f: P R;/0; - CLO)
P

where R, is the localization of Ok at the multiplicative subset O \ p.

It is injective, as for an element a = (ap), in the kernel, have that «(a) = (a). However,
then (ap) = (a) in Op. Hence, a, = ae for € € O and we can assume that the representatives
ap € Ry are chosen such that a, = a. This implies that a € [, By € Ok, and by the assumption
O}, = {£1}, have then o = 1. Hence (ap)p, =1 = (1),.

Now it is only left to show that the sequence is exact at C1(O).

For a = (ap), € @, R;/O;, we know that

L(a)(OK)q = L(a)oqﬂoRqHO(OK)q = aqﬁoRqﬂO(oK)q = RqﬂO(OK)q = (OK)q

11



so g(f(a))(Ok)q = (1) for all primes ¢, and finally f(a) € ker(g). Now we show the converse.
Let a < O be integral and invertible in the kernel of g, i.e. a(Ok)q = a(Ok)q for a fixed
o € K* and all primes q of Ok. Since [1a] = [a] are in the same ideal class, we can assume wlog
that oo = 1.
Let a = (ap)p = ¢t~ (a). Then for all primes p < O and q < Ok over p, we have

ap(Ok)q = apOp(Ok)q = 1(a)(Ok )q = a(Ok )q = a(Ok)q = (Ok)q

This clearly implies that a, € (Ok)j. Since a is integral, we see that a, € Op C R, and so
ap € Ry N[5,(Ok )y = R;. Therefore a € im(f) and we are done. O

The expression @p Ry /Oy is still somewhat unwieldy, but fortunately, it has the following
nice form.

Lemma 14. We have
(Ok/FOK)"/(O/fOK)" = P R}/ O}
p

Note that fOx C O is the largest ideal of Ok contained in O, and thus an ideal of O as well.

Proof. First, note that if M(p) L f, we know that R, = (Ok)po, and so by Prop. 8 that Ry /O;
is trivial.

Note that for each prime p < O containing fOg have a finite, positive number of primes
q < Ok with g O = p. There is at least one, as pOk is contained in a prime, and the number
is finite, as fOgk factors into finitely many primes in the Dedekind ring Og. Hence, we have by
the Chinese remainder theorem (Lemma 5)

(0/f0K) = P (0p/fOK0) = @ (Oy/fRy)*

p2fOK p2fOK

Furthermore, we have

(Ox/fOx)" = B (Ox)e/f(Ox)) = B B (Ok)a/f(Ox)q)*

920k p2fOk 42p0k

We claim that

Ry/fRy = €D (Rp)a/f(Rp)a= € (Ok)a/f(Ok)q

q2pOKk q2pO0k

This isomorphism follows from the Chinese remainder theorem (Lemma 5) and the fact that the
prime ideals q over pOg give all prime ideals of R,.
Both isomorphisms are compatible 2, and so have

(Ok/fOK)"/(O/fOK)" = EB (Rp/fRyp)"/(Op/fRy)"

pP2fOK

Finally, observe that the map Ry — (Ry/fRy)"/(Op/fRy)" has kernel Op. It also is surjective,
since for [a] € (Ry/fR,)* thereis b € R, with ab € 1+ fR, and thus ab=1 mod pR, (because
we only consider p with f € p). In particular, a ¢ q for all primes q of R, (these are all over
pRy), and so a € Ry. O

3Meaning the inclusion O/fOx C O /fOx commutes with the natural map

0/10x % 0/ 10K 0p) = @D(Os/FRy) - ED B/ FRy) 5 O/ fOK
P P

p
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Corollary 15. Suppose O = {£1}. Then there is an exact sequence
1 = (Ok/fOK)*/(O/fOK)* — Cl(O) — Cl(Og) — 1

The condition O = {£1} is very weak, as there are only two quadratic imaginary number
fields such that the ring of integers has more units, namely K = Q[v/-3] and K = Q[v/—1].
These correspond to the elliptic curves with j-invariants 0 and 1728 (if they are ordinary), and
need a special treatment in many cases anyway. In [Neu92], there is also a more general version
of this statement without this assumption.

To get the class number explicitly, we use the next lemma.

Lemma 16. Let f := [O : O] = p® be a prime power. Then #(0O/fOx)* = p*~L(p —1) and
(p+p—1) if(—dx/p)=-1

#(Ok/fOK)* =p* > p(p— 1) if (—dx /p) =0
(p—1) if (—dx/p) =1

Proof. Choosing a generator o of O, we have as Z-modules that
O=Z& faZ and [fOg = fZ& faZ

and so O/ fOx 2 7/ fZ, hence #(O/fOr)* = ¢(f) = p*~(p —1).
For (Ok/fOk)*, we have
#(OK/fOK)" =#{(a,b) € (Z/p°L)* | a® + dkb® € (Z/p°L)"}
=#{(a,b) € (Z/p°Z)* | a* + dxb* Z0 mod p}
=p***#{(a,b) € F} | a® + dxb® # 0}

pP-1 i (=) =1
=p*7* {plp—1) if (7<) =0
(p—1) if (=) =1

since in the case (—dx/p) = 1, have that a® + dxb? = (a + 6b)(a — 6b). Hence the change of
variables (a,b) — (a + 6b,a — db) transforms the set into (F, \ {0})%. O

Lemma 17. The function

#(Ok /fOK)*
#(Z + fOK)/fOK)*

Z21 —>Zzl, fl—>

s multiplicative.

Proof. We have that #((Z + fOk)/fOx)* = #(Z/fZ)* = ¢(f), which is clearly multiplicative.
Now let f =[], p;" be the prime factorization. Then the Chinese remainder theorem gives

Ox/fOx = €D Ok /p}' Ok

and so

#(Ok/fOK)" = H #(Ok /p;' OK)"

is also a multiplicative function in f. The claim follows. O
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We can now compare this fraction with other multiplicative functions. In particular, we are
interested in the FEuler totient function ¢ and the Dedekind 1 function, defined by

() =p'(p—1) and Y(°) =p* (p+1)

#(Oxc/OR)" ~
F(Z+ 0 jox) 3t prime

Note that by Lemma 16, these lower resp. upper bound our fraction
powers. By multiplicativity, we thus get the following corollary.

Corollary 18. For f =[Ok : O] we have

#(Ok/fOK)*
#(O/fOK)*

where ¢ is Fuler’s totient function and v is Dedekind’s v function.

o(f) < <¥(f)

Finally, we can also derive a different statement, that will be interesting later.

Proposition 19. Let Oy be an order in a quadratic imaginary number field K with O} = {£1}.
For a prime | define O := Z + 1O,.

o If Oy is not mazimal atl (i.e. | | [Ok : Oo]) then h(O) = lh(Oy).

o If Op is mazimal at l and l is inert in O, then h(O) = (I + 1)h(Oy).

o If Op is mazimal atl and 1 is ramified in Ok, then h(O) = Ih(Oyp).

o If Op is mazimal at l and 1 is split in Ok, then h(O) = (I — 1)h(Oy).
Proof. Let f =[Ok : Og] = 1°m with m L [, and set

__ #(Ok/mOk)*
#((Z +mOk)/mOk)*
Then by Corollary 15 we find
B #(Ok /1°Ok)”
MO0 = MO @ 100 1:0x )
and
#(Ok /1T Og)*

h(O) = h(@K)M#((Z T Og) /Ie 10 )"

Using Lemma 16, it follows that

#(Ok /1T Ok )* - #(Z + 1°Ok) /1°Ok )*

h(O) Zh((’)o)#((z 0K 0K EOx JEOK)
l ife>0
—h(Op) l+1 ife=0and]!isinert in O
l if e =0 and [ is ramified in Ok
l—1 ife=0and!is splitin Ok
The claim follows. O
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2.2.2 The class group action

Now we can come back to the study of elliptic curves and their isogeny graphs. The class
group action which we will define in the following is the most important tool when working
with isogeny graphs of ordinary curves. Because of this, it is mentioned in more or less all the
literature dealing with the topic. For me, it was thus quite surprising that I could nowhere find
a precise and relatively elementary proof for the statement in the case of finite fields.

Most sources cite [Wat69, Thm 4.5], however the statement there is not as explicit as one
might wish, and the proof is done in the much more general theory of abelian schemes. Apart
from that, there are many references to the corresponding statement for curves over C, but these
ignore some of the subtleties introduced by non-separable isogenies. Therefore, we now present
a relatively simple proof of the class group action for ordinary curves defined over a finite field
and explicitly handle the non-separable case.

For the whole section, let E and E’ be elliptic curves defined over a finite field k = F, with
characteristic p. We write mg for the g-th power Frobenius endomorphism of F.

Definition 20. For an integral ideal a < End(FE) of an ordinary elliptic curve E, define the

a-torsion
Ela] := ﬂ ker(a)

aca

From now on, we will often compare endomorphism rings of isogenous curves. To do so, we
embed those rings into an imaginary quadratic number field K. However, the field K and its
orders can have nontrivial automorphisms, which means the embedding End(E) — K cannot be
unique. Fortunately, we can choose a system of embeddings End(E) — K jointly for all curves
E in a canonical way as follows.

Lemma 21. Let ¢ : E — E’ be an isogeny. Then there is an isomorphism

& : End(E) ® Q — End(E') ® Q, TH@MTO&

Furthermore, if we assume E to be ordinary, then this is canonical in the sense that for any
other isogeny v : E — E' have ® = .

Proof. Tt is clear that this is a morphism of ring, and its inverse is given by ® induced by the
dual isogeny (;AS

So it remains to show the last part. Let ¢ and v be two isogenies E — E’. Then for each
7 € End(F) have

N 1 1 N o
(PoW)(r) :deg(¢)¢o <deg(w)w070w) o¢

1 A o
= Teg@ deg() OOV 0T W00

1 - N
=m(¢0w0(wo¢)w

1
" deg(¢) deg(v)

(deg(¢) deg(¥))T =7

since (¢ o $) and 7 are elements of End(E), hence commute.
Now W is the inverse of ¥, and the claim follows. O
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In other words, we choose an arbitrary embedding End(E) — K for one ordinary curve E,
and then choose all further embeddings End(E’) — K for isogenous curves E’ as

End(E') — End(E) ® Q 2 End(E)® Q — K

From now on, whenever we identify End(E) with an appropriate subring of K, this shall use
that embedding. It will already be used in the next statement, which describes the relationship
of endomorphism rings of isogenous curves more concretely.

Proposition 22. Let ¢ : E — E’ be an isogeny of prime degree p between ordinary elliptic
curves. Then (after embedding End(E’) via ® and End(E) into End(F) ® Q) ezactly one of the
following is the case.

e End(F) = End(E’) and we call ¢ horizontal.
o End(E) C End(E’) with [End(E’) : End(E)] = p. We call ¢ ascending.
o End(E) D End(E’) with [End(E) : End(E’)] = p. We call ¢ descending.
Proof. Note that the map
p® : End(E) — End(E'), 7~ ¢oTo¢

yields endomorphisms of End(E’), and so we have pEnd(E) C End(E’). Similarly, find pEnd(E’) C
End(E).

Now let o be a generator of the maximal order in K = End(E) ® Q. Then each order of K
is of the form Z & faZ, and so

End(E) =Z® fiaZ, End(E")Z® fraZ

However, this implies that f; | pfe and fo | pfi,so fi | pfa | p?fi. Since p is prime, we find
f2 € {f1/p, f1,pf1} and the claim follows. O

Furthermore, we will sometimes talk about horizontal or vertical isogenies at a prime [, which
is defined by the next proposition. The advantage is that this is defined for all isogenies, not just
those of prime degree.

Proposition 23. Similarly, let ¢ : E — E’ be an isogeny of any degree n. Further, let | be a
prime. Then (after embedding End(E') ® Zy via ® and End(E) ® Zy into End(E) ® Q) ezactly
one of the following is the case.

« End(E) ® Z) = End(E') ® Z;y and we call ¢ horizontal at [.

« End(E) ® Zgy € End(E") ® Zqy with [End(E") ® Zgy : End(E) ® Zgy] = 1" forr > 0. We
call ¢ ascending at [.

o End(FE) ® Zgy 2 End(E') ® Zqy with [End(E) ® Zgy : End(E') ® Zgy] = 1" forr > 0. We
call ¢ descending at .

Proof. Exactly as the previous proof. O

Now we can make a step towards the class group action and present how we assign isogenies
to (integral, invertible) ideals of the endomorphism ring.
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Definition 24. For an ordinary elliptic curve E and an integral, invertible ideal * a = b(p, 7g)" <
End(E) with b L (p, 7g) define the isogeny

¢pa:E — EJE[b] =% E,:=(E/E[b)®")

where E — E/E[b] is the unique separable isogeny with kernel E[b] and w, : E/E[b] —
(E/E[0])*") is the r-th power Frobenius map.

In order to define a group action later, we need to be able to chain such isogenies given by
ideals. The obvious difficulty here is that the ideals are all in the same ring, but subsequent
isogenies will have different curves as domain. Hence, we need to be able to view an ideal a <
End(E) as an ideal of another endomorphism ring End(E’). As it turns out, the endomorphism
rings we consider are all isomorphic, and so this works out nicely.

Lemma 25. Let E be an ordinary elliptic curve and a < End(E) an integral, invertible ideal.
Then End(F) = End(E,). In particular, ¢ o is horizontal at every prime I.

Proof. Let a = b(p,7g)" with b L (p, 7g). We show that End(F) = End(E/E[b]) and the claim
follows, as for any elliptic curve F, have an isomorphism

End(E) — End(E®), o o)

It suffices to show that the separable isogeny ¢ := ¢ p is horizontal at each prime [.

Assume for a contradiction that ¢ is descending at {. In other words, there is 7 € End(E) such
that ¢ o7 o¢ is not divisible by I. Hence, E'[l] Z ker(¢ o7 o) and there is a point P € E'[l] with
¢(7((P))) # O. This implies 7(¢(P)) ¢ E[b] and thus there is a € b with 7($(P)) ¢ ker ().
Note that « factors through ¢ as

[0

We assume [ | deg(¢), otherwise the claim is trivial. However, then we have the contradiction

~

O#b((@oT0d)(P)) = (boporod)(P)=(aoTop)(P)
= (Teao0d)(P) = (roto[n])(P)=(T0¢)(0) =0
since 7o = a o7 (End(F) is commutative). O

For the next statement, we need to establish the relationship between separability of endo-
morphisms and properties of the endomorphism ring.

Lemma 26. Let E be an ordinary curve and o € End(E). Then « inseparable if and only if
o€ (pa 7TE)‘

Proof. First, consider
b:= {5 € End(F) | B inseparable}

This is an ideal, as for two inseparable /31, 82 € End(E) have that they factor as

4By Prop. 10, this representation of an ideal a is well-defined and unique, as N((p, 7)) = p 1 [OEna(E)g0Q :
End(E)] | d(End(E)).
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P m E® bi 5

with the p-th power Frobenius 71 : E — E®). Now 8 + 82 = (¢1 + ¢2) o is inseparable, and
clearly v is inseparable for 8 € b and v € End(F) (just compare separability degrees).
Furthermore, p and 7g are inseparable, so (p,7) C b. Note that in the imaginary quadratic
order End(E), every prime ideal is maximal. Since M((p, 7)) = p L d(End(E)), Prop. 10 shows
that (p,7g) is prime, and thus (p,7g) = b (clearly, b # End(E)). O

Note now that for an isogeny ¢ : E — E’, have

) deg(¢) )

¢O¢O¢)(7TE) = deg(¢)¢Oﬂ'Eo¢
Comparing inseparability degrees, it follows that ®(7g) is totally inseparable as endomorphism
on E’'. Hence, F’ is isomorphic to a curve such that ®(7g) becomes the Frobenius endomorphism
of that curve. Since we only work with isomorphism classes, we assume from now on that ®(7g)
is the Frobenius of E’. Hence, we can talk about the ¢g-th power Frobenius of an imaginary
quadratic order O - we then mean the unique element that maps to the ¢-th power Frobenius
7g of any curve E with End(E) = O, under the chosen canonical isomorphism O — End(FE).
Now we can prove that ideal multiplication is compatible with chaining of isogenies. Note
that the condition p 1 d(O) is just equivalent to all curves E with End(E) = O being ordinary.

Lemma 27. Let O be a quadratic imaginary order with p 1 d(O) and two integral, invertible
ideals a,b < O. Let further E be an elliptic curve with End(F) = O. Identifying End(E,) with
O by the canonical isomorphism ®g o : End(E) — End(E,), we have

Eap = (Ea)o and $p.a0 = b5, 0 6.0

Proof. Write m € O for the Frobenius of O. With that, we mean that 7 is the g-th power
Frobenius of O, where ¢ is the smallest power of p such that O has a non-integer element of
norm ¢. As mentioned before, 7 maps to the Frobenius endomorphism of each curve E with
O 2 End(E).
We have a = d(p,7)" and b = E(p, 7)* with a,b L (p, 7). For ¢ such that ¢p, j is defined over
IF,, it is now the case that
¢E,ub = Ty4s O ¢E,&l~a

and
(bEu,b o ¢E,u =T O ((bEn,E O Ty O ¢E,ﬁ) = Ty4s © ((bggn/pg ) o (bE,a)

where 7, : Bz — Eépr) is the p"-th power Frobenius, and similar for s, m4s. Note that ¢p_ 3

is the separable isogeny with kernel EU[E] and thus gb(bf/ %T) is the separable isogeny with kernel
qumr)[fﬁ] = F;[b]. In other words, find

(a/p")
Penh =9

and so it suffices to show the claim in the case that a = a, b = b are integral, invertible ideals
coprime to (p, 7). By Lemma 26, this means that the isogenies ¢ o and ¢g, p are separable.
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Having reduced everything to the separable case, it now suffices to show that ker(¢g, p ©
¢E.a) = Elab]. For simplicity of notation, write ¢ = ¢g . and ¥ = ¢g, . Hence, we want to
show that ker(i) o ¢) = E[ab].

The crucial point here is that our isomorphism End(F) = End(E,) is given by ®. Since the
identification of End(E) and End(E,) would hide this, we will be explicit in this part and write

i:0 "5 End(E) and i’ : 0O -~ End(E')

for the isomorphisms. Note that ® o7 = i'. We have

ker(y 0 ¢) =¢~ " (ker ) = 6~ (E'[a]) = ¢‘1(ﬂ ker(i'(7)))

= ﬂ ¢ (ker (4 ﬂ ker (i o @) (i—) ﬂ ker(¢ o (7))
= (i(r) '(kerg) = (Vi(r) "Bl = (] i(r)" (kex(i(p)))
TEQ TEQ TEA, peEb
TEQEbker(igp) o i{(T)) = Elbd]
’ =i(p7)€i(ab)
The equality at (x) holds, since
/'(17) = (D oi)(T) = ! oi(r) o
/(1) = (@0i)(r) = 00i(r)0d 0

What we have so far is already enough to establish a monoid action
J(0) x Ell(O) — EIl(0), a— E,
where J(O) stands for the monoid of integral invertible ideals of O and
Ell(O) := {F isomorphism class of elliptic curves over F, | End(F) = O}

denote the set of isomorphism classes of elliptic curves with endomorphism ring O.
Next, we investigate the torsion of this action, i.e. for which a we have a.E = E.

Lemma 28. Let E be an ordinary curve and a,b < End(E) two integral, invertible ideals. Then
E. 2 Ey if and only if [a] = [b] € CI(End(E)) are in the same ideal class.

Proof. First, we show the direction <=. By assumption, there are o, 8 € O such that aa = 5b.
Thus E,q = Egp and it suffices to show that for any elliptic curve E and o € End(E), have
Ew=E.

Write (a) = (p, m)"a and assume that E is defined over Fps. It follows that (p,7)® = (7) and
so there is o/ € O, o’ ¢ (p,w) with (a)(p)["/*1°=" = (7)["/*1(a’). Furthermore, o/ ¢ (p, 7). Now
note that for any curve £, have E) = E®) =~ F and E(,) = E, where the latter holds, since in
the ordinary case, p factors as

[p]

E n 20 ¢ E
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with the p-th power Frobenius 7 and ¢ is separable with ker(¢) = E[p] = ker([p]) N ker(w — ¢).
Thus we see that E,) = E(,) and can assume wlog that o = o ¢ (p, 7).

By Lemma 26, we now see that « is separable, and so clearly ker(a) = E[(«)]. Since o : E —
E is the separable isogeny on £ with kernel E[(«)], it follows that E,) = E/E[(a)] = E.

Now we consider the other direction =-. Again, write ¢ = a(p,7)"” and assume that E is
defined over F,.. Then we have as before that a(p)/"/*1*=" = (7)["/s1a’ for the ideal o/ =
a(p, 7 —1t)["/515=". Now clearly [a] = [&'] are in the same ideal class and a’ L (p, 7). Furthermore,
by the direction <, have E, = F,/. Doing the same with b, we can assume wlog that a = a’ and
b = b’ are ideals coprime to (p, ).

Therefore, the isogenies ¢ o and ¢p p are separable. Write E’ := E, = Ep. Choose N > 0
such that [N]~!(E[a]) 2 E[b]. Note that [N]o ¢p.a = ¢r.q o [IN] and so the isogeny [N] o ¢p.q
factors through ¢ p, i.e. we get a commutative diagram

/VEI“
El

for some endomorphism ¢ : B/ — E’. Clearly the isogenies [N] and ¢ are given by the ideals
(N) resp. (¢), and so we find

and the claim follows. O

Now we have proven almost everything we need. The final ingredient, from which it will then
follow that the class group action is transitive, is a theorem of Tate. Since it uses much theory
on general abelian varieties, we will present it without proof here. For a proof, the reader is
referred to the work of Tate [Tat66].

Theorem 29 (Isogeny theorem). Let E, E’ be elliptic curves defined over Fy. Then there is an
isogeny E — E' if and only if #E(F,) = #E'(F,).

Note that this condition is also equivalent to End(E) ® Q = End(E’) ® Q or that the ¢g-th
power Frobenius endomorphisms have the same trace.

Theorem 30. Let O be an imaginary quadratic order with p 1 d(O). Then there is a free and
transitive group action

Cl(O) x Ell(O) — EIl(O), ([a],E)+— E,
where a is an integral, invertible ideal representative of the ideal class [a].

Proof. Well-definedness and freeness follow from all the previous lemmas. So it is left to derive
the transitivity from Theorem 29. Let E and E’ be curves in Ell(O). Clearly, we then have
#E(F,) = #E'(F,) and so there is an isogeny ¢ : E — E’. Everything we have to show is that
¢ = ¢g,q for some ideal a < O. Note that we can multiply a by (p) and divide by 7, and thus
achieve that ¢ is separable.

Here we use the same approach as in [Wat69, Thm 4.5]. In particular, we want to consider
the problem locally at primes [. The usual way to achieve this is to consider the l-adic Tate
module defined as the inverse limit

T,FE = liin E[l"]
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Furthermore, the isogeny ¢ induces a map
¢l : nE - EEla (Pn)n = (prn)n

An endomorphism « of E now acts on T} F, and so T E becomes a free O; := (O ® Z;)-module of
rank 1. Also T}E’ becomes an O;-module (this is where we use the assumption that End(E) =
End(E")). Additionally, our choice of the canonical isomorphism End(E) =2 O = End(E’) implies

that ¢; is an Oj-module homomorphism. Extending it linearly, we get the map
¢ T'E ®z, Q — T E' ®z, Oy

We can now consider the O;-module M := (bfl(ﬂE’) C T E ®z Q.

The module M contains T;F and furthermore, T;E has finite index in M. Therefore M is a
O;-submodule of [7™T; E for some n.

So we see that M is a free rank-1 module over O;, and hence there is an element o; € O;
with

oM =TFE

Note that we can write oy = a ® ["b with a € O and b € Z;. Then also (al”)M = T}E and thus
we can assume wlog that o; = al™ € O.

Now it is left to establish the connection between ker(¢) and M. This is done by the map

o (TLE") = M — ker(¢) (), Po)n > P,

1
e
where an element of T)E’ is (P,), with P, € E[I"] such that [I|P, 1 = P,. Further

ker(¢)(y := {P € ker(¢) | [I]"P = O for some n > 0}

is the power-of-l torsion part of ker(¢), or equivalently the localization at the prime ideal (1) as
Z-module.
First, note that the map is well-defined, as for an element 1/I"(FP,),, in the domain, we have

by assumption X X

lm lm

and thus ¢(P,,) = O, i.e. P, € ker(o).

Clearly, the map is also a morphism of O-modules, where ker(¢) ) becomes an O-module in
the obvious way.

It is also surjective, since for P € ker(¢)(; of order ord(P) = I, we can lift it to an element
(Pn)n with P,, = P. Then clearly 1/I™(P,), € M with image P.

Finally, note that for 1/I"™(P,), € M have P,, = O if and only if Py = ... = B, = O, in
which case we have that

/1™ (Po)n = (Pagm)n € TLE

Thus the kernel of above map is T;F and we get an isomorphism of O-modules
ker(qﬁ)m = M/EE

Now let a < O be the invertible ideal such that aO; = (o) for every prime ideal [ under
a prime number [ (the «; are the element from above with oyM = T;E). This is possible by
Lemma 11, as only finitely many («;) # (1) (namely those [ with I | deg(¢)).

Then for each primes [, we have

ker(qﬁ)m = {P S E([) ‘ Oél(P) = O} = {P S E(l) | Va€ea: Oé(P) = O}

where again E(;) is the power-of-l torsion part of the group E. Thus ker(¢) = Ela]. O

21



A similar class group action exists in many other cases, since it is really founded in the theory
of abelian varieties, see [Wat69]. Notable examples are the CSIDH class group action for super-
singular curves defined over F,, (see [Cas+18]), its generalization to so-called oriented curves (see
[CK20]), and the very classical class group action of elliptic curves with complex multiplication
(over C). More concretely, if we consider an order O in a quadratic imaginary number field and
write Ell(O) for the set of (isomorphism classes of) curves over C with endomorphism ring O
(these are said to have complex multiplication), then there is a free and transitive class group
action

Cl(O) x EI(O) = ENO), ([a], E) — E/E[d]

where we choose a to be an integral ideal representative of [a]. Note that for ideals a L (p, ),
this is analogous to our action defined above. However, since the Frobenius has trivial kernel,
one needs some addition in the finite field case.

Note that one can still keep the simpler definition

Cl(0) x EN(O) — EN(O), ([a],E) — E/E[q]

also in the finite field case, if we require a to be an (integral) ideal representative of [a] that is
coprime to (p, 7). Clearly, every ideal class has such a representative, since we can multiply with
the principal ideal (p) = (p, 7)(p, 7 —t) and divide out the principal ideal (7) = (p, 7)*. However,
some sources do not explicitly mention that a must be chosen coprime to (p, ), which caused
me some confusion at the beginning.

2.2.3 Volcanoes

Once we have the class group action, we can derive a lot of information about the structure of
the ordinary part of an isogeny graph.

Definition 31. For [ > 0,d > 0, a graph G is called [-volcano of depth d, if its vertices can be
partitioned into a set C' (the “crater”) and a set L (the “lava flows”) such that

o G]C] is either a single vertex (possibly with one or two loops), two connected vertices or a
cycle of at least two vertices®

o (V] is a forest of complete l-ary trees of depth d
o Every vertex v € C is connected to the roots of [ + 1 — deggc(v) trees in G[L]
In particular, every vertex in G except the leaves of the trees has degree [ + 1.

The term “volcano” was introduced by [FM02], after Kohel had mostly determined the struc-
ture of ordinary connected components in his PhD thesis.

Theorem 32. Let G be a connected component of T')(F,). Suppose that G is ordinary, i.e. its
vertices are (isomorphism classes of) ordinary curves. Then G is an l-volcano. Further, we have

o All curves on the crater have the same endomorphism ring O withl {1 [Oogg : O].
o All curves on the i-th tree level of a lava flow have the endomorphism ring Z + I'O.

o The size of the crater is the order of Iy in CL(Q), where (1) =il in O, or 1 if l is inert.

5A cycle of two vertices shall be two vertices with a double edge.
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Proof. This follows from the class group action and the description of the class group of quadratic
imaginary orders (Corollary 15 and Prop. 19). For the remaining details, we refer the reader to
Kohel’s thesis [Koh96, Prop. 23]. O

We remark that the crater of a volcano is a single vertex without a loop, if (1) is inert in
O. Furthermore, the crater consists of two connected vertices (or a vertex with a loop), if (1) is
ramified in O, and is either a vertex with double loop or a cycle, if (1) splits.

2.3 The supersingular isogeny graph

After studying the ordinary connected components of the {-isogeny graph I';(F,), we now come
to the supersingular component(s). First, note that all supersingular j-invariants are defined over
Fp2, and so we will assume ¢ = p? for this section.

In the supersingular setting, the endomorphism ring is now non-commutative. There still
exists a non-commutative analogue of the class group action, but using it is significantly harder.
Mainly, because the theory of quaternion algebras is more complicated, and its class group struc-
ture is less studied. Instead, there is the famous result of Pizer, which states that supersingular
isogeny graphs (i.e. the supersingular part of I';(F,)) are so called Ramajuan graphs, that is have
excellent expander properties. We will introduce this result in this section, but without proof.

Definition 33. A d-regular graph G is called e-expander, if the eigenvalues A\; > ... > A, of its
adjacency matrix satisfy
A2l [An| < (1= €)d

In the literature, expander graphs are often defined by the use of the expansion ration

o ) #0S
MG) = sgvr,n%%s% #S

of a graph G = (V, E). Here 05 is the edge boundary, i.e. the set of edges between a point in S
and a point in V'\ S.
The connection between those two definitions is then given by the Cheeger-inequality

Proposition 34. Let G be a d-regular graph such that its adjacency matriz has eigenvalues

A1 > ...> A\,. Then
d ;M < (@) < V2d(d— \3)

Proof. See e.g. [Che69]. O

This inequality only correlates the so-called spectral gap d — Ay with h(G), and does not
bound |\,|. In many cases, bounds on the spectral gap or expansion ration already suffice to
show properties of expanders. Because of this, expanders are usually defined as graphs for which
only Az or h(G) are bounded. Our definition 33 is then sometimes called “two-sided expander”.
However, we will never use one-sided expanders in this work, hence the above definition shall be
sufficient.

The nice thing about the expansion ratio is that it gives more intuition on what the expander
property means. In particular, an expander graph is densely connected, i.e. by deleting a
small number of edges, it is impossible to make the graph split into two (or more) connected
components of relatively large size.
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Figure 2.1: Examples of different 2-and 3-isogeny volcanoes in F1412. The value z is the generator
of Fig;2 with minimal polynomial x? 4+ 97z + 2. All of the volcanoes are examples where the
prime 2 resp. 3 splits in O into two non-principal ideals.
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Figure 2.2: The supersingular 5-isogeny graph over Fyg;2. The element z is a generator of Fyg;2
as in Figure 2.1.

Definition 35. A connected d-regular graph is called Ramajuan, if
|)‘2|7 |>\n| < 2v d—1

where A\; > ... > ), are again the eigenvalues of the adjacency matrix.

It is known that the bound 2v/d — 1 is asymptotically optimal, i.e. for sufficiently large n,
all d-regular graphs of n vertices have Ay > 24/d — 1 — €. In that sense, we can say Ramajuan
graphs are graphs with asymptotically optimal expansion properties.

One of the main properties of expander graphs is that random walks on them mix rapidly.
That is, the final vertex of relatively short random walks is distributed almost uniformly among
all vertices.

Proposition 36. Let G = (V, E) be a d-reqular e-expander graph and v € V' a vertex. Then the
distribution of the final vertex of a random walk starting from v of length t is close to uniform,
in particular, the {2-statistical distance is bounded by (1 — ¢)*.

For a proof of this proposition, see e.g. Theorem 3.3 in this excellent survey on expander
graphs [HLO06]. Note that expander graphs used in cryptography are usually of exponential size,
so this theorem says that a random walk of polynomial length already reaches all vertices of the
graph.

Now we come to the anticipated result, that supersingular isogeny graphs are expander graphs.

Definition 37. The supersingular l-isogeny graph over F,2 is the subgraph of I';(F,2) induced
by all (isomorphism classes of) supersingular curves over F .

Since the supersingular [-isogeny graph is disconnected from the rest of I';(IF,,2 ), we see that it
is an (I +1)-regular graph °. We also know its size exactly, which directly follows from a classical
result on the number of supersingular curves over IF,2.

6We will be sloppy here, and call the supersingular l-isogeny graph (I 4 1)-regular, even though it can contain
up to two vertices of smaller degree (those with j-invariants 0 and 1728).
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Proposition 38. For p > 5, there are exactly

0 ifp=1 mod 12
h%h 1 ifp=57 mod 12
2 ifp=11 mod 12

supersingular elliptic curves over F2.

For a proof of this statement, see e.g. [Sil09, Thm V.4.1].
In [Piz90], Pizer has now shown that

Theorem 39. The supersingular l-isogeny graph is Ramajuan.

This means that there is a huge difference between the ordinary and supersingular graphs.
For example, there is always a path of length O(log(p)) between two curves in the supersingular
graph, but in the ordinary graph, such a path does not exist in many cases. We will try to
quantify this in the last section. The idea of our research is to utilize these differences in order
to find random, supersingular curves.

Finally, we also want to shortly comment on supersingular isogeny graphs over [F,,.

Remark 40. As we defined it, the graph I';(F,) is of course a subgraph of I';(F,2). Even so,
at least the supersingular part of I';(F,) is not particularly useful, as most of the structure does
not carry over from I';(Fp2). For example, it is not (I + 1)-regular anymore.

Nevertheless, there are many cryptosystems (and other applications) that work with a super-
singular l-isogeny graph over F,,. However, they do not use I';(F,), but a graph G whose vertices
are [Fp-isomorphism classes of supersingular curves, i.e. curves up to isomorphism defined over
F,,. Note that now the j-invariant does not characterize the isomorphism classes anymore, in par-
ticular, for every j € F,, there are two Fj,-isomorphism classes corresponding to this j-invariant.
Hence, G is not a subgraph of I';(F,), and it turns out that its structure is more similar to
ordinary isogeny volcanoes than to a supersingular expander graph.

Since these graphs are not used in our work, we will leave it at this short remark.

2.4 Modular polynomials

If we want to work computationally with isogeny graphs, we need a way to explicitly compute
them. The simplest way to find the m-isogeny neighbors of a curve E is to compute E[m] and
find the cyclic order-m-subgroups. While this works in many cases, it can happen that the
torsion group E[m] only lies in an extension of F, of degree O(m?), in which it is very costly to
work. Furthermore, there are many other applications where a torsion-based approach does not
work at all.

The class group action is also not a suitable tool, since computing the class group or even the
action of an ideal is already difficult. For the latter, probably the best approach is to work again
with the torsion subgroups, and so we gain nothing. Furthermore, we only have the class group
action in the ordinary case, but in cryptography, we are primarily interested in the supersingular
setting.

One solution to this problem is given by modular curves, which give a very useful algebraic
structure to the [-isogeny graph. In particular, the existence of a non-integer l-isogeny between
curves is an algebraically closed condition, i.e. is given by an algebraic curve.

The classical way to study this is by using the theory of modular forms. Since this is out of
the scope of this work, we refer to [Cox13, §11] for an introduction of the topic. The basic result
is the following.
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Theorem 41. For m > 2 there is an irreducible and monic polynomial

9,(X,Y) e Z[X,Y]
such that for elliptic curves E, E' defined over C, there is a cyclic m-isogeny E — E’ if and only
if ©m(j(E),j(E)) = 0.

This polynomial is called the (classical) modular polynomial of level m. A proof of this
theorem is e.g. given in [Cox13, Thm 11.18]. A few corollaries of this theorem can easily be
inferred.

Corollary 42. Let m > 2. Then we have
o &, is symmetric, i.e. D, (X,Y) = 2,,(Y, X).
o ®,, has degree ¥(m) (as polynomial in X ), where ¢ is the Dedekind 1-function

1
w(m)zmpll_[ 1—&-5

Proof. The first statement follows from the existence of the dual isogeny. For the second state-
ment, note that for each elliptic curve E over C, the degree of ®,,,(X, j(E)) is the number of curves
E’ with an m-isogeny E — E’, which is equal to the number of cyclic subgroups G < E = (R/Z)?
of size m. By the Chinese Remainder theorem, this is a multiplicative function, and for a prime
power m = p¥, the number is
#{G < (Z/mZ)* | #G =m)
=#{{(L,a)) | aeZ/mL} +#{((a,1)) | a€(Z/mZ)\ (Z/mL)"}
="+ #{((a,1)) | a€p(Z/mZ)} =p" +p"!

=m <1+1> D
p

Since we are mainly interested in the case of finite fields, we have to show that the modular
polynomial behaves well under reductions mod p. This theory relies on Hensel lifting, and has
been explored by [Deu4l].

Lemma 43. Let f € Ok[X] be a polynomial for some number field K with a prime p. If f(X)
mod p € F,[X] has a root «, then then there is a finite field extension L/K, a prime p of O
and some ag € O, such that

flag) =0 and ap=a modyp
Proof. Follows by Hensel’s Lemma. O

The next lemma allows us to lift curves connected by an isogeny over Fy to C. This is very
similar to the well-known lifting theorem of Deuring, which is about lifting a curve together with
an endomorphism. Our situation is somewhat simpler, since we can take different lifts for the
domain and codomain curves.

Lemma 44. Let E and E’ be curves overFy and ¢ : E — E' a cyclic m-isogeny. Then there exist
curves Ey, Ejy with j-invariant in O for some number field K with a prime p over p = char(K)
and an isogeny ¢o : Eg — E{j such that

Eo=E, E\=FE and ¢o=2¢

where ~ is the reduction modulo p.
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Proof. This proof is somewhat technical, but the basic idea is simple. An isogeny E — E’
corresponds to polynomials (more precisely, elements of k[E]) satisfying the equation of E’. In
other words, we have to lift polynomials over F; to a number field such that certain equations
are satisfied. This however can be done by Hensel’s lemma. The only difficulty is that we have
to lift the correct coefficient in the correct order, to resolve all required dependencies.

Consider some arbitrary lift Fy and E} of E resp. E’ to a number field K such that
J(Eo),j(E}) € Ok. Assume that E} is defined by a homogeneous polynomial f = Y?Z — X3 —
AXZ?—-BZ3 € Ok[X,Y, Z]. Finally, assume’ ¢ = [u: Yv : w] with polynomials u,v,w € F,[X]
and choose an arbitrary lift vo, wy € O [X] of v resp. w. Hence the coefficients u(%), ..., u(™ of
u € Fy[X] are a root of

FOTX' Yo, wg) = ZalTo,..., )X € O[X][Ty, ..., T

modulo p. Note that the coefficient of X7 in (3", 7;X%)® contains the monomial T3T}, and
Since there are infinitely many lifts of A resp. B, we can assume wlog that also the coefficient
aj(Ty, ..., T,,) in (3 T; X%, Yv,w) does. Furthermore, a; is in O[Ty, ..., Tj], i.e. only depends
on To, ...,Tj.
We assume wlog u(?) # 0, otherwise we can move E’ in z-direction by any element in F,.
We know that u(%) is a root of ag modulo p, and so Lemma 43 shows that there is a lift uéo) of

u(%) in some number field Lo /K with ao(uéo)) = 0. We now proceed by induction. Since “0 () #0,

we see that al(uéo), ...,uéiil),Ti) contains the monomial 7T;, and so applying the lemma again,

we also find lifts uél), ey uén) € Op/K with a; (u(()o), ey u(()i)) = 0. In other words, we found a lift
ug of u in Op[X] such that f(ug, Yvg,w) = 0. Now we can set ¢pg = [ug : Yo : wg] : Eg — Ej
and the claim follows. O

Using a little bit more Hensel lifting, we now can pull down the properties of ®,, to finite
fields.

Proposition 45. For m > 2 and Elliptic Curves E and E' over F,, have ®,,(j(E),j(E")) =
0 € F, if and only if there is a cyclic m-isogeny E — E'.

Proof. First, consider the direction <. Here the previous Lemma shows that we can lift the
situation to m-isogenous curves Ey and E|, over a number field K, and so have by Prop. 41 that

@4, (j(Eo), j(Eg)) =0

Furthermore we know that j(Ey), j(E{) € Ok, and so we clearly have for the reduction modulo
p that
0, (J(E), §(E")) = ®m(j(Eo),j(E))) =0 mod p

Now we show the direction =-. We have ®,,(j(E),j(E’)) = 0 € Fy, thus there is a number
field K with a prime p over p = char(F,) and z,y € Ok such that

&, (r,y) =0 modp and z=j(E), y=4(E') modyp

Now we can again use Lemma 43 to find a number field L/K, a prime g over p and 2’ € Of, such
that 2’ = 2 mod q and ®,,(2',y) = 0 € K,. In particular, there are curves E, E' over L with
j-invariants z’ resp. y, and thus by Prop. 41, there is a cyclic m-isogeny E — E’. Therefore,
there is also an m-isogeny between the curves E and E’, which are the reductions of E resp. E’
modulo q. O

"It is a simple consequence of the geometry of elliptic curves that every isogeny is of such a form.
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Some properties however cannot be transferred to the finite field case. For example, in the
finite field case, ®,, might not be irreducible anymore. In fact, it is easy to see that

¢,(X,Y)=—(XP-Y)(YP-X) modp

since the only p-isogenies over a field of characteristic p are the Frobenius and its conjugate.

The modular polynomial is an indispensable tool when doing computations on the isogeny
graph. In particular, when combined with an algorithm to factor polynomials over F,, it allows
us to compute all the neighbors of a curve E in the l-isogeny graph. For example Sutherland’s
supersingular test (see Section 3.3) uses modular polynomials for walks in the isogeny graph,
and distinguishes ordinary and supersingular curves by the structure of their isogeny graph
neighborhoods. Another example is Shoof’s algorithm [Sch85] for counting F,-rational points on
a curve, which also relies on modular polynomials.

Therefore, computing modular polynomials is an important task. The most classical approach
is to mimic to proof of Theorem 41, i.e. view elliptic curves as lattices over C and compute the
Fourier coefficients of the j-function. However, one main problem is that the coefficients in the
modular polynomial become very large very fast. For example, ®5 has already the constant
coefficient

141359947154721358697753474691071362751004672000

In many cases, we only need the value of ®,, modulo a prime p, and thus other algorithms
can easily be faster. A whole line of work tries to use isogeny graphs over finite fields to find
such an algorithm, see e.g. [BLS11] and [BOS16]. Using the Chinese Remainder theorem, these
algorithms can also be used to find ®,,, over C by collecting information modulo many different
primes.
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Chapter 3
Isogeny-based cryptography

In this chapter, we give an introduction to the basic algorithms and constructions in isogeny-
based cryptography. This field began in 2006 with the ideas of Couveignes [Cou06], Rostovtsev
and Stolbunov [RS06; Stol0], who proposed a key exchange somewhat similar to the classical
Diffie-Hellman, but secure against quantum attacks. Since then, a variety of protocols have been
found, for example post-quantum key exchanges (most prominently SIDH [FJP11]), variants of
collision resistant hash functions (most prominently the GCL hash function [CGL09]), digital
signature schemes (e.g. [GPS16]) and others. The fundamental idea underlying all those methods
is to take a random walk in an expander graph, and use that the final curve in the walk seems
to be behave in an unpredictable way.

The most general problem that isogeny-based cryptography reduces to, is the explicit isogeny
problem.

Problem 1. Given two elliptic curves E and E’ isogenous of fixed degree d, find a d-isogeny
¢:E— FE.

There are algorithms to compute such an isogeny in time polynomial in d, and so we usually
are interested in exponentially large degrees d. However, this raises the question on how to even
represent the isogeny ¢. In most cases, we thus require d to be smooth, in which case we can
represent an isogeny of degree d as a sequence of small-degree isogenies. This gives us the smooth
isogeny problem.

Problem 2. Given two elliptic curves E and E’ isogenous of fixed B-smooth degree d, find a

sequence of isogenies
¢0 ¢1 ¢n71 bn /
F—FF — .. —FE,—F

of small degree deg(¢;) < B.

Finally, if we further restrict the smoothness condition, and require the degree to be a power
of a small prime [, we arrive at the isogeny path problem.

Problem 3. Given two elliptic curves E, E’ in the same connecte