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Abstract

Building on the work of de Beaudrap, Kissinger, and Meichanetzidis [dKM21],
in this dissertation, we examine the relationship between #SAT and the ZH
calculus. We outline their reduction from #SAT to evaluating ZH diagrams,
which shows that evaluating ZH diagrams is #P-hard, and we extend this
to show that evaluating diagrams in certain fragments of the ZH calculus,
is FP#P-complete. In particular, we show this holds for diagrams where all
H-boxes have labels in Q[i,

√
2], which includes both the Clifford+T and

Toffoli-Hadamard fragments natively [BKM+21].

We show the action of the DPLL algorithm [DLL62] for SAT and its deriva-
tive CDP [BL99] for #SAT in terms of ZH-diagrams, and use diagrammatic
methods to extend CDP to treat variables and clauses equally. Combining
this with an algorithm for #2SAT by Wahlström [Wah08], we derive novel
upper bounds in terms of clauses and variables for #kSAT that are indepen-
dent of k, and better than brute-force for small clause densities of m

n < 2.25.
This improves on the upper bound of Dubois [Dub91] whenever m

n < 1.858
and k ≥ 4, and the average-case analysis by Williams [Wil04] whenever
m
n < 1.217 and k ≥ 6. We also obtain an unconditional upper bound of
O∗(1.88m) for #4SAT in terms of clauses only.

Finally, we find novel stabilizer decompositions of certain ZH-diagrams and
use this to adapt the algorithm of Kissinger and van de Wetering [Kv21]
[KvV22] for evaluating ZX-diagrams using stabilizer decompositions to eval-
uate #2SAT instances. We examine the effect of different decomposition
strategies on its runtime but conclude that the algorithm as given is not
effective, and suggest avenues for further improvement.
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CHAPTER 1

Introduction

The Boolean satisfiability problem, known as SAT, is the problem of determining
whether, for some Boolean formula, there is an assignment of the variables so
that the formula is true. This problem has been extensively studied and is used in
practice to solve many scheduling and optimization problems since modern SAT
solvers are extremely capable, and can solve instances with millions of variables.

The counting satisfiability problem, known as #SAT, instead asks how many
assignments of variables there are that make a formula true. While SAT is the pro-
totypical NP-complete problem, #SAT is even harder to solve and forms the pro-
totypical problem for the complexity class #P [Val79]. In practice, however, #SAT
solvers are also quite capable, with modern solvers capable of solving instances
with tens of thousands of variables. Practical use cases for #SAT are mainly in the
realm of AI, where it is used in probabilistic reasoning applications.

Recent work by Neil de Beaudrap, Aleks Kissinger, and Konstantinos Me-
ichanetzidis [dKM21] has shown that the solution to a #SAT instance can be quite
naturally encoded in the ZH calculus [BK19], a rigorous graphical language for
reasoning about tensor networks. In this language, tensors and scalars are repre-
sented by diagrams. We will continue this and examine various angles of #SAT
through the lens of the ZH calculus, and seek to demonstrate that diagrammatic
methods, and the ZH calculus in particular, are useful and powerful tools for
tackling this problem.

This dissertation is organized as follows. First, we will outline the embedding
of #SAT instances into ZH-diagrams given by de Beaudrap et al [dKM21] in chap-
ter three, and extend this in chapter four to show that for many ZH-diagrams,
the reverse is also possible - that the value of a ZH-diagram can be written as a
weighted sum of the solution to a small number of #SAT instances.

Then, we will examine how these ZH-diagrams can be decomposed by writ-
ing them as a sum of simpler tensors. We will use this to illustrate in chapter five

1



how the classic DPLL algorithm [DLL62] for SAT and the similar CDP algorithm
[BL99] for #SAT can be reframed in terms of ZH-diagrams. From this, we find
that these diagrams can be generalized without affecting this algorithm, and de-
rive some novel upper bounds on the runtime for the #SAT problem in certain
situations.

Finally, in chapter six, we will show how we found some decompositions of a
special type, called stabilizer decompositions, for certain tensors and, in chapter
seven, use this to adapt an algorithm of Kissinger and van de Wetering [Kv21] to
evaluate #SAT instances.
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CHAPTER 2

Preliminaries

2.1 Tensors and Tensor Networks

An excellent introduction to diagrammatic reasoning about tensor networks is given by
Coecke and Kissinger in Picturing Quantum Processes [CK17]. This section is a subset
of the concepts presented there in chapters three and four.

For the purposes of this thesis, we will consider a tensor to be the generaliza-
tion of a matrix or vector - that is to say, a tensor is a multidimensional array
of numbers. The number of dimensions, the size of the dimensions themselves,
and the type of number contained by the tensor can vary depending on the situ-
ation. To describe a particular number contained within the tensor, we can index
it according to its position along each dimension, much like a multidimensional
array is handled in computer programming, or the row and column indices of a
matrix. We will consider tensors to have two distinct types of dimensions: inputs
and outputs - each input dimension corresponds to a subscript index, and each
output dimension corresponds to a superscript index.

Definition 2.1. A tensor T with n inputs and m outputs over a ring R is a multidimen-
sional array of size d1 × d2 × · · · × dn × d1 × · · · × dm such that

Ti1i2···im

i1i2···in ∈ R for every ik ∈ [0, dk) and ik ∈ [0, dk) (2.1)

where dk ∈ N and dk ∈ N are called the dimensions of the kth input and output. We
write Rd1d2···dm

d1d2···dn
as the set of all such tensors. A tensor with no inputs and outputs is

called a scalar, since it is just an element of R.

For example, matrices are tensors with one input (column index) and one out-
put (row index). An n × m matrix therefore has d1 = m and d1 = n - vectors,
meanwhile, are tensors with one output and no inputs. Two operations are de-
fined on tensors: contraction and addition, which are generalizations of matrix
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multiplication and addition, respectively. We will also encounter the tensor prod-
uct and composition, which are special cases of contraction.

Definition 2.2. Given two distinct tensors A ∈ Ra1···ama
a1···ana

and B ∈ Rb1···bmb
b1···bnb

, and two

sets of indices O ⊆ [1, ma] and I ⊆ [1, nb], where |O| = |I| = k and aOi = bIi for every
i ∈ [1, k], we define the contraction of A and B along O and I as a new tensor AOBI such
that

(AOBI)
a⃗Ō⃗b
a⃗⃗b Ī =

aO1
−1

∑
aO1

=bI1=0

· · ·
aOk

−1

∑
aOk

=bIk=0

Aa⃗
a⃗Bb⃗

b⃗
(2.2)

where a⃗ and b⃗ refer to all upper or lower indices of A and B and a⃗Ō refers to all upper
indices of A that are not in O, and similarly with b⃗ Ī .

Informally, this means contraction is a sum over all possible values of all in-
dices that are not in the output tensor, with corresponding indices set to the same
value. For matrices, this corresponds to the elements of the product of two ma-
trices (which is the contraction of the rows of one matrix with the columns of
another) being dot products. Since this notation is complete index soup, we will
instead consider a graphical notation for contractions, called tensor networks.

In this graphical scheme, we will represent tensors as shapes with inputs and
outputs represented by loose wires. Each wire can be marked with the dimension
corresponding to its index (if it is implied, this is omitted), and they are read
either left to right or bottom to top: inputs are wires from the bottom or left of
the shape, outputs are wires from the top or right. For instance, if a tensor A has
two inputs of dimensions two and three and three outputs of dimension one, it
would be represented like this:

A ∈ R1,1,1
2,3 = A

1 1 1

2 3

(2.3)

To represent a contraction, we will place multiple tensors together in a diagram,
and connect the wires corresponding to the inputs and outputs that are con-
tracted. For instance, take A as before and B ∈ R4,2

1 then we will write a con-
traction as follows:

A3B1 =
A

1 1 1

2 3

B
4 2

(2.4)

From this representation, we can easily see the two special cases of contrac-
tion. For tensor product, we perform a contraction with no inputs or outputs, and
for composition, we perform a contraction of all the inputs of one tensor, with all
the outputs of another.
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Definition 2.3. The tensor product is given as:

A B
. . . . . .

. . .. . .
⊗ = A B

. . . . . .

. . .. . .
A ⊗ B = A∅B∅ = (2.5)

The composition of two tensors is given as:

A B
. . . . . .

. . .. . .
◦ =

B

A
. . .

. . .

. . .

A ◦ B = Aa⃗Bb⃗ = (2.6)

Like multiplication, we may also write composition as juxtaposition: i.e AB = A ◦ B.

We can then see from the structure of the sum, and also directly from this
diagrammatic representation that contraction is associative (up to a renaming of
indices). Some other relationships, such as the following exchange identity, also
become immediately clear:

(A ◦ B)⊗ (C ◦ D) =
A

B

C

D

. . . . . .

. . . . . .

. . . . . .

(A ⊗ C) ◦ (B ⊗ D)= (2.7)

We will now define tensor addition, which is a very straightforward generaliza-
tion of matrix addition as elementwise array addition. This will have no spe-
cial diagrammatic interpretation, but rather sums of tensors can simply be repre-
sented as sums of diagrams.

Definition 2.4. Given two tensors A ∈ Rd1···dm

d1···dn
and B ∈ Rd1···dm

d1···dn
, define the tensor

A + B as follows:
(A + B)i1···im

i1···in = Ai1···im

i1···in + Bi1···im

i1···in (2.8)

Clearly, for matrices and vectors, this translates directly from the definition
of addition. Addition of tensors or tensor networks is also commutative and
associative by the properties of the underlying ring, and contraction is linear over
tensor addition. Therefore, we can define a vector space on tensors of a particular
shape, seeing that scalar multiplication cA for a scalar c and tensor A is just given
by c ⊗ A - note this vector space must have at least one basis.

Definition 2.5. We define the computational basis [CK17, 5.3.4] of a vector space of
tensors of the form Rd1···dm

d1···dn
as

{|x1x2 · · · xm⟩ ⊗ ⟨y1y2 · · · yn| | xi ∈ [0, di), yi ∈ [0, di)} (2.9)

where |x1x2 · · · xm⟩ is the tensor T ∈ Rd1···dm
given by Ti1···im

= ∏m
j=1 δijxj

= δ⃗i⃗x and
⟨y1y2 · · · yn| is defined by the tensor T ∈ Rd1···dn such that Ti1···im = δ⃗i⃗y.
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In the case that the tensors have no inputs (or outputs), then |x1 . . . xm⟩ (or
⟨y1 . . . ym|) form a basis directly. We call a tensor with no inputs a state, and
a tensor with no outputs an effect. Composing a state with an effect will give
a scalar and is the direct analogue of multiplying a row vector with a column
vector, so it represents a dot product.

With these basis states defined, we can move on to the last pieces needed for
general tensor networks: identity maps, cups, and caps. So far, we have only
allowed contraction between distinct tensors - i.e not between two indices on the
same tensor. In order to make this operation well defined, we introduce caps and
cups.

Definition 2.6. A cup is a two-output state tensor of the form Rdd for some dimension
d, defined by

=
d−1

∑
i=0

|ii⟩ (2.10)

and similarly, a cap is a two-input effect tensor of the form Rdd defined by:

=
d−1

∑
i=0

⟨ii| (2.11)

We also give the identity tensor, which has the form Rd
d, and denote it by a straight wire:

=
d−1

∑
i=0

|i⟩ ⟨i| (2.12)

Using caps and cups, we can represent a contraction between an input and
output of the same tensor by first contracting an output with a cap and an input
with a cup, and then contracting the other output of the cup with the input of the
cap. Diagrammatically, this looks like this:

A = A (2.13)

In terms of matrices, this represents the trace operation, but it is generalized to be
considered over just part of a tensor. Cups and caps satisfy several nice symme-
tries, called the yanking equations [CK17, 4.1.3]:

= = =
(2.14)

Because of these symmetries, tensor networks have the property of only connec-
tivity matters: when drawing a tensor network, the placement of the tensors, and
the shape of wires connecting indices doesn’t matter, only which inputs are con-
nected to which outputs, and which order the inputs and outputs are in.
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2.2 Graphical Calculi

So far, we have considered tensor networks as simply an alternative notation for
tensors, and so networks are only equal when the underlying tensors are equal.
We will now define several sets of specific generating tensors along with rules
that govern how these tensors combine in networks, all presented in graphical
format. Since we have graphical rules for manipulating these tensor networks,
we can treat them as objects in their own right, called diagrams, distinct from the
corresponding tensor. A set of generator diagrams together with rewrite rules is
called a graphical calculus.

Definition 2.7. A graphical calculus is a set of (possibly parameterized) generator dia-
grams corresponding to tensors over a ring R, from which every diagram is constructed
through contractions, and rewrite rules equating families of diagrams. Each diagram D
has an associated tensor, given by [[D]].

A calculus is called universal if every tensor over R (with some restriction on the
possible dimensions of the tensor), can be written as a diagram, up to scalar multiplica-
tion. A calculus is called sound if for every pair of diagrams D1 and D2, [[D1]] = [[D2]]

if D1 = D2 according to the rewrite rules of the calculus. A calculus is called complete
if for every pair of diagrams D1 and D2, D1 = D2 according to the rewrite rules of the
calculus if [[D1]] = [[D2]].

2.2.1 The ZX Calculus

The ZX calculus is a graphical calculus first introduced by Bob Coecke and Ross
Duncan in 2008 [CD11], designed to succinctly represent the structure of quan-
tum computations. It has been presented in several different ways, but we will
present it as a graphical calculus of tensors over the complex numbers with three
generators.

Definition 2.8 ([CD11, Figure 1]). The ZX-calculus is a graphical calculus over C

where all inputs and outputs of diagrams have dimension two. It is given by the following
generators:

• The Z-spider, which is parameterized by a number of inputs n, outputs m, and a
phase α ∈ R. If α is unspecified, it is assumed to be zero.

Zm
n [α] = α

. . .

. . .

m

n

[[Zm
n [α]]] = |

m︷ ︸︸ ︷
0 · · · 0⟩ ⟨

n︷ ︸︸ ︷
0 · · · 0|+ eiα |

m︷ ︸︸ ︷
1 · · · 1⟩ ⟨

n︷ ︸︸ ︷
1 · · · 1| (2.15)
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• The Hadamard gate, which is a tensor with one input and one output.

H = [[H]] =
1√
2
(|0⟩ ⟨0|+ |1⟩ ⟨0|+ |0⟩ ⟨1| − |1⟩ ⟨1|) (2.16)

• The X-spider, which is parameterized by a number of inputs n, outputs m, and a
phase α ∈ R, and is derived from the Z-spider.

·Xm
n [α] = α

. . .

. . .

m

n

= α

. . .

. . .

m

n

(2.17)

The rewrite rules for the calculus are as follows, up to scalar multiplication:

α α

. . . . . .

. . .. . .

OCM1= α

. . .
α

. . .
OCM2=

α

. . .

. . . β

. . .

. . .

α + β

. . . . . .

. . . . . .

SFZ=

. . . . . . . . .. . .

α

. . .

. . . β

. . .

. . .

α + β

. . . . . .

. . . . . .

SFX=. . .. . .

OCM3=

IH=
IX=

IZ= α

. . .
. . .π1= α

π

. . . . . .
π2=

−α

ππ

. . .

. . .

. . .

. . .

SC
=

π/2

π/2

π/2
EU
=

The first three rules, OCM1,2,3 assert that spiders are flexsymmetric [Car21, Chapter
5], and the Hadamard gate is self-transpose. This, together with the yanking equations,
means that ZX-diagrams have a stronger form of only connectivity matters, in which
the inputs and outputs of spiders can be deformed at will, so long as the (undirected)
connectivity between elements of the diagram is maintained.

We can see that the properties of the generators of ZX-calculus are thus re-
flected in the shape of the diagrams used to represent them: spiders are circular
because their legs can be moved about at will - they are radially symmetric - and
Hadamard gates are square because they are self-transpose - vertically symmetric
- but still have two distinct legs. To show an example of how we can use graphical
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techniques to prove identities about tensors, consider the following derivation

OCM
=

SC
=

SF
=

OCM
=

I
=

SF
=

SC
=

π1=
I
=

where the steps marked OCM are applications of the strong only connectivity
matters property of ZX-calculus. Note that we have ignored scalar factors in
the derivation, which we will always do unless stated otherwise. Also we see
that several rules are applied in orientations other than those presented above, or
with their colors swapped - this is permissible in ZX-calculus. Several other nice
properties of ZX-calculus are known, including universality [CK17, 9.4.1] for all
tensors over C with every dimension equal to two, soundness, and completeness
(albeit with a slightly larger ruleset than presented here) [JPV19].

2.2.2 The ZH Calculus

While the ZX calculus is universal, it is not necessarily good at expressing all ten-
sors concisely. In particular, tensors that compute functions related to the logical
AND gate on basis states (i.e a tensor ∧ such that ∧k

ij = 1 if i ∧ j = k and ∧k
ij = 0

otherwise) are difficult to express - the smallest known decomposition for the
AND gate in ZX is given [Kv21, Equation 20] as:

∧ = π/2π/4π

π/4

π/4

π/4

(2.18)

Since this is quite large, reasoning about classical logical operations in ZX can be-
come difficult. As such, the ZH-calculus was introduced by Miriam Backens and
Aleks Kissinger in 2018 [BK19], and provides a generalization of the Hadamard
gate to alleviate these problems.

Definition 2.9 ([BK19]). The ZH calculus is a graphical calculus over C where all inputs
and outputs of diagrams have dimension two. It is given by the following generators:

• The Z-spider, which is parameterized by a number of inputs n and outputs m.

Zm
n =

. . .

. . .

m

n

[[Zm
n ]] = |

m︷ ︸︸ ︷
0 · · · 0⟩ ⟨

n︷ ︸︸ ︷
0 · · · 0|+ |

m︷ ︸︸ ︷
1 · · · 1⟩ ⟨

n︷ ︸︸ ︷
1 · · · 1| (2.19)
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• The H-box, which is parameterized by a number of inputs n, outputs m, and a label
a ∈ C. If a is unspecified, it is assumed to be −1.

Hm
n [a] = a

. . .

. . .

m

n

[[Hm
n [a]]] = ∑

ik∈[0,1]
∑

ik∈[0,1]
ai1···ini1···im |i1 · · · im⟩ ⟨i1 · · · in|

(2.20)

Note that [[Hm
n [a]]]i

1···im

i1···in equals a if i1 = · · · = in = i1 = · · · = im, and one otherwise -
it is a generalized AND gate which equals a when it is true, and one otherwise. Addition-
ally, we have that [[H0

0 [a]]] = a, so it is easy to represent scalars and scalar multiplication
in ZH, unlike in ZX. We will further define two derived generators, for convenience:

• The labelled Z-spider, which is parameterized by a number of inputs n, outputs m,
and a phase α ∈ R. Note that the unlabelled Z-spider is equivalent to a Z-spider
labelled with α = 0.

Zm
n [α] = α

. . .

. . .

m

n

=

. . .

. . .

m

n

eiα (2.21)

• The X-spider, which is parameterized by a number of inputs n, outputs m, and a
phase α ∈ R. If α is omitted, it is assumed to be zero.

2 · Xm
n [α] = α

. . .

. . .

m

n

2 = α

. . .

. . .

m

n

(2.22)

We can see then that the ZX and ZH calculus are closely related - their Z-spiders are
exactly equivalent, while their X-spiders only differ by a scalar factor (although this de-
pends on the parameters of the spider). Like ZX, ZH also allows the strong form of only
connectivity matters, as all spiders and H-boxes are flexsymmetric.
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The rewrite rules of ZH-calculus are as follows:

. . .. . .

. . .

. . .. . .

. . .
OCM1= a

. . .. . .

. . .
a

. . .. . .

. . .
OCM2=

. . .

. . .

. . .

. . .
OCM3= a

. . .

. . .
a

. . .

. . .
OCM4=

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

SFZ=

. . .

. . . a

. . .

. . .

. . .

. . .
a

. . .

. . .

SFH=

BAZ=
BAH=

. . .

. . .

. . .

. . .

. . .

. . .

IZ=
IZ=

IH=

2

2

M
=

a b
ab

A
=

a b a+b
2

2

π

O
=π π

I
=

π
a a

a

1

U
=

Some of these rules also apply with the colours swapped (for instance, OCM1,3,
SFZ, IZ, and BAZ), like ZX-calculus, but not all of them, e.g BAH. The ZH cal-
culus is also universal, sound, and complete [BKM+21] in the same way as ZX,
but unlike ZX we will not usually ignore scalar factors in diagrams, since they are
much easier to work with ZH. In particular, using the fact that scalar H-boxes are
just complex numbers, we have the following:

a b
SFH= a b

BAH= a b = a b
IH= a b

M
= ab

SFH= ab

2 2 2

2
2 2 2

2 2

2 2 2

=⇒ a b ab=

(2.23)
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2.3 Counting and Satisfiability

Boolean satisfiability is a well-known problem in computer science that asks whether
a given formula of propositional logic has at least one assignment of variables that
makes the formula true. This is the prototypical NP-complete problem [Coo71],
and is widely regarded to be essentially difficult to compute [IP99], despite signif-
icant progress made on algorithms with extremely good performance in practice.
Model counting is a generalization of satisfiability that instead asks how many
assignments make the formula true.

Definition 2.10. A Boolean formula on n variables is a function of type {0, 1}n →
{0, 1}. For a given boolean formula ϕ, SAT is the problem of determining whether there
exist x1, x2, . . . , xn ∈ {0, 1} such that ϕ(x1, x2, . . . , xn) = 1, and #SAT is the problem
of determining the value |{x1, . . . xn | ϕ(x1, . . . , xn) = 1}|.

While decision problems like SAT exist in complexity classes like P, NP, or
PSPACE and are defined in terms of whether a Turing machine accepts or rejects,
different complexity classes exist for counting problems like #SAT. One such class
is #P, which was first defined by Leslie Valiant in 1979 [Val79].

Definition 2.11 ([Val79]). A counting Turing machine is a nondeterministic Turing ma-
chine which, after a computation terminates, outputs how many nondeterministic choices
would result in the machine accepting, given an input of size n. It is said to run in f (n)
time, if the longest possible computation (taken over all nondeterministic choices) takes
f (n) many steps.

#P is the class of problems that can be computed as the output of a counting Turing
machine running in polynomial time.

Clearly, #SAT ∈ #P, since a Turing machine that takes a polynomially sized
Boolean formula as input, chooses a satisfying assignment nondeterministically
and accepts if one exists, runs in polynomial time, and the number of accepting
choices is exactly the number of satisfying assignments. Since SAT is not just in
NP but NP-complete [Coo71], it seems natural to ask whether a similar result
holds for #P. Completeness and hardness for complexity classes is often defined
in terms of reductions, such as the following.

Definition 2.12. A Turing reduction from one problem A to another problem B is defined
as a Turing machine that can solve instances of A given access to an oracle for problem
B. A Cook reduction is a Turing reduction that runs in polynomial time.

12



A polynomial-time counting reduction is a Cook reduction in which the oracle for
problem B is only allowed to be used once. Furthermore, a parsimonious reduction is a
polynomial-time counting reduction where no further computation is carried out after the
oracle is used.

While for decision problems, what it means for a problem to be complete for
a given class is well defined, this is not so clear for counting problems. We will
be using the definitions of #P-hard and #P-complete given by Valiant [Val79], but
these are more permissive than some other definitions.

Definition 2.13. A problem A is #P-hard if there is a Cook reduction from every problem
in #P to A. A problem is #P-complete if it is both in #P and #P-hard.

While plenty of #P-complete problems exist, it seems that this definition can
be generalized further. In particular, if there is a Cook reduction from some prob-
lem A to every #P-complete problem, A may not be in #P, and thus cannot be
#P-complete, but it is intuitively clear that A cannot be harder than #P since it
can be computed using an #P-complete oracle with only polynomial overhead.
Therefore, we will call a problem FP#P-complete if it is #P-hard, but there is a
Cook reduction from it to every problem that is #P-complete.

Lemma 2.1. If there is a Cook reduction from B to A and B is #P-complete, then A is
#P-hard. If there is a Cook reduction from A to B and B is #P-complete and A is #P-hard,
then A is FP#P-complete.

Proof. First, note that the existence of Cook reductions is transitive - if there is a
reduction from A to B and B to C, there is a Cook reduction from A to C con-
structed by replacing the calls to the oracle for B by the reduction from B to C.
Since the product of two polynomials is polynomial, this is still polynomial time.

Therefore, for the first part, for any problem C in #P there is a Cook reduction
from C to B by definition, and so by assumption and transitivity, a reduction
from C to A. Therefore, A is #P-hard. For the second part, for any #P-complete
problem C, there is a reduction from B to C by definition, and thus from A to C by
transitivity. Therefore, there is a reduction from A to every #P-complete problem,
and A is #P-hard by assumption, so it is FP#P-complete.

Returning to the matter of #SAT, it is known that this is #P-complete. In fact,
this follows immediately from the original proof that SAT is NP-complete, the
Cook-Levin theorem [Coo71], since this gives a reduction from any problem in
NP to SAT, such that every accepting path of the Turing machine defining the
problem corresponds to exactly one satisfying assignment of a Boolean formula.
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For any instance of a problem in #P, applying the Cook-Levin theorem to the
defining counting Turing machine as if it were a standard nondeterministic Tur-
ing machine will produce a #SAT instance that can be solved with a #SAT oracle
to determine the correct solution. Thus there is a reduction from any problem in
#P to #SAT, so it is #P-hard, and thus also #P-complete [Val79].

For the rest of this dissertation, we will not usually be concerned with general
Boolean formulae, but rather those with a specific form. In particular, we will
often use conjunctive normal form.

Definition 2.14. A Boolean formula ϕ on n variables is in k conjunctive normal form
(kCNF) with m clauses if it is of the following form

ϕ(x1, . . . , xn) = (l11 ∨ · · · ∨ l1k1) ∧ · · · ∧ (lm1 ∨ · · · ∨ lmkm) (2.24)

where each of lij is called a literal, and is either a variable xi or a negation of a variable
¬xi, and every ki ≤ k. We will call quantity δ = m

n the density of the formula.

We will call the SAT and #SAT problems where formulae are restricted to
kCNF form kSAT and #kSAT. Note that #kSAT is still #P-complete for any k ≥ 2,
even though kSAT is only NP-complete for k ≥ 3, and indeed 2SAT ∈ P, as we
will show in the next chapter.

For the case of k ≥ 3, #P-completeness of #kSAT follows from a parsimo-
nious reduction from general SAT to kSAT and then 3SAT. Whereas for #2SAT,
no such reduction can exist, since 2SAT ∈ P, and so #P-completeness was proven
by Valiant [Val79] via a reduction to the matrix permanent - we will elaborate on
the relationship between #2SAT and #kSAT in chapter four.
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CHAPTER 3

Counting with Diagrams

This chapter is an exposition of the ideas given by Neil de Beaudrap, Aleks Kissinger,
and Konstantinos Meichanetzidis in the paper “Tensor Network Rewriting Strategies for
Satisfiability and Counting” [dKM21] and does not have any novel content.

3.1 Boolean Logic in ZH-Diagrams

It was mentioned in Definition 2.9 that the ZH-calculus H-box is in fact a gener-
alized form of the classical AND gate, and in light of this it seems natural to ask
how we can represent Boolean formulae as ZH-diagrams. Since every wire in a
ZH-diagram has dimension two, the computational basis consists of two states
|1⟩ and |0⟩ which we can use to represent the true and false states of Boolean
logic, respectively. In a ZH-diagram, we can represent these states as

= |0⟩
π

= |1⟩ (3.1)

which can be verified by concrete calculation of the tensors. It is well-known that
the set {AND, NOT} of Boolean logic gates can be used to represent any Boolean
function, so we shall seek to replicate these in ZH. For the NOT gate, we have the
following:

SF
=

π
π π

SF
=

π (3.2)

so we can see that X1
1[π] acts as a NOT gate. The AND gate can then be con-

structed from two H-boxes, by noting the following relations on basis states

α
π

=
α αIZ= α

SFH=

1
4

1
41

2
1
2

α
IH=

BAH=

1
2

1
2

= BAZ=

(3.3)
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and then to generalize this to multiple inputs, we can stack AND gates together
in an arbitrary order by associativity. This can be simplified to a single pair of
H-boxes by induction using the following equation:

AND
... AND

...=
AND

7→ ...
SFH=

...

1
2 1

2

1
2

(3.4)

The diagram constructed so far can only make use of each input state once since
every input is a loose wire. However, in many Boolean functions, we will need
to use an input more than once. To this end, note that we can copy a basis state
using a Z2

1 spider

...
BAZ=

...

π
... = ...

1
2 ...

1
2IZ=

...
2−n−1

IH=
...

2−n

=

...2−nBAH=
IZ=

...2−n = ...
π

π

(3.5)

and so we can represent any Boolean function as a ZH-diagram. For example, the
function f (x1, x2) = x1 ∧ ¬(¬x2 ∧ x1) would be represented as:

π
π

f (x1, x2) 7→
x1

x2

While designing a diagram that produces basis states as outputs is one embed-
ding of a Boolean formula, we could also create a diagram that produces a scalar
as output, either zero or one, which corresponds to the output of the Boolean
formula directly. We can convert basis states to their corresponding scalars by
applying a basis effect to the output of a diagram (also called a post-selection)
since we have that

kπ π =SF
= (¬k)π

1
2

1
2

1
2

1 π =

1
2

0 (3.6)

which can be verified by concrete calculations. Also, by exploiting the fact that
multiplying scalars is the same as the AND gate when the scalars are zero or one,
we can see that post-selecting after an AND gate is the same as post-selecting
before the AND gate:

aπ

bπ

π =

1
2

1
2

(a ∧ b)π π

1
2

= a ∧ b = ab = a b
aπ π

1
2

=

1
2

bπ π
(3.7)

16



To construct a diagram that has a scalar value equal to the value of a CNF
formula, we have four layers:

• First, every variable is copied zero or more times using a Z-spider.

• Then every literal is formed by negating variable copies wherever needed.

• The literals are fed into clauses, which consist of AND gates with all inputs
and output negated (as this is equivalent to an OR gate by De Morgan’s
laws).

• The outputs of the clauses are fed into AND gates and the outputs are post-
selected to give a scalar value.

For example, with the formula f (x1, x2, x3) = (x1 ∨ x2) ∧ (x2 ∨ ¬x3) ∧ (¬x1 ∨ x3)

we have the following diagram (ignoring scalar factors):

π
π
π
π
π
π

π

π

π

π
π

π

x1
x2
x3

f (x1, x2, x3) 7→

However, we can simplify this further, by moving the post-selections through the
AND gate as before and cancelling redundant negations:

π
π
π
π
π
π

π

π

π

π
π

π

π
π
π
π
π
π

π

π

π

π
π

π

π

π

π
π
π

π

= SF
=

π
π
π

π

∗
=

0

0

0

π
π
π

π

0

0

0

SFH=

where the equality marked with a star follows from the following derivation:

0
A
= 1

π

SFH=

π
1

U
=

π

=

π

BAH=

π

SFZ=

π

BAZ=

π

IZ=

π

=

1
4

1
4

1
2

1
2

1
2

1
2

1
2

1
2

(3.8)
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Therefore, in general, CNF formulae can be constructed with three layers: a Z-
spider to copy each variable, then a layer of negations for every literal that is not
negated in the formula, followed by a layer of zero-labelled H-boxes, one for each
clause. Thus if we have a kCNF formula with n variables and m clauses, then the
corresponding ZH-diagram will contain n Z-spiders and m H-boxes each with at
most k legs.

3.2 Counting from Sums of Diagrams

Since we previously defined addition on tensors and tensor networks, it is natural
to define addition on diagrams to be the operation induced by addition on the
underlying tensors. That is to say, for any three diagrams D1, D2, D3, we will
write D1 + D2 = D3 if and only if [[D1]] + [[D2]] = [[D3]]. Several diagrams, such
as Z-spiders, caps, cups, and identity wires are defined as sums of tensors, and so
can be written as sums of diagrams. In particular, we have the following equality

= |0⟩ |1⟩+ =
π

+ (3.9)

and since tensor addition distributes over the tensor product (as addition dis-
tributes over scalar multiplication), we can see that

. . . . . . . . .π
+=

= . . . π π. . .π
+ . . .π . . . + +

(3.10)

Thus since the tensor product of Z-spiders is a sum over all possible combina-
tions of X-spiders, and thus all possible combinations of basis states, we have the
following, if D is a diagram representing a Boolean formula f :

. . .

D
=

. . .

D
+ . . . +

π π π. . .

D

= ∑
x1,...,xn∈{0,1}

f (x1, . . . , xn) = ∑
f (x1,...,xn)=1

1 + ∑
f (x1,...,xn)=0

0

= |{x1, . . . , xn | f (x1, . . . , xn) = 1}|

(3.11)

Therefore, plugging Z-spiders into the top of a diagram for a Boolean formula is
a scalar diagram whose value is exactly the number of satisfying solutions, and
so evaluating this diagram solves #SAT for that formula.
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Returning to our example of a ZH-diagram of a CNF formula from earlier, we see
that the equivalent #SAT diagram (ignoring scalar factors) is

π
π
π

π

0

0

0

SFZ=

π
π
π

π

0

0

0

and so in general, by the SFZ rule, the #SAT diagram for any CNF formula is the
same diagram as given previously, but with the inputs to the Z-spiders removed.

The question remains, now that we have diagrams representing a #SAT in-
stances, can we evaluate it? Since the ZH-calculus is complete, there must exist
some series of rewrites which transforms such a diagram into a diagram contain-
ing just a scalar, from which we can read off the answer. However, the normal
form given in the proof completeness represents every individual element of the
tensor in the diagram - for a ZH-diagram with n inputs or outputs, this is 2n el-
ements, since every index has dimension two. While for scalar diagrams, this
would appear not to be a problem, in reality, the normal form is generated by
considering the diagram as a series of contractions and tensor products, and the
diagrams for each of these intermediate components will have many inputs or
outputs, and thus be exponentially sized.

In practice, the size of the intermediate diagrams can be minimized by choos-
ing a good ordering for the sequence of contractions - recent work by Johnnie
Gray and Stefanos Kourtis [GK21] shows that this method is highly effective for
certain problems, albeit with sophisticated heuristics for determining the order-
ing. We will not consider efficient tensor network contraction in this dissertation -
instead, we will consider diagram rewriting that maintains the polynomial size of
the diagrams, and ways to evaluate these diagrams as sums of simpler diagrams.

One such rewriting rule is given by de Beaudrap et al [dKM21, Theorem 4.1]
for the case of #2SAT diagrams, and allows Z-spiders to be eliminated from the
diagram:

π π
00

00

. . .

. . .

=

. . .

. . .

0 0
00

π
π
π
π

2 (3.12)

Unfortunately, the presence of the two-labelled H-box prevents this rule from
being applied repeatedly to remove all Z-spiders from the diagram. This is to be
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expected: removing all Z-spiders from the diagram with this rule would provide
a polynomial time algorithm for #2SAT since n applications of the rewrite would
be required, and each application can be done in O(n2) elementary operations on
the diagram (e.g adding or removing edges, spiders, and H-boxes) since each Z-
spider is connected to at most n other Z-spiders through H-boxes, and thus O(n2)

H-boxes would need to be added to connect them.

3.3 Satisfiability from Changing Rings

Since determining whether a Boolean formula is satisfiable is equivalent to de-
termining whether the number of satisfying solutions is non-zero, it is natural to
ask whether there is any way to determine if the value of a #SAT diagram given
above is non-zero, without explicitly evaluating it. De Beaudrap et al give one
method to do this [dKM21, Section 3], by changing the ring over which tensors
are defined.

Consider the semiring R given by {0, 1} where a + b = a ∨ b and ab = a ∧ b.
Let us consider ZH-diagrams as being defined over R instead of C, then we can
consider sums of scalar diagrams as sums in R. If we have a ZH-diagram D over
R corresponding to a Boolean formula f , we can see that:

. . .

D
=

. . .

D
+ . . . +

π π π. . .

D

= ∑
x1,...,xn∈{0,1}

f (x1, . . . , xn) =
∨

x1,...,xn∈{0,1}
f (x1, . . . , xn)

=

{
1 f is satisfiable
0 f is not satisfiable

(3.13)

In terms of diagrams, moving from C to R allows H-boxes with positive integer
labels to be simplified into Z-spiders:

n + 1
... = 1 ∨ n

... = 1
...

SFH=
...1

= 1
...

1

= 1
...

2

U
=

... = ...
BAH=

2 ...2 = ...

(3.14)
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By applying this to Equation (3.12), we find that over R we have the following:

π π
00

00

. . .

. . .

(3.12)
=

. . .

. . .

0 0

00
π
π

π
π

2 (3.14)
=

. . .

. . .

0 0

00
π
π

π
π

BAZ=

. . .

. . .

0 0

00
SFZ=

. . .

. . .

0 0

00
(3.15)

With the obstruction of the two-labelled H-box removed, this gives an algo-
rithm for evaluating diagrams representing 2SAT instances in polynomial time -
specifically O(n3), which matches the existing algorithms for 2SAT. This result
can be generalized to kSAT as

π π

00

00

. . .

. . .

=

. . .. . .

. . .. . .

. . .. . .

. . .. . .

0 00 0

. . .

. . .

(3.16)

but in this case, we lose the polynomial time evaluation property, since the arity
of the H-boxes is increasing at each step and we can no longer assume that the
diagram is polynomial in size. This was expected since it is generally suspected
that 3SAT /∈ P.

Some care must be taken when translating a diagram from C to R - only ele-
ments of the diagram whose underlying tensors have non-negative integer values
are well-defined in R, so even if the diagram as a whole represents a non-negative
integer, this transformation is only valid if every generator of the diagram is one
of the following (called the NatZH fragment by de Beaudrap et al [dKM21, Defi-
nition 3.1]), . . .

. . .

. . .

. . .
π

. . .

. . .
n

. . .

. . .
(3.17)

where n ∈ Z ≥ 0. Furthermore, since R is a semiring and not a ring, the scalar
negative one cannot be represented in R, so care must be taken when considering
sums of diagrams, as subtraction of diagrams is not well-defined - it is only valid
to write a diagram as a sum of diagrams in R if both summands are valid in R,
and the coefficients of the sum are non-negative.

When these conditions are not met, switching from C to R is not sound. For
example, consider the following fallacious argument that 3SAT ∈ P:
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1. Instead of representing true and false with the computational basis states,
use the following mapping:

⇐⇒ False ⇐⇒ True

2. In this alternate basis, the OR gate and postselection look like Z-spiders,
while the NOT gate is built from a zero H-box, and variables are given by
two-labelled H-boxes and X-spiders:

... ⇐⇒ OR π ⇐⇒ Post-select

π π 0 ⇐⇒ NOT ⇐⇒ Variable2
π

π

...

All these can be verified by concrete calculation. Note here that the output
of the OR gate is weighted by the number of true values, but since we only
intend to consider satisfiability, this is okay.

3. Therefore, in this alternate basis, diagrams for #3SAT look like the follow-
ing, given for the function f (x1, x2, x3) = (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3),
which splits completely when moving from C to R:

2 2
π π π π

π
π

0

π
π

0

2
π π

7→
π π π π

π
π

0

π
π

0

π π

π π π π

4. Since the diagram splits completely along the variables, we are left with
one disconnected component for each clause, each of bounded size. We can
evaluate these by concrete calculation in O(1) time, since they are bounded,
and this whole process takes O(n3) time because we have at most 8n(n−1)(n−2)

6

clauses - otherwise there would be duplicates that we could remove before
translating the formula to a diagram.

Here the only invalid step was step three, where we moved from C to R, even
though the Z-spiders in the NOT gates and post-selections contained negative
values.
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CHAPTER 4

Completeness and Universality

This chapter shows an analogue of the “well-known", but surprisingly hard to reference,
fact that tensor contraction is in some cases #P-complete. This particular presentation in
terms of ZH-diagrams is, as far as the author is aware, novel.

So far, we have seen that #SAT instances can be embedded in ZH-diagrams,
and so evaluating scalar ZH-diagrams must be at least as hard as solving #SAT.
Is it the case that the converse is also true - that solving #SAT is at least as hard
as evaluating ZH-diagrams? This question has been previously considered for
general tensor networks [DHM02], where it has been shown that this depends on
the generators of the tensor network and the ring they are considered over.

In this chapter, we will answer this question in the affirmative for certain sub-
sets of ZH-diagrams. We will proceed by starting with a small fragment of ZH-
diagrams and showing that these are FP#P-complete, before showing that there
are reductions from larger classes of diagrams into this form, and ending with an
approximation of general ZH-diagrams over C.

4.1 Completeness for ZH0
π

In order to consider the problem of evaluating ZH diagrams formally, we first
define the problem Eval(F) which is the task of finding the complex number cor-
responding to a scalar diagram that exists in fragment F of a graphical calculus. A
fragment is a set of diagrams built from arbitrary combinations of a fixed subset
of generators - for example, the NatZH fragment we encountered previously.

Definition 4.1. For a given fragment F, the problem Eval(F) is defined as follows:

Input A scalar diagram D ∈ F consisting of n generators and wires in total,
where any parameters of the generators of D can be expressed in O(poly(n)) bits.
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Output A number z ∈ C such that [[D]] = z.

The runtime of an algorithm for Eval(F) is defined in terms of the parameter n.

The first fragment we will consider is ZH0
π, which is a slight generalization of

the #SAT diagrams given in the last chapter. This fragment is slightly bigger than
NatZH because it allows negativity.

Definition 4.2. The fragment ZH0
π is the subset of ZH-diagrams consisting of the fol-

lowing generators connected by arbitrary wires:
. . .

. . .
π

. . .

. . .

. . .

. . .
π

. . .

. . .
0 (4.1)

It is interesting to note that ZH0
π is equivalent (up to scalar factors) to the

∆ZXπ fragment of the ∆ZX calculus, which is a universal, sound, and complete,
extension of ZX-calculus first given by Renaud Vilmart [Vil19] shortly before the
introduction of ZH-calculus. In particular, we can embed ZH0

π into ∆ZXπ as fol-
lows:

0

. . .

. . .

. . .

. . .

. . .

. . .
π

. . .

. . .
7→

. . .

. . .
π

. . .

. . .
7→ π

. . .

. . .
7→

. . .

. . .
7→ π

7→ π

This is significant because several of the lemmas we will use later are either direct
translations or generalizations of the rules of ∆ZX. Other presentations of ZX-
calculus, for instance, the work of Ng and Wang [NW18], have the triangle above
as a derived generator, and some completeness results for general ZX-calculus
[JPV19] require a rule that is derived from an equation on triangles, and thus
zero H-boxes.

Theorem 4.1. Eval(ZH0
π) is #P-hard.

Proof. This essentially follows directly from the construction of #SAT diagrams
by de Beudrap et al [dKM21] as detailed in the previous chapter.

To reduce #2SAT to Eval(ZH0
π), take a 2CNF formula and construct the associ-

ated #SAT ZH-diagram. Since the formula is 2CNF, each zero H-box representing
a clause has at most two legs. If there is an H-box with no legs, then return zero,
since this H-box multiplies the whole diagram by the scalar zero. For every zero
H-box with one leg, apply Equation (3.8) to transform it into an X-spider.
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The remaining generators are zero H-boxes with two legs, Z-spiders for vari-
ables and X-spiders for negations, all of which are in ZH0

π. Therefore, the diagram
is now in ZH0

π and the oracle for Eval(ZH0
π) can be applied to give the answer.

Since #2SAT is #P-complete, Eval(ZH0
π) is #P-hard by Lemma 2.1.

Lemma 4.1. The following diagram equivalence holds:

0

00

0
π

π π

π

ππ

= (4.2)

This is derived from the Tseytin transformation [Tse83] of the XOR operation (which is a
standard method of translating boolean formulae into 3CNF).

Proof. This can be verified by concrete calculation of the underlying tensors.

Theorem 4.2. Eval(ZH0
π) is FP#P-complete

Proof. Since Eval(ZH0
π) is #P-hard and #3SAT is #P-complete, it suffices to prove

that there is a Cook reduction from Eval(ZH0
π) to #3SAT by Lemma 2.1.

First, note that for simplicity this reduction is not tight - it can be made much
tighter with the addition of many case distinctions and several extra rewrite rules.

We can reduce Eval(ZH0
π) to #3SAT as follows. Given a scalar diagram D in

ZH0
π, proceed as follows:

1. Any spiders or H-boxes with no legs should be removed from the diagram.
Evaluate them by concrete calculation and multiply their values together to
get a scalar multiplier c for the diagram. If there are no such spiders, set
c = 1.

2. Extract the phases from all π-phase Z-spiders as follows:

π π. . .
. . .. . .

= . . .
. . .. . .

BAH= . . .
. . .. . .

IZ= . . .
. . .. . .

π

(4.3)

3. Unfuse the phase of every X-spider with at least two legs:

α
. . . . . .

SF
=

α
(4.4)
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4. For any X-spiders with at least three legs, split them and apply Lemma 4.1,
fusing Z-spiders between applications:

.. .
SF
=

. . .
4.1
=

. . .

·
·

·

(4.5)

5. Replace X-spiders with one leg as follows:

(3.8)
=

0
π (3.8)

=

0
πSF

=
πIZ=

0 IZ=

0
π

(4.6)

6. Excepting the single Z-spider with a π-phase, use the SFZ rule to fuse Z-
spiders wherever possible. If there are two two-legged zero H-boxes con-
nected together directly, introduce a Z-spider between them using the IZ

rule.

At this point, we can argue that this diagram follows the form of a #3SAT diagram
except perhaps for a single π-phase Z-spider:

• Every Z-spider has a zero phase due to step two, is not connected to other
Z-spiders due to step six, and is only connected to X-spiders that are NOT
gates by steps four and five.

• Every H-box has label zero, is only connected to X-spiders that are NOT
gates by steps four and five, and is not connected to other H-boxes directly
by step six.

• Every X-spider is a NOT gate: after step three only X-spiders with one leg
or at least three legs remain. The first case is eliminated in step five, and the
second in step four.

Finally, to remove the π-phase Z-spider introduced in step two, we can write the
diagram as a sum of two diagrams which don’t contain this phase:

π = π− = 0 π− 0
...

...
...

...
... (4.7)

Since these two diagrams are #3SAT diagrams associated with some Boolean
functions f1 and f2, read these functions off the diagram by converting each Z-
spider into a variable and each H-box into a clause. Then, using the #3SAT oracle,
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find the number of solutions z1 and z2 of f1 and f2. The value of the original ZH0
π

diagram D is then given by z = c(z1 − z2).
Since there are at most n each of generators and wires, it is easy to see that

this runs in polynomial time in n: steps one, two, three, and five run in time O(n)
since they perform a constant amount of work per generator. Step four runs in
time O(n) since it performs a constant amount of work per edge. Step six runs
in time O(n) since it does a constant amount of work per generator and O(n)
of them were introduced in step four. Therefore, the reduction above is a Cook
reduction, and Eval(ZH0

π) is FP#P-complete.

It is interesting to note that this reduction requires the use of #3SAT despite
the fact that #2SAT is also #P-complete. The only generators that are blocking
this are X-spiders and Z-spiders with π-phases. We saw from step two that it
is possible to eliminate the π-phases in exchange for X-spiders, and we will see
in the next section that it is possible to eliminate the X-spiders in exchange for
π-phases, but it is not possible to eliminate both.

Therefore, if we wanted to find a reduction from Eval(ZH0
π) to #2SAT, perhaps

we could find a way to write an X-spider as a #2SAT diagram? Unfortunately,
this is not possible unless P = NP - it is known that Boolean formulae that have
both 2CNF and XOR clauses are equivalent to 3CNF formulae, and X-spiders
are equivalent to XOR clauses, so we could solve 3SAT in polynomial time if we
could rewrite X-spiders in #2SAT form by switching the underlying ring from C

to R as shown before.
Another way we could find a reduction to #2SAT would be to write X-spiders

as sums of polynomial many #2SAT diagrams. However, if this is possible, unless
P = NP, at least one of the coefficients of the sum must be negative - otherwise
we can still make the switch from C to R and solve 3SAT by evaluating the dis-
junction of 2SAT instances. Therefore, it seems unlike that a reduction of this
type is possible, and indeed this makes sense given that the original proof of #P-
completeness for #2SAT by Valiant [Val79] exploits a multiplicative, not additive,
structure.

4.2 Negativity is All You Need

Now that we have one fragment of ZH-calculus which is FP#P-complete, we can
move to larger fragments. We will examine four fragments ZHQ

π/4 ⊇ ZHQ
π/2 ⊇

ZHQ
π ⊇ ZHZ

π ⊇ ZH0
π and show that they can all be reduced to ZH0

π and thus are
all FP#P-complete. Far from being purely academic, the largest of these fragments,
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ZHQ
π/4, is large enough for many practical uses of ZH-calculus including express-

ing quantum computations ergonomically, which is what ZH-calculus was origi-
nally designed for.

Definition 4.3. ZHZ
π is the fragment of ZH-calculus given by the following generators

. . .

. . .
π

. . .

. . .

. . .

. . .
π

. . .

. . .
n

. . .

. . .
(4.8)

where n ∈ Z.

By far the most difficult reduction is the first one, from ZHZ
π to ZH0

π, as it
requires a method of encoding countably many generators. In order to establish
this, first, we will show that arbitrarily-sized AND gates can be implemented in
ZH0

π if we use negative numbers in our tensors in the form of π-phase Z-spiders.

Lemma 4.2. The following diagram equivalence holds:

π

π

0

0
π 0 π =π

2

(4.9)

This is translated from a characterization of the Toffoli gate first given by Ng and Wang
[NW18] and is a generalization of the ∆ZXπ rules HT and BW.

Proof. This can be verified by concrete calculation of the tensors.

Lemma 4.3. The following diagram equivalence holds:

π π0 π π0 = (4.10)

Proof. This can be verified by concrete calculation of the tensors.

Lemma 4.4. The following diagram equivalence holds for all n ≥ 0:

π

π

0

0
π 0 π =π

2
...n ...n (4.11)

Proof. We proceed by induction on n. For the case of n = 0:

π π 0 π =
2

π π 0 π
2

= π π 0 π
0

π π 0 π
0

=

π π 0 π
0

BAH= π π 0 π
SFH= 0

SF
= π π 0 ππ 0π

4.3
= π

2

2

2 2
= IZ=

(4.12)
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For the case of n = k + 1, assuming the result holds for k:

...
...

SFH=

1
2

π

π

0

0
π 0 ππ

... π

π

0

0

π 0 ππ

2

π

π

0

0
π

...

π 0

0 ππ

2

π

π

0

0
π

...

π 0

0 ππ

2
SFZ=

4.3
=

4.2
=

π

π

0

0
π 0 ππ

... π

π

0

0

0 ππ

2
SFZ= π (4.13)

The previous lemmas represent the most technical part of the reduction. With
these cases handled, we can show the whole reduction to ZH0

π by constructing all
integers labelled H-boxes from zero H-boxes (this was inspired by the method in
[BKM+21], but uses a different construction, as their method requires exponen-
tially sized diagrams). We will also explore several other applications of these
lemmas in the next chapter.

Theorem 4.3. There is a polynomial-time counting reduction from the problem Eval(ZHZ
π )

to Eval(ZH0
π) and we have that Eval(ZHZ

π ) is FP#P-complete.

Proof. In order to rewrite a diagram from ZHZ
π into ZH0

π, we only need to rewrite
all of the H-boxes into zero H-boxes with two legs. First, apply H-box fusion and
Lemma 4.4 to rewrite all incompatible H-boxes into H-boxes with one leg:

a
...

SFH=
... a 4.4

= a
π

π

0

0
π

... 0 ππ

1
2

(4.14)

Then to construct a one-legged H-box with label a ≥ 0, write a = a0 + 21a1 +

22a2 + · · · + 2mam where m = O(poly(n)). This is always possible since by the
definition of Eval(ZHZ

π ), all the labels must have at most O(poly(n)) bits. Then
since 0 π 2= we have that

0π

0π

... k

ak

2

2
k

ak

=2k

ak

M
=2kak

M
= (4.15)

and as ak ∈ {0, 1}, we can rewrite ak in ZH0
π as

0 (3.8)
= 1 U

= (4.16)

29



and then we can combine these together to make an a-labelled H-box using an
addition gadget:

a + b

M
=

a+b
2

2 =
a+b

2

π 0 A
= π 0

a b

π

SFH= π 0

π

ba

4.2
= π 0

π

a

1
8

π

π

0

0

π
0
π

π

b

π

π

0

0

π
0
π

π

1
2

1
2

(4.17)

Finally, if we need to construct an a < 0 labelled H-box, we can use the following:

−a
M
=

a
= a π (4.18)

We can see this rewrite runs in polynomial time because there are O(n) H-boxes,
each of which requires O(m) addition gadgets, and each term of the addition
requires O(m) spiders and H-boxes since we need k two-labelled H-boxes to rep-
resent 2kak, and k ≤ n. Therefore, the following is a polynomial-time counting
reduction from Eval(ZHZ

π ) to Eval(ZH0
π):

• Apply this rewrite, after which we will be left with a ZH0
π diagram with

some additional scalar H-boxes of 1
2 .

• Remove these from the diagram and let c be their product.

• Submit the resulting diagram to the oracle for Eval(ZH0
π) to obtain a value

z, and then return cz.

Furthermore, by Lemma 2.1 and Theorem 4.2, Eval(ZHZ
π ) is FP#P-complete.

4.3 Injecting Magic States

Now we can move on to considering even larger fragments fairly easily. Firstly,
we will show that incorporating rational numbers in H-box labels can be done
by rewriting up to some scalar factors, and then by using gadgets to copy certain
“magic states” - that is, one-legged H-boxes with specific labels which we can
split as sums - we will introduce complex numbers and factors of

√
2 into the

labels.
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Definition 4.4. ZHQ
π is the fragment of ZH-calculus given by the following generators

. . .

. . .
π

. . .

. . .

. . .

. . .
π

. . .

. . .
a

. . .

. . .
(4.19)

where a ∈ Q.

Theorem 4.4. There is a polynomial-time counting reduction from Eval(ZHQ
π ) to the

problem Eval(ZHZ
π ), and Eval(ZHQ

π ) is FP#P-complete.

Proof. We can rewrite a diagram from ZHQ
π to ZHZ

π as follows. First, note that
only the H-boxes need to be rewritten. Therefore, apply the SFH rule to unfuse
the label from every H-box, as in the first step of the previous reduction, so that
we must only consider rewriting H-boxes with one leg. These can be translated
as follows

a
b

M
=

a 1
b

=

a

b

π1
b

= a
b

b
1
b b 1

b

(4.20)

since we have that:

1
a

a

1
a

a

SFZ=

1
a

a

SFH=
1
2

1
aI

=
1
2

π
aa

1
aIH=

1
8

π
aa

1
a

=
1
4

π
aa

1
aBAH=

1
4

π
aa

1
aSFH= π

aa

1
a

SFZ= π
a

a

M
= π

a

1
U
= π

a

SFZ= π
a

IZ=
π
a

(4.21)

Therefore, a reduction from Eval(ZHQ
π ) to Eval(ZHZ

π ) is given by:

1. Perform the rewrite specified above. This clearly happens in polynomial
time since a constant amount of work is performed per generator, of which
there are O(n).

2. This rewrite will create additional scalar factors in the diagram, so extract
these from the diagram and let c be their product, which can be computed in
O(poly(n)) time since there are O(n) of them and they each have O(poly(n))
number of bits.

3. Use the oracle for Eval(ZHZ
π ) to evaluate the remaining diagram and obtain

a value z, and then return cz.
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This is a polynomial-time counting reduction because the oracle is only used
once, and since this is also a Cook reduction, Eval(ZHQ

π ) is FP#P-complete by
Lemma 2.1 and Theorem 4.3.

Definition 4.5. ZHQ
π/2 is the fragment of ZH-calculus given by the following generators

k π
2

. . .

. . .
k π

2

. . .

. . .
a

. . .

. . .
(4.22)

where k ∈ Z and a ∈ Q[i] – the value of a must have rational real and imaginary parts.

Lemma 4.5. The following diagram equivalence holds:

i
i

i
= (4.23)

Proof. This can be checked by concrete calculations on the underlying tensors.

Theorem 4.5. There is a Cook reduction from Eval(ZHQ
π/2) to Eval(ZHQ

π ), and we
have that Eval(ZHQ

π/2) is FP#P-complete.

Proof. To perform a reduction from Eval(ZHQ
π/2) to Eval(ZHQ

π ), we will first nor-
malize the diagram to extract all the imaginary components as seperate spiders.
To do this for H-boxes, first write each label, a, as a = ar + iai where ar, ai ∈ Q,
and then apply the following:

ar + iai

. . . . . .

ar + iai

SFH=

. . .
M
=

ar+iai
2

2

. . .
A
=

2

ar iai

π

. . .
SFH=

2

ar

π

iai

. . .
M
=

2

ar

π
ai

i

1
2

1
2

1
4

1
8

1
8

(4.24)

For each spider, if k is even, we do not need to do anything, since then it is in
ZHQ

π , otherwise, if k is odd, we do the following:

π
2 = i −π

2 = −i
M
=

i

π
2 = 1

2 i −π
2 = 1

2 −i
M
=

i1
2

(4.25)

Then we fold up the i-labelled H-boxes into a single H-box by making use of
Lemma 4.5:

i i. . .
=i . . .

i

(4.26)
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At this point we have a ZHQ
π diagram D connected to a single i-labelled, so we

can split it as a sum:

Di D Dπ+ i ×= (4.27)

Then we can use the Eval(ZHQ
π ) oracle to evaluate these two diagrams to obtain

z1 and z2, and return z1 + iz2. This whole reduction runs in polynomial time
since the rewriting does a constant amount of work per generator. Therefore, by
Lemma 2.1 and Theorem 4.4, Eval(ZHQ

π/2) is FP#P-complete.

Now we are finally ready to move on to the largest fragment, which contains
all H-boxes with rational numbers, i and

√
2 as labels. The method of proof will

be very similar to the previous case and proceeds by introducing another magic
state.

Definition 4.6. ZHQ
π/4 is the fragment of ZH-calculus given by the following generators

k π
4

. . .

. . .
k π

4

. . .

. . .
a

. . .

. . .
(4.28)

where k ∈ Z and a ∈ Q[i,
√

2] – the value of a must be a linear combination of 1, i, and√
2 with rational coefficients.

Lemma 4.6. The following diagram equivalence holds:

eiπ/4 i
eiπ/4

eiπ/4
= (4.29)

Proof. This can be checked by concrete calculations on the underlying tensors.

Theorem 4.6. There is a Cook reduction from Eval(ZHQ
π/2) to Eval(ZHQ

π/4), and we
have that Eval(ZHQ

π/4) is FP#P-complete.

Proof. To perform a reduction from Eval(ZHQ
π/4) to Eval(ZHQ

π/2), we will first
normalize the diagram to extract all the

√
2 components as seperate ei π

4 -labelled
H-boxes. To do this for H-boxes, first write each label, a, as a = a1 +

√
2a2 where
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a1, a2 ∈ Q[i], and then apply the following:

a1 +
√

2a2

. . . . . .

a1 +
√

2a2

SFH=

. . .
M
=

a1+
√

2a2
2

2

. . .
A
=

2

a1
√

2a2

π

. . .
SFH=

2

a1

π

√
2a2

. . .
M
=

2

a1

π
a2

√
2

1
2

1
2

1
4

1
8

1
8

. . .
M
=

2

a1

π
a2

eiπ/4

1
8 1 + i

(4.30)

For X-spiders, apply the definition to translate them into Z-spiders, and for Z-
spiders, if k is even, we do not need to do anything, since then it is in ZHQ

π ,
otherwise, if k is odd, we do the following:

π
4 = eiπ/4

3π
4 = e3iπ/4 M

=
eiπ/4

−i

− 3π
4 = e−3iπ/4 M

=
eiπ/4

−π
4 = e−iπ/4 M

=
eiπ/4

i

(4.31)

Then we fold up the ei π
4 -labelled H-boxes into a single H-box by making use of

Lemma 4.6:

eiπ/4 eiπ/4. . .
=

i

eiπ/4
i. . .

eiπ/4

(4.32)

At this point we have a ZHQ
π/2 diagram D connected to a single ei π

4 -labelled H-
box, so we can split it as a sum:

Deiπ/4 D Dπ+ eiπ/4×= (4.33)

Then we can use the Eval(ZHQ
π/2) oracle to evaluate these two diagrams to obtain

z1 and z2, and return z1 + ei π
4 z2. This whole reduction runs in polynomial time

since the rewriting does a constant amount of work per generator. Therefore, by
Lemma 2.1 and Theorem 4.5, Eval(ZHQ

π/4) is FP#P-complete.
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Therefore, by a chain of reductions, we have shown that ZHZ
π , ZHQ

π , ZHQ
π/2,

and ZHQ
π/4 are all FP#P-complete and diagrams in these fragments can be written

as a sum of at most eight #3SAT instances, since we introduce two magic states
with two terms each, and the original reduction from ZH0

π to #3SAT requires two
terms.

While we could continue this process for larger and larger fragments ZHQ

π/2k

for k ≥ 2, which allows for arbitrarily small angles in Z-spiders and H-box labels,
or indeed show completeness for all fixed k by induction, this technique cannot
be used to show completeness for the full ZH-calculus. Note that we can approx-
imate any ZH-diagram with a diagram in ZHQ

π/2, since the rationals are dense
in the reals, but we will not attempt to formalize this here as the error analysis
required to bound the size of the approximation is difficult.
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CHAPTER 5

Backtracking Algorithms for #SAT

The first and second parts of this chapter give an exposition of existing work on #SAT
algorithms, but are presented in terms of diagrams. The third part gives a novel extension
to the DPLL algorithm to handle larger clauses and uses it to obtain new upper bounds
on the runtime for low-density instances.

So far, we have seen that some ZH-diagrams are equivalent to #SAT instances
and that some other diagrams can be rewritten into this form. Given this, one
natural question is can the process of solving a #SAT instance be kept in diagram-
matic form, and if so, what does it look like?

In this chapter, we will provide an overview of the DPLL algorithm [DLL62]
for solving #SAT and SAT problems, and show how it corresponds to operations
on diagrams. We will then describe some methods of obtaining upper bounds on
the running time of this algorithm, including an exposition of the bound obtained
by Dahllöf et al [DJW02a] for #2SAT, and measure how the running time depends
on the density of the input formulae. Finally, we apply our completeness results
from the last chapter to introduce an extension to the algorithm to solve #kSAT
independent of k for formulae with low density. In particular, we find a runtime
of less than O(poly(n) · 2n) for formulae with δ < 2.25032, beating the worst-case
bounds of Dubois [Dub91] whenever δ < 1.858 and k ≥ 4, and the expected-time
bounds for #kSAT by Williams [Wil04] for k ≥ 6 whenever δ < 1.217.

5.1 Interpreting DPLL Diagrammatically

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm is an algorithm for
solving SAT that was first introduced in 1962 [DLL62], in the context of auto-
mated theorem proving. It is essentially an optimized depth-first search over all
possible assignments of variables in a Boolean formula. The algorithm is based
on the following three rules:
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Unit Propogation: The following rewrite holds for any clauses Ai and Bi not con-
taining some literal x:

x ∧ (A1 ∨ x) ∧ · · · ∧ (An ∨ x) ∧ (B1 ∨ ¬x) ∧ · · · ∧ (Bm ∨ ¬x)

= B1 ∧ · · · ∧ Bn
(5.1)

This can be applied to a formula when it contains a clause of only one literal
x, and it removes all clauses which will become true because x must be true
and removes x from all clauses in which it is required to be false. Note
that often, the application of this rule will create more clauses of size one,
causing a chain of cancellations.

Pure Literal Elimination: If there is a formula g such that every clause contains
a literal x

g = (A1 ∨ x) ∧ · · · ∧ (An ∨ x) (5.2)

then g is satisfiable. Therefore, since we only care about satisfiability, if we
have a formula f such that f = f ′ ∧ g where f ′ doesn’t contain x or ¬x, then
we can replace f with f ′.

Variable Branching: For any variable x appearing in a formula f , f is only un-
satisfiable if both of the following formulae are unsatisfiable:

f1 = f ∧ x f2 = f ∧ ¬x (5.3)

Suppose f is satisfiable, then for any satisfying assignment of f , either x
must be true, in which case f1 is satisfiable, or x must be false, so f2 is sat-
isfiable. If f is unsatisfiable, then clearly neither f1 or f2 can be satisfiable,
since any satisfying assignment would also satisfy f .

With these three observations, we can define the full algorithm DPLL( f ):

1. If f contains the clauses x and ¬x for some variable x, then f is unsatisfiable.

2. If f has no clauses remaining then f is satisfiable.

3. Apply unit propagation and pure literal elimination to f until it is no longer
possible.

4. Pick a variable x that occurs in f and apply variable branching to generate
f1 and f2.

5. Return DPLL( f1) ∨ DPLL( f2), only evaluating DPLL( f2) if DPLL( f1) is
false.
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We can see that this must terminate because when applying variable branching,
clauses of one literal are created, which means that in both branches at least one
variable will be removed due to unit propagation. Since we start with n variables,
this means we can have at most 2n recursive calls, although in practice it is fewer
than this, since the first recursive branch is often satisfiable, and the second one
is then not taken.

To interpret DPLL diagrammatically we will first see how the three rules ap-
ply to the ZH-diagrams for SAT instances detailed in chapter three. Note that
throughout we will be considering diagrams over the semiring R as before.

Lemma 5.1. The following diagrammatic equivalent to the unit propagation rule holds
(without loss of generality, we assume the literal to be propagated is not negated):

0
π π

π

0

0

0

0

...

...
...

...
...

... =

0

0

...

...
...

...
...

... (5.4)

It can be read as follows - on the left-hand side, the zero H-box with one leg is the clause
with a single non-negated literal x, the H-boxes on the left represent the clauses Bi ∨ ¬x
while the H-boxes on the right represent the clauses Ai ∨ x. On the right-hand side,
we see that the clauses Bi remain, while the clauses Ai ∨ x have been removed entirely.
Because the variable x is now no longer mentioned, the Z-spider representing it is also
removed.

Proof. First, note that

0
...

...
SFH=

0

...
BAH=

0

...
SFZ=

01
2

1
2

...=
0 ...=

0
...π 0

...= 0
...

IZ= 0
...SFH=

1
2

1
2

(5.5)
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and so we have that

0
π π

π

0

0

0

0

...

...
...

...
...

...

π π

π

0

0

0

0

...

...
...

...
...

...
(3.8)
=

0

0

0

0

...

...
...

...
...

...SF
=

π

π

(5.5)
=

0

0

...

...
...

...
...

...

π π

π

0

0

0

0

...

...
...

...
...

...
SF
=

0

0

0

0

...

...
...

...
...

...
(3.5)
=

π

π

π

π π

π

(5.6)

which completes the proof.

Lemma 5.2. The following diagrammatic equivalent to the pure literal elimination rule
holds (without loss of generality, we assume the pure literal is not negated):

π π
0 0

. . . . . .. . .
. . . . . .. . .= (5.7)

This is read as follows - on the left-hand side, we have a variable that is only present
in clauses non-negated, and on the right-hand side, both the variable and the clauses
containing it have been eliminated.

Proof. This follows directly from Equation (3.16) in the case where the top or bot-
tom of the diagram is empty.

Lemma 5.3. The following diagrammatic equivalent to the variable branching rule holds:

π

π

0

0

0

0

...

...
...

...
...

...

0
π π

π

0

0

0

0

...

...
...

...
...

...

0
π

π

0

0

0

0

...

...
...

...
...

...= ∨ (5.8)

On the left-hand side, we have a variable connected to arbitrary clauses, whereas on the
right-hand side we have two terms, each with a clause of one literal introduced onto the
variable.

Proof. First, note that we can write a Z-spider by the following sum:

π π++
SF
== 0 π0+

(3.8)
= (5.9)
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Therefore, we can rewrite any SAT diagram as a sum according to

π

π
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π π
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0

0
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0
π

π

0

0

0

0
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...= +

π

π

0

0

0

0

...

...
...

...
...

...
SFZ=

(5.10)

but in R sums are logical OR operations, so this completes the proof.

While this shows that we can interpret DPLL diagrammatically as expand-
ing a SAT diagram into a sum of diagrams (that is actually a logical OR) and
rewriting each one, this particular formulation is not particularly clean in terms
of diagrams. We can reformulate this as an equivalent set of rewrites in terms of
propagating post-selections, and applying the definition of the Z-spider:

• Firstly, Equation (3.5) represents the fact that post-selecting on a variable
post-selects all the clauses it is connected to, and Equation (5.5) corresponds
to post-selecting a clause either making the whole clause true and removing
it or removing that literal from the clause. Finally, Equation (3.8) says that a
clause with one literal is the same as a post-selection. Taken together, these
are equivalent to unit propagation.

• Variable branching is exactly equivalent to the definition of the Z-spider

π π
ππ

+
(2.19)
=

. . . . . . . . .

. . .. . .. . .
(5.11)

which can be interpreted as ‘either every instance of a variable is true, or
every instance is false’, so we have a sum of two terms post-selecting the
clauses as such.

• Pure literal elimination is more complicated and does not correspond di-
rectly to the action of post-selection, but rather to the observation that when
performing variable branching on a pure literal, one branch will be a dia-
gram that is exactly a subset of the other (in terms of clauses), and so the
whole sum is satisfiable if that term is also satisfiable.
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Note that of all the steps of the DPLL algorithm, only pure literal elimination is
invalid when considered for ZH-diagrams over C instead of R. Indeed, it is even
known that #MONOTONE-2SAT, which is #2SAT restricted to instances where
every literal is pure, is #P-complete! Clearly, the decision variant of this prob-
lem, MONOTONE-2SAT, is not only solvable in polynomial time but solvable in
constant time - every instance is satisfiable.

However, the argument that DPLL terminates does not depend on pure lit-
eral elimination, so that means that applying this process without pure literal
elimination to #SAT diagrams over C will also terminate and compute the correct
result, and allows us to define an analogous algorithm for #SAT, which we will
call #DPLL( f ), and was first published as the algorithm CDP by Birnbaum and
Lozinskii in 1999 [BL99]:

• If f contains the clauses x and ¬x for some variable x, then f is unsatisfiable,
so it has zero satisfying assignments.

• If f contains no variables, then it has one satisfying solution, the empty
solution.

• Apply unit propagation to f as much as possible.

• Pick a variable x that occurs in f and apply variable branching to generate
f1 and f2.

• Return #DPLL( f1) + #DPLL( f2).

Modifications of this algorithm are used extensively in practice, with some
of the best solvers like sharpSAT [Thu06] and Cachet [SBB+04] making use of
this technique, and all the best-known theoretical upper bounds on runtime are
based on careful analysis of this algorithm. Note that we left the choice of vari-
able to branch on unspecified - choosing this wisely is crucial to obtaining good
runtimes, as we will see in the next section.

5.2 A Close Look at #2SAT

While practical solvers exist for general #SAT problems, most theoretical results
concern either the case of #3SAT or #2SAT. In this dissertation, we will be focus-
ing on #2SAT because it is particularly amenable to the diagrammatic methods
we will consider in the next chapter. For this section, we will present in diagram-
matic form an algorithm for #2SAT published by Dahllöf et al in 2002 [DJW02a].
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5.2.1 Simplifying #2SAT Diagrams

For #2SAT diagrams, we are working with Z-spiders for variables, X-spiders for
negation, and zero-labelled H-boxes with at most two legs as clauses (i.e a subset
of the fragment of ZH0

π). In this setting, we can give some specialized rewrites.
We start with the clause post-selection rule, Equation (5.5):

Lemma 5.4. The following equivalent to Equation (5.5) for #2SAT holds:

0 aπ
(5.9)
= aπ

SF
=

aπ
BAZ=

aπ
SFZ=

0π aπ
(5.9)
= aπ

(3.8)
= aπ

SF
=0 aπ

(5.12)

We can see that in one of the cases, a post-selected clause is just removed, and in the other
case, it becomes a post-selection on the other variable the clause is connected to.

We can also remove some clauses from the instance. For instance, we have the
following rules that allow the rewriting of clauses that connect a variable to itself,
or two clauses that connect the same two variables:

Lemma 5.5. The following rewrite for #2SAT holds:

0

=

0

=
πππ

0

=
π

(5.13)

This can be interpreted as saying that x ∨ x = x, ¬x ∨ ¬x = ¬x, and that x ∨ ¬x is
always true, so any such clause can be removed.

Proof. These follow from Lemmas 5.1 and 8.3 in the paper of Backens et al [BKM+21].

Lemma 5.6. The following rewrite for #2SAT holds:

0

0

bπaπ

aπ bπ

...
... 0aπ bπ

...
...=

0

0

π

π

...
...

...
...=

0

0

π π ...
...

...
...=

π

π

0

0

π aπ ...
... =

aπ

...
... aπ

(5.14)

This lemma provides a characterization of all possible Boolean functions on two variables
and allows pairs of clauses on the same variables to be replaced with the deletion of clauses,
post-selections or merging of variables.
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Proof. This can be derived for the case of one input and output wire from concrete
calculations of the underlying tensors, then for more wires, this follows by the
SFZ rule.

If we apply these rewrite rules to a #2SAT diagram as much as possible, we
end up with each clause and pair of clauses connecting distinct sets of variables.
This means that the diagram now forms a graph, where the clauses are edges and
the variables are vertices. Each edge is labelled with whether or not its variables
are negated, and is directed to indicate which variable corresponds to which la-
bel. For example, we can see how the following instance is transformed from a
formula into a diagram, and then simplified to graph form:

0

0

0

0π

π

π

0
0

0

0
π

π

π

→ →π

0

0

0
0 π

π 0
→

π

π

π

0 π

0 π
→ 0 π

f (x1, x2, x3) = (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (x1 ∨ ¬x2) ∧ (¬x1 ∨ x3) ∧ (¬x2 ∨ x3)

Unfortunately, these rewrites cannot be applied recursively during the DPLL
algorithm, since the algorithm maintains the structure of the graph. This is easy to
see because unit propagation only removes clauses and variables, so it can’t cre-
ate situations where these rules would apply, and variable branching only adds
clauses with one literal, to which these rules don’t apply.

One other observation we can make diagrammatically is that if the diagram
for a formula forms two disconnected components, then it can be written as a
tensor product of two other scalar diagrams. But the tensor product of scalars is
just multiplication, which means if a formula f (x⃗) contains two sets of variables
which are not present together in any clauses, we can can split f (x⃗) = f1(x⃗1) ∧
f2(x⃗2), and so we have that:

|{x⃗ | f (x⃗) = 1}| = |{x⃗1 | f1(x⃗1) = 1}| · |{x⃗2 | f2(x⃗2) = 1}| (5.15)

This technique is used to great effect in all modern #SAT solvers, starting with
Relsat, which was originally published by Bayardo and Schrag in 1997 [BS97].

5.2.2 Branching Numbers

In order to analyze algorithms that branch recursively like DPLL, we will need
make to extensive use of branching numbers. Suppose we have an algorithm A,
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where the runtime is parameterized by some variable n, and each step of the
algorithm for some instance ϕ consists of a series of cases defined by conditions
Ci and subalgorithms Ai,

A(n, ϕ) =


A1(n, ϕ) if C1(n, ϕ)
...
Ak(n, ϕ) if Ck(n, ϕ)

(5.16)

and further suppose that each Ai calls A recursively some m number of times,
along with a polynomial amount of other work, i.e

Ai(n) = fi(A(ni1, ϕi1), A(ni2, ϕi2), . . . , A(nim, ϕim)) (5.17)

where the runtime of fi is O(poly(n)), all nij < n, and each ϕij can be determined
in polynomial time. In this case we can see that if T(n) is the runtime of A(n, ϕ),
then the runtime of each Ai(n, ϕ) is

Ti(n) = O(poly(n)) +
m

∑
j=1

T(nij) (5.18)

and so the overall algorithm has a worst-case runtime of:

T(n) = max
i

Ti(n) = O(poly(n)) + max
i

m

∑
j=1

T(nij) (5.19)

It has then been shown [Epp03] that we can bound the runtime of the algorithm
by

T(n) = O(poly(n) · 2αmaxn) αmax = max
i

log2 τ(n − ni1, . . . , n − nim) (5.20)

where τ(ki1, . . . , kim) is the unique positive real root of the equation

1 = x−ki1 + · · ·+ x−kim (5.21)

which is guaranteed to exist by Descartes’ rule of signs [AJS98]. Each τ(. . . ) is
called a branching number, and in general, we will refer to an algorithm as having
an α-value of some constant α′ if the runtime is bounded by O(poly(n) · 2α′n).

5.2.3 An Algorithm for #2SAT

We will now show diagrammatically an algorithm #DPLL2( f ) for #2SAT, pub-
lished by Dahllöf et al in 2002 [DJW02a], which achieves a runtime of O(poly(n) ·
1.3247n) – α = 0.4057. Note throughout this that we refer to the number of clauses
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a variable x occurs in as the degree d(x) of the variable – in the diagram, this is
equivalent to the arity of the Z-spider corresponding to x – we will let d( f ) rep-
resent the maximum degree of any variable in a formula f . Additionally, we will
refer to the neighbours of a variable x as the variables that appear in a clause with
x.

Definition 5.1 ([DJW02a]). The algorithm #DPLL2( f ) is as follows:

1. If f has at most four variables, compute the answer by exhaustive search.

2. If f contains the clauses x and ¬x for some variable x, then f is unsatisfiable, so it
has zero satisfying assignments.

3. If f contains no variables, then it has one satisfying solution, the empty solution.

4. Apply unit propagation and Lemmas 5.6 and 5.5 to f as much as possible.

5. If f consists of disjoint components f1, . . . , fk, then return ∏k
i=1 #DPLL2( fi).

6. If d( f ) = 3, then return #DPLL3
2( f ).

7. Otherwise, pick a variable with d(x) = d( f ) and apply variable branching to
generate f1 and f2.

8. Return #DPLL2( f1) + #DPLL2( f2).

We can see that this has a subalgorithm for the case where d( f ) ≤ 3, and this is
given as follows. Here the function L f (x) is defined as the number of neighbours
of x that have neighbours that are not also neighbours of x, and if L f (x) > 0 then
B f (x) is defined as one such neighbour of x.

Definition 5.2 ([DJW02a]). The algorithm #DPLL3
2( f ) is as follows:

1. Apply steps one to five of #DPLL2( f ).

2. If d( f ) ≤ 2 then we have one of the following cases:

(a) If f is a cycle, pick x as any variable.

(b) If f is a chain, pick x as the variable closest to the center of the chain.

3. If d( f ) = 3, pick a variable y such that f (y) = 3, and then we have one of the
following cases:

(a) If L f (y) = 1, then let x = B f (y).
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(b) If L f (y) > 1, then let x = y.

4. Apply variable splitting to x to generate f1 and f2, and return #DPLL3
2( f1) +

#DPLL3
2( f2).

First we will give a lemma that is useful for both #DPLL3
2 and #DPLL2.

Lemma 5.7. In a #2SAT diagram, branching on a variable x will eliminate k + 1 vari-
ables in one branch, and k′ + 1 variables in the other branch, where k′ + k = d(x), for
some 0 ≤ k ≤ d(x).

Proof. Note that any variable is in k clauses negated and k′ clauses not-negated
for some k ≤ d(x), so
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=
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a1π

akπ
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... ...+
b1π

bk′π

a1π

akπ

(5.22)

which completes the proof.

Now we will start by analysing #DPLL3
2, following the original analysis of

[DJW02a], and we will analyse it in terms of the number of clauses m, not the
variables n. The first step applies the termination conditions and unit propaga-
tion, and this takes polynomial time (specifically O(m2), since there are at most
O(m) variables and m clauses). It also decomposes f into disjoint components if
possible, and this cannot increase the runtime of the final algorithm - since they
are disjoint, no unit propagation will occur across components, and so they must
be decomposed individually. From this, we will now assume that f is connected.

In the case that d( f ) ≤ 2, we have that either f is a cycle or a chain since it
is connected. If f is a chain, then branching on the variable that is closest to the
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center of the chain will divide it into two components of size
⌊n

2

⌋
and

⌈n
2

⌉
:

0 0π 0 0π →
0 0π 0 0π

0 0π 0 0ππ π
(5.23)

These components will be handled separately by the next step of the algorithm,
so are essentially evaluating four terms, two of size

⌊m
2

⌋
and two of size

⌈m
2

⌉
,

giving a runtime bound of T(m) ≤ 4T(m/2) as m increases. An application of
the master theorem then yields T(m) = O(m4). If f is a cycle, then picking any
vertex and branching on it will yield two chains, so the runtime is also O(m4):

0π π

0
π

0
π

→
0π π0 π 0 π

0π π0 π 0 ππ π
(5.24)

In the case that d( f ) = 3, we pick d(y) = 3, and we know that L f (y) > 0. This
is because if L f (y) = 0, then the diagram can only have four variables – y plus its
three neighbours, so it must have been removed in the first step. In the case that
L f (y) = 1, we have the following situation

0

0

0
0

...

y

B f (y)
0

0

0
0

...

0

0

0
0

...
π π

→ (5.25)

where the pink wires indicate places where clauses might exist. As indicated,
branching on B(y) will split the diagram into two parts, one of which has three
variables, and then the rest. In either branch, at least four clauses are removed,
since the component of three variables will be removed entirely by exhaustive
search in the next step, and thus the runtime is bounded by T(n) = 2T(n − 4),
which has a branching number of τ(4, 4).

In the case that L f (y) > 1, we have the following situation

0
π

0
π

0
π 00

...
...

. . .

y

u v

(5.26)
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but by Lemma 5.7, if we branch on y, y is always eliminated, and either u and v
are both eliminated in one branch, in which case we remove at least five clauses in
one branch and three in the other, or u and v are eliminated in different branches,
in which case we remove at least four clauses in each branch. Therefore, the
branching number, in this case, is either τ(4, 4) or τ(3, 5).

Therefore, we have αmax = max{log2(τ(4, 4)), log2(τ(5, 5))} = 0.2556, and
the runtime of the whole algorithm #DPLL3

2( f ) is bounded above by O(poly(m) ·
20.2556·m). However, since we only call #DPLL3

2( f ) when f has degree at most
three, we have m ≤ 3n

2 , and thus the runtime is bounded by O(poly(n) · 20.2556· 3n
2 ) =

O(poly(n) · 20.3835·n).
Now to analyze #DPLL2( f ), similarly to #DPLL3

2( f ), the first five steps are
polynomial or don’t change the final runtime. If d( f ) ≤ 3, then the branch-
ing number is τ(4, 4) or τ(3, 5). Otherwise we pick x with d(x) = d( f ) > 3
to branch on, so by Lemma 5.7 the branching number is τ(1 + k, 1 + d( f ) − k)
where 0 ≤ k ≤ d( f ). However, it can be shown that maxk τ(1 + k, 1 + c − k) =

τ(1, 1 + c), and also that τ(1, 1 + a) ≥ τ(1, 1 + b) whenever a ≤ b. There-
fore, we have that the branching number when d( f ) > 3 is bounded above by
τ(1, 1 + d( f )) ≤ τ(1, 5). Thus the algorithm overall has a branching number of
max{τ(1, 5), τ(3, 5), τ(4, 4)} = τ(1, 5) = 1.3247, so the runtime is bounded by
O(poly(n) · 20.4057·n).

5.2.4 Phase Transitions in Density

It is well-known that the SAT problem has a phase transition in terms of density
- that is, there is a critical density δcrit at which instances transition from ‘easy’ to
‘hard’. This is known both theoretically, where it has been proven that for DPLL-
style algorithms, δcrit = 4.63 is the critical point for 3SAT [MPZ02], and has been
demonstrated extensively in practice. For #SAT, no similar theoretical results are
known - the first proven phase transition in a #P-complete problem is counting
the number of independent sets of a graph, which Allan Sly showed [Sly10] has
a phase transition in 2010.

Practically, however, most algorithms for solving #SAT do exhibit a ‘hardest’
density, below and above which instances become easier. This has been mea-
sured for #3SAT by Birnbaum and Lozinskii [BL99], Bayardo and Schrag [BS97],
Darwiche [Dar02], and others, who observe values of δcrit ranging from 1.2 to
2.1 depending on the algorithm. However, so far as the author can find, similar
experiments have not been published for #2SAT.
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Since this will be instructive to compare against algorithms presented in later
chapters, the dependence of solving difficulty on formula density was measured
for several different algorithms:

• #DPLL2 from above, and #DPLL of Birnbaum and Lozinskii [BL99], both
based on plain DPLL (and implemented by the author).

• Ganak, a probabilistic exact solver written by Sharma at el [SRSM19] that
is based on the conflict-driven clause learning technique of SAT solving
(SharpSAT [Thu06], on which Ganak is based, was also tested but it showed
identical performance).

• miniC2D, a solver based on compiling CNF formulae to binary decision
diagrams written by Oztok and Darwiche [OD15].

Random instances of n variables and m edges were sampled by creating empty
graphs on n vertices and adding m edges uniformly at random, and then turning
each edge into a clause by picking the polarity and ordering of the literals ran-
domly. Instances were sampled in this way to ensure that the simplifications in
Lemmas 5.6 and 5.5 are not applicable.

For each combination of n and m, a hundred instances were sampled, and
the same instances were provided to all of the algorithms. For the DPLL-based
algorithms (#DPLL, #DPLL2 and Ganak), the total number of recursive calls was
measured, whereas for miniC2D the size of the compiled decision diagram was
measured, as these essentially represent the ‘effort’ required to solve the instance,
but is not subject to the instability of time measurements - solving time was also
measured, but the trends over density are totally eclipsed by other factors at this
scale. The results are presented in Figure 5.1.

We can observe that the hardest density for all the algorithms appears to be
around δ = 1. It is known that there is a transition between satisfiability and
unsatisfiable for 2SAT instances, which has δcrit = 1, and so it seems reasonable
to suggest that these two are related. One possible explanation is that there are
two competing effects: the number of solutions and the number of clauses - ef-
fort increases with more clauses but decreases with fewer solutions. Indeed, the
results for Ganak (and even miniC2D, when rescaled) are remarkably close to the
geometric mean of density and bit length of the number of solutions, as shown in
Figure 5.2.
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Figure 5.1: The effort required to solve #2SAT instances of a fixed density. Four
plots are presented, one each for n = 20, 30, 40, and 50 variables. Below each
plot is a separate plot of the percentage of instances which were satisfiable at
each density. The hardest density for all algorithms appears to coincide with the
transition in satisfiability.
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Figure 5.2: A comparison between the effort required by Ganak to solve #2SAT
instances of a fixed density, and the geometric mean of the number of solutions
and the density. Up to a scalar factor, these are fairly similar.
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5.3 Augmenting DPLL with Negative Variables

In the previous chapter, we saw that it is possible to reduce arbitrary ZH-diagrams
within certain fragments to the ZH0

π fragment of the ZH calculus. In particular,
these fragments include all the diagrams representing #kSAT instances. In this
section, we will use these techniques to obtain upper bounds on the runtime of
#kSAT that is independent of k. Firstly, we have the following lemma, which is
the embedding of arbitrary arity #SAT clauses into ZH0.

Lemma 5.8. The following diagrammatic equivalence holds:

0 =
0

0

π

π
π

...
... (5.27)

This directly generalizes the BW axiom of the ∆ZX-calculus.

Proof. We can see the following

0
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(5.28)

which completes the proof.

If we applied this to every clause in a #SAT diagram with n variables and m
clauses, we would have a ZH0

π diagram with n + m spiders. Furthermore, with
the exception of π-phases on m of these spiders, this diagram would represent
a #2SAT instance, as there are no X-spiders present that are not X1

1[π]-spiders
(logical NOT gates). Therefore, one strategy for solving #kSAT might be to write
such a diagram as a sum of diagrams that remove these π-phases and then apply
a #2SAT solver to these. As discussed in the previous chapter, it is unlikely that
such a sum can be expressed in polynomially many terms, but it is easy to express
in exponentially many. In particular, we can apply the following decomposition
recursively

π
π

= − π (5.29)
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and since each decomposition removes two π-phases, we will end up with 2
m
2 =

1.4142m diagrams. We can also see that each of these diagrams will have only
n + m

2 spiders, since:

π

π
= −

...

...

...

...

...

...
π = −

...

...

...

...

π
π (5.30)

Therefore, if we were to use the #DPLL2 algorithm from the previous section
to evaluate each of these diagrams, we would end up with a total runtime of
O(poly(n, m) · 1.4142m1.3247n+m

2 ) = O(poly(n, m) · 20.4057n+0.7028m).

5.3.1 Upper Bounds on #kSAT

However, there are better algorithms. In particular, for #2SAT, there is a history
of steadily improving bounds on the worst-case runtime, starting with Dubois
in 1991 [Dub91], who gave a O(poly(n)1.6180n) algorithm, followed by Dahllöf
et al [DJW02a] who presented #DPLL2 in 2002, and refined it in 2003 to give a
O(poly(n)1.2561n) bound. Furer and Kasiviswanathan [FK07] reanalyze this to
obtain O(poly(n)1.2461n), and finally Wahlström [Wah08] introduced a signifi-
cantly more complicated analysis of the same to obtain the current best-known
bound of O(poly(n)1.2377n).

For #kSAT with k > 2, bounds better than the O(poly(n, m)2n) runtime of
brute-force enumeration are also known. For k = 3, Dahllöf et al [DJW02a] give
an upper bound of O(poly(n)1.6894n) in the same paper that presents #DPLL2,
which was improved by Kutzkov [Kut07], who obtained O(poly(n)1.6423n). For
larger k, the results of Dubois provide a bound of O(poly(n)cn

k ) where ck → 2
as k → ∞. Similarly, Williams [Wil04] presents an analysis of the average-case
behaviour, finding a runtime of O(poly(n)c′k

n), also with c′k → 2 (although c′k < ck

for all k). In general, it is conjectured that any algorithms for #kSAT must have
a worst-case runtime of O(poly(n, m)cn

k ) where ck → 2 as k → ∞ – this can be
seen either as a consequence of the Strong Exponential Time Hypothesis (SETH)
[CIP09], or as its own hypothesis #SETH – although this conjecture is not held
universally [Wil21].

5.3.2 Negative Variables

Returning to the previous #SAT algorithm, we can apply the #2SAT algorithm of
Wahlström [Wah08] to get a better upper bound of O(poly(n, m) · 20.3068n+0.6538m).
However, rather than writing #SAT diagrams as a sum of #2SAT diagrams, a more
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powerful observation is to note that DPLL-style algorithms are able to evaluate
diagrams with π-phase Z-spiders natively! Indeed, only slight variations to in-
troduce sign changes for unit propagation and variable branching are needed to
handle Z-spiders with π-phases, and are given as follows:

Lemma 5.9. The following diagrammatic equivalent to the variable branching rule holds:

π

π

π

0

0

0

0

...

...
...

...
...

...

0
π π

π

0

0

0

0

...

...
...

...
...

... π

0
π

π

0

0

0

0

...

...
...

...
...

...= − (5.31)

Proof. This follows from the sum

π
π π

ππ
−=

. . . . . . . . .

. . .. . .. . .
(5.32)

together with the proof of Lemma 5.3.

Lemma 5.10. The following diagrammatic equivalent to the unit propagation rule holds:

π

0
π π

π

0

0

0

0

...

...
...

...
...

... =

0

0

...

...
...

...
...

...

π

0 π

π

0

0

0

0

...

...
...

...
...

... =

0

0

...

...
...

...
...

...

−

+

(5.33)

Proof. This follows from the identities

π
...

...= ...
BAZ=

...
BAH=

π π
... π

...=
π ...

BAZ= π
π

...= 1
2

...
SFH=

...= −

(5.34)

together with the proof of Lemma 5.1.

Therefore, we can define a variant of #SAT, #SAT± which allows variables to
be marked as ‘positive’ or ‘negative’. Then diagrammatically, positive variables
are represented by Z-spiders with no phase and negative variables by Z-spiders
with π-phases. By exploiting the branching rule above, we have the following
variant of DPLL to handle these instances, which we will call #DPLL±( f ).
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Definition 5.3. For a given Boolean CNF formula f on variables x1, . . . , xn, and a set of
variables N (the negative variables), the algorithm #DPLL±( f ) computes the value

#DPLL±( f ) = ∑
xi

(−1)∑xj∈N xj f (x⃗) (5.35)

and is given by the following:

• If f contains the clauses x and ¬x for some variable x, then f is unsatisfiable, so it
has zero satisfying assignments.

• If f contains no variables, then it has one satisfying solution, the empty solution.

• Apply unit propogation to f as much as possible.

• Pick a variable x that occurs in f and apply variable branching to generate f1 and
f2.

• If x is positive (x /∈ N), return #DPLL( f1) + #DPLL( f2), otherwise if x is nega-
tive (x ∈ N) return #DPLL( f1)− #DPLL( f2).

With a smart choice of the variables to branch on, the worst-case runtime of
this algorithm can be bounded in exactly the same way as the regular #DPLL. In
particular, this means that the O(poly(n)1.2377n) bound of Wahlström [Wah08]
can be adapted directly. Therefore, by applying Lemma 5.8 to any #SAT diagram
and then applying #DPLL± to the resulting diagram directly, we can evaluate
#SAT instances in time O(poly(n, m)1.2377n+m) = O(poly(n, m)20.3068n+0.3068m),
which is certainly better than the bound given by decomposing into a sum of
diagrams. From now on, we will refer to this method as #DPLL→2

± .
It remains to ask, when is #DPLL→2

± actually useful? First, note that if only
positive variables are picked for branching, the action of #DPLL± on a translated
#SAT diagram is exactly the same as the action of regular #DPLL on the original
diagram. Therefore, we would only expect gains when decomposing some of the
negative variables (i.e clauses), and thus it is natural to suspect that this bound
will only be useful for instances with few clauses.

For diagrams with a fixed maximum density δmax, we have that m ≤ nδmax,
and so the runtime of #DPLL→2

± is bounded by O(poly(n, δmax)20.3068(1+δmax)n).
Firstly, we can see that this is better than the naive O(poly(n, m)2n) whenever
δmax < 2.2503. Since this is independent of k, it means that for any δmax < 2.2503
and sufficiently large k, this beats both the worst-case bound of Dubois [Dub91]
and the average-case bound of Williams [Wil04]. Since it is suspected that it is not
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possible to do better than O(poly(n, m)2n) in general (SETH), this indicates that
the ‘hardest’ density of #SAT must be some δ > 2.2503.

For the decision problem SAT, similar bounds in terms of clauses are known
independently of k - in particular, there is a classic result of Monien and Specken-
meyer from 1980 [MSV81] that SAT can be solved in O(poly(n, m)2

m
3 ) time, which

was improved to O(poly(n, m)20.30897m) by Hirsch in 2000 [Hir00], and implies a
better than brute-force runtime for δmax < 3.2366. Generally, there are two gen-
eral approaches taken by algorithms for SAT - either bounding runtime in terms
of maximum density (i.e runtime measured in terms of m) or in terms of maxi-
mum clause size (i.e runtime measured in terms of n and k) - it has been shown
that in the limit of large k and large δ, these have the same runtime [CIP06].

While similar bounds in terms of m have been previously obtained for the spe-
cific cases of #2SAT and #3SAT - O(poly(n, m)1.1892m) was obtained for #2SAT
and O(poly(n, m)1.4142m) for #3SAT by Zhou et al [ZYZ10], later improved to a
runtime of O(poly(n, m)1.1710m) for #2SAT by Wang and Gu [WG13] - as far as
the author is aware, this is the first bound in terms of m for #SAT independent
of k. Other similar bounds have been obtained for #CircuitSAT, which concerns
counting satisfying assignments of Boolean formulae that are not in CNF form -
e.g Golovnev et al [GKST16] find a better than brute-force runtime whenever a
formula has δ < 2.99, although in this context δ refers to the ratio of binary logic
gates needed to express the formula, not clauses.

Concretely, #DPLL→2
± is better than the average-case bounds of Williams [Wil04]

whenever δmax < 1.217 and k ≥ 6, and better than the worst-case bounds of
Dubois [Dub91] whenever k ≥ 3 and δmax < 1.858. Clearly, it offers no im-
provement on #2SAT, but it is also not applicable to #3SAT - when δ < 1.6, the
O(poly(n, m)1.4142m) bound of Zhou et al [ZYZ10] is sharper, and when δ ≥ 1.6
the O(poly(n)1.6423n) bound of Kutzkov [Kut07] is sharper.

Finally, noting that #DPLL→2
± maps a #SAT instance of m clauses to a #2SAT

instance of km clauses (with negative variables), and applying the upper bound of
O(poly(n, m)1.1710m) on #2SAT found by Wang and Gu [WG13], we can bound
the runtime of #DPLL→2

± purely in terms of clauses, not mentioning variables,
as O(poly(n, m)1.1710km). This does not offer any improvement over known
bounds for k = 2 or k = 3, and for k > 4, it is worse than the naive O(poly(n, m)2m)

upper bound (which follows from branching on all the negative variables, so that
there are no clauses left in the diagram). However, for k = 4, this yields a time
of O(poly(n, m)1.8803m). As far as the author can tell this is the best bound for
#4SAT in terms of m, although it is probably of limited interest.
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CHAPTER 6

Stabilizer Decompositions

The first and second parts of this chapter are exposition and do not contain any novel con-
tent. The third part contains several unsuccessful techniques that extend existing work,
while the fourth details some novel decompositions found using the author’s implementa-
tion of previously known methods.

In this dissertation so far, we have seen various identities that allow us to write
specific diagrams as the sum of other diagrams - we call these graphical decom-
positions. They have been used in various contexts to compute some quantity by
writing it as the sum of other quantities that are easier to compute. In this section,
we will describe a certain class of graphical decompositions, stabilizer decompo-
sitions, and how such decompositions can be found automatically. Finally, we
will present novel stabilizer decompositions that were found by these methods
for certain diagrams of interest.

Stabilizer diagrams are all diagrams that exist in the stabilizer fragment StabZX
of the ZX-calculus. We will also consider a ZX-diagram to have a stabilizer region,
or stabilizer part if some part of this diagram consists only of generators from this
fragment. The fragment is given as follows.

Definition 6.1 ([Kv22, Definition 4.1.1]). StabZX is the fragment of the ZX-calculus
given by the following generators

kπ
2

. . .

. . .
kπ
2

. . .

. . .
(6.1)

where k ∈ Z.

These diagrams are of interest because of a famous result of Gottesman and
Knill that Eval(StabZX) can be computed in polynomial time [AG04]. We will
expand on this further soon, but this implies that if a scalar ZX-diagram with n
generators can be written as a sum of k StabZX-diagrams, then it can be evaluated
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in O(k · poly(n)) time. Therefore, if we can show an upper bound on the value of
k for some family of diagrams, we can put an upper bound on the time required
to evaluate them.

Definition 6.2. A stabilizer decomposition of size k for some ZX-diagram D is a set of
StabZX-diagrams D1, . . . , Dk and c1, . . . , ck ∈ C such that

[[D]] = c1[[D1]] + c2[[D2]] + · · ·+ ck[[Dk]] (6.2)

The stabilizer rank χ(D) of a ZX-diagram D is the smallest k ∈ N such that D has a
stabilizer decomposition of size k.

Note that in this definition, all scalar diagrams D have stabilizer rank one,
since [[D]] = z = z · 1 = z[[E]] for some z ∈ C, where E is the empty diagram,
which is certainly a stabilizer diagram. However, this is not useful in practice
because we don’t know in advance what the coefficient of decomposition is. In-
stead, we will focus on finding stabilizer decompositions and ranks for non-scalar
diagrams. For example, the following diagram can be shown to have a stabilizer
rank of two, with the following decomposition of size two [KvV22]:

π
4
π
4

= π
2 + ei π

4 π (6.3)

While StabZX can be characterized as all tensor networks consisting of only
the specified generators, there is also another characterization, as products of
Pauli exponentials. In order to show this, we will first define Pauli exponentials,
and then show how stabilizer diagrams can be brought into a normal form in
terms of them.

Definition 6.3 ([Kv22, 5.1.5]). A Pauli exponential P⃗(θ) of size n is a tensor with n
inputs and n outputs. It is parameterized by a sequence P⃗ = P1P2 · · · Pn where Pi ∈
{I, X, Y, Z} and an angle θ ∈ R. Diagrammatically, it is defined by

P1

P2

Pn

θ

...

=P⃗(θ) (6.4)

where the blue boxes are called Pauli boxes and are defined by

I

X

Y

Z

=

=

=

=

−π
2

π
2

1√
2 (6.5)
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To convert StabZX-diagrams into a sequence of Pauli exponentials, we will
apply two rewriting rules called local complementation and pivoting to reduce
these diagrams to a normal form called ‘graph state with local Cliffords’ (GSLC)
form. In the context of ZX-diagrams, this was introduced Duncan and Perdrix
[DP09], although the normal form itself was previously introduced by Van den
Nest [dNDDM04] in the context of quantum computing.

However, before these rules can be used, we must first transform StabZX-
diagrams so that they consist of only Z-spiders connected together by Hadamard
gates (known as a graph-like diagram). This can be accomplished through the
following procedure [Kv22, Proposition 4.1.8]:

• Apply the colour change rule to transform all X-spiders into Z-spiders and
Hadamards:

α
CC
= α (6.6)

• Apply the spider fusion (SFZ) and Hadamard cancellation (IH) as much as
possible:

α β

. . .

. . .

. . .

. . .

... α + β

. . .

. . .

. . .

. . .

SFZ=
IH= (6.7)

• Remove pairs of Hadamards between spiders as follows:

α α α

α α

SF
=

SF
=

SC
=

π1=

I
=

β β β

β β

α

β
CC
=

α

β

α

CC
=

β

(6.8)

• Remove self-loops using the following two equations:

α α

π
2

π
2

π
2

α + π

π
2

α + π

π
2

α + π

π
2

α + π

π
2

α + π

SF
=

SF
=

SC
=

π1=

I
=

EU
=α

SF
= α

. . . . . . . . . . . .

. . .. . .. . .

(6.9)
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For example, we can see the action of this procedure on the following diagram:

π
2

π
2

ππ

π
2

π π
27→ (6.10)

Now that we can represent diagrams in graph-like form, we are ready to apply
the two rewriting rules. These rules can be used to remove Z-spiders with ±π

2

phases or pairs of Z-spiders with 0 and π phases from the diagram, assuming that
they are not connected to any inputs or outputs. We will call a spider internal if it
is not connected to any inputs or outputs, Pauli if it has phase 0 or π, and proper
Clifford if it has phase ±π

2 . A pair of spiders is called connected if there is a
Hadamard gate that connects them.

Lemma 6.1 ([Kv22, Lemma 4.2.9]). Any internal proper Clifford spider can be removed
from a ZX-diagram. The following rewriting rule called local complementation, holds

±π
2

α1 αn

α2

. . .

. . .

. . .

αn−1

. . .

=

. . .

α1 ∓ π
2 αn ∓ π

2

α2 ∓ π
2

. . .
αn−1 ∓ π

2

. . .

. . .

. . .

. . .

...
...

. . . . . .

(6.11)

up to a scalar factor, where the connections implied on the right-hand side form a complete
graph where every spider is connected to every other spider.

Lemma 6.2. [Kv22, Lemma 4.2.10] Any pair of connected internal Pauli spiders can be
removed from a ZX-diagram. The following rewriting rule, called pivoting, holds

αn

α1

βn
...

...

... β1
...

=... iπ jπ
...

αn + jπ

α1 + jπ

βn + iπ
...

...

... β1 + iπ
...

...
...

γ1

. . .

γn

. . .

γ1 + (i + j + 1)π

. . .

γn + (i + j + 1)π

. . .

(6.12)

up to a scalar factor, where i, j ∈ Z, and the connections implied on the right-hand side
form a complete tripartite graph, where every spider on the left is connected to every
spider on the right, top, and bottom.

Note that as a consequence of these two rules on scalar diagrams, we can see
a weak version of Gottesman and Knill’s result directly.
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Theorem 6.1 ([Kv22, Proposition 4.4.1]). Eval(StabZX) is computable in polynomial
time.

Proof. Given any scalar StabZX-diagram D with n spiders, apply the procedure
above to transform it into graph-like form. Apply Lemmas 6.1 and 6.2 as much
as possible, interleaving Equation (6.8) where necessary to remove double edges.
This step takes O(n3) time, since the initial rewrite does a constant amount of
work per wire and generator (which is O(n2) time), and there can be at most
O(n) applications of pivoting and local complementation (since they remove at
least one Z-spider each time), each of which takes O(n2) time (because in the
worst case we may add O(n2) Hadamards and edges).

After this, the diagram cannot have any proper Clifford spiders - as every spi-
der in a scalar diagram is internal, they would’ve been removed by an application
of Lemma 6.1. The diagram also cannot have any pairs of connected Pauli spi-
ders, as they would’ve been removed by an application of Lemma 6.2. Since in a
StabZX-diagram, every Z-spider is either Pauli or proper Clifford, this means the
diagram can only consist of disconnected Pauli spiders.

Finally, the tensor of the remaining diagram can be evaluated numerically in
linear time, since the whole diagram is a tensor product [[D′]] = [[Z1]] ⊗ [[Z2]] ⊗
· · · [[Zn]] = [[Z1]] · [[Z2]] · · · [[Zn]], where each Zi is a scalar diagram consisting of
one Pauli spider with no wires, so they can be evaluated in constant time, and
there are at most n of them.

Suppose we have a state represented as a StabZX-diagram, then we can trans-
form it into a graph-like diagram, and apply local complementation and pivoting
as much as possible. Then the only remaining spiders are those connected to
outputs and interior Pauli spiders that are only connected to spiders that are con-
nected to outputs. This is known as the affine-with-phases normal form [Kv22,
Definition 4.3.1], and might look something like the following:

π
π
2

−π
2

π
(6.13)

We can rewrite this so that every spider that is connected to an output is con-
nected to exactly one output by unfusing an interior Pauli spider as follows:

α
...

......

...
α ...

......

...
SF,I
= (6.14)
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In order to simplify this further into the GSLC normal form, we will use the fol-
lowing variation to the pivoting rule, called the boundary pivot. This is incredibly
messy, but the exact pattern of connections is not important, only that it can, in
principle, be done.

Lemma 6.3 ([Kv22, Lemma 4.3.5]). Any internal Pauli spider can be simplified. The
following rewriting rule, called boundary pivoting, holds

αn

α1

βn
...

...

... β1
...

...

iπ α

...
γ1

. . .
γn

. . .

. . .

αn

α1

βn
...

...

... β1
...

...

iπ

...

γ1

. . .
γn

. . .

. . .

α

= (6.15)

up to a scalar factor, where i ∈ Z, and the connections implied on the right-hand side
form a complete tripartite graph, where every spider on the left is connected to every
spider on the right, top, and bottom.

Given a StabZX-diagram that is in affine-with-phases form, this can be applied
to all interior spiders. If the interior spider is connected to a Pauli spider, then the
extra spider introduced and the original interior spider can be removed directly
by a pivot, whereas if the interior spider is connected to a proper Clifford spider,
then the extra spider introduced can be removed by a local complementation,
which then allows the interior spider to be removed by a local complementation.
For example, we have the following:

π
π
2

−π
2

π

π
−π

2

π

π
2

π

−π
2

−π
2

π

−π
2

−π
2

π

−π
2

π
7→ 7→ 7→ 7→ (6.16)

Once all the interior spiders have been removed in this manner, we are left
with a diagram in GSLC form. This can now be expressed as a product of Pauli
exponentials. First, we will unfuse all phases on the spiders, Hadamards connect-
ing the spiders to each other, and Hadamards connecting the spiders to outputs.
For example:

−π
2

π

SFZ=

−π
2

π
(6.17)
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Now we can use the following identities (which can be verified by concrete cal-
culation) to rewrite these as Pauli exponentials [Kv22, Lemma 5.1.14]:

Z X Z

π
2

π
2

π
2

= α Z

α

=

=
Z

π
2

Z

π
2

Z

−π
2

ZI

I

(6.18)

Finally, by considering any unused wire at every stage to be a Pauli I box, we can
write the whole diagram as a tensor product of Z-spiders, followed by a series of
Pauli exponentials:

−π
2

π
. . . . . .

Z I

Z

Z

ZZ

π
2

−π
2

π
2

π
27→

. . .

Z I

Z

Z

ZZ

π
2

−π
2

π
2

π
2

SF
=

I

I

I

I

I

I

I

I

I

I

(6.19)

This shows an equivalence between all states reachable as a product of Pauli ex-
ponentials with angles θ = k π

2 for k ∈ Z and StabZX diagrams. We have just
shown such diagrams can be rewritten as Pauli exponentials, but also note that
any Pauli exponential with θ = k π

2 is in fact a StabZX-diagram, so they are exactly
equivalent.

6.1 Searching by Simulated Annealing

The following section is an exposition of the work of Bravyi, Smith, and Smolin from the
paper "Trading Classical and Quantum Computational Resources" [BSS16]
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In order to search for stabilizer decompositions, we first need to define some
measure of the distance of states, in order to guide the search in the right direc-
tion. The measure we will use is called fidelity, and it is defined in terms of the
underlying tensor, via the process of vectorization.

Definition 6.4. Given some tensor over C with n outputs each of dimension d and no
inputs, Ai1···in , the vectorization vec(A) is a vector over C of size dn given by:

vec(A)i = Ai1···in where i = i1 + di2 + d2i3 + · · ·+ dn−1in (6.20)

That is, the values ik are given by the base d expansion of i for each i.

Definition 6.5. Given two tensors over C with n outputs, Ai1···in and Bi1···in , the fidelity
of A and B is given by:

F (A, B) =
|vec(A) · vec(B)|

||vec(A)||||vec(B)|| (6.21)

In the case of ZX and ZH-diagrams, d = 2, and so vectorization corresponds
to writing out the elements of the tensor in binary ascending order. Note that by
the Cauchy-Schwartz inequality, 0 ≤ F (A, B) ≤ 1 with F (A, B) = 1 if and only
if A and B are proportional. Therefore, if we search for stabilizer decompositions
by optimizing the fidelity between the target state and all possible stabilizer de-
compositions with a fixed number of terms, we will find such a decomposition if
it exists.

One particularly nice property of fidelity is that when one of the tensors is
given by a linear combination of other tensors, it is possible analytically to max-
imize the fidelity over all possible coefficients of the combination. First note the
following relationship between the Euclidean distance and dot product - for any
vectors a⃗ and b⃗ such that ||⃗a|| = ||⃗b|| = 1 we have

||⃗a − b⃗|| =
√
(⃗a − b⃗) · (⃗a − b⃗) =

√
a⃗ · a⃗ + b⃗ · b⃗ − 2⃗a · b⃗ =

√
2(1 − a⃗ · b⃗) (6.22)

and therefore, because
√
· is convex, minimizing ||⃗a − b⃗|| over all choices b⃗ also

minimizes 1 − a⃗ · b⃗. Furthermore, it also minimizes 1 − |⃗a · b⃗|, as if a⃗ · b⃗ < 0, then
1 − a⃗ · −⃗b < 1 while 1 − a⃗ · b⃗ > 1 so it cannot be minimal, which is a contraction
and thus we have a⃗ · b⃗ ≥ 0 and 1 − a⃗ · b⃗ = 1 − |⃗a · b⃗|.

Now assume that ||vec(A)|| = 1 and let

B = α1B1 + α2B2 + · · ·+ αkBk (6.23)

for some k and coefficients α⃗ such that ||vec(B)|| = 1. Equivalently, let us write
that vec(B) = B′⃗α where B′ is the matrix such that the ith column is vec(Bi).
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Then to maximize F (A, B) over all choices of αi it is sufficient to minimize 1 −
F (A, B) = 1 − |vec(A) · vec(B)|, which is equivalent to minimizing ||vec(A)−
vec(B)|| = ||vec(A)− B′⃗α||. This transforms the problem of maximizing fidelity
into an ordinary least squares instance, which can be solved by a QR decomposi-
tion.

Definition 6.6. Given a matrix M over C with n rows and m columns, a (reduced)
QR decomposition of M is given by M = QR such that Q is an orthogonal matrix (i.e
QTQ = I) with n rows and m columns and R is an upper triangular square matrix with
m rows and columns.

It can be shown [Wei] by vector calculus that the minimal solution to ||vec(A)−
B′⃗α|| is given analytically by (B′)T B⃗α = (B′)Tvec(A) (this is known as the nor-
mal equation). To solve this, we can substitute B′ = QR and note that (B′)T B⃗α =

RTQTQR⃗α = RT R⃗α = (B′)Tvec(A) = RTQTvec(A), and therefore we have that
α⃗ = R−1QTvec(A). This implies that vec(B) = B′⃗α = QRR−1QTvec(A) =

QQTvec(A), and so the maximal fidelity of A and B over all choices of αi is given
by:

F (A, B) = |vec(A) · vec(B)| = |vec(A) · QQTvec(A)|
= |vec(A)TQQTvec(A)| = |vec(A)TQQTQQTvec(A)|
= ||QQTvec(A)||2

(6.24)

Therefore, in order to search for a stabilizer decomposition of size k, we need
only search for a set of k StabZX-states which can be combined linearly to form
the target state, not for the specific coefficients of the combination. One method
for this, published by Bravyi, Smith, and Smolin in 2016 [BSS16], is to use the
equivalence between StabZX-states and Pauli exponentials given above to per-
form a random walk over all possible combination - in particular, they used the
method of simulated annealing [KGV83], which is detailed below. This method
keeps track of a parameter T ∈ R, known as the temperature, and performs a ran-
dom walk over the state space. When T is high, a step of the walk is chosen that
may increase or decrease the target function, but as T decreases, the probability
of choosing a step which decreases the target function is lowered. Assuming T
decreases sufficiently slowly over the course of the walk, it has been shown that
this process converges to the global optimum when the target function is suffi-
ciently smooth. Since our search space is discrete, this guarantee does not apply,
but the method appears to work well in practice regardless.
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Definition 6.7 ([BSS16, Appendix A]). Given some target stabilizer state S with n
outputs and k ∈ Z, the following algorithm, called simulated annealing, attempts to
find a stabilizer decomposition of S into k terms. It is parameterized by a decreasing
sequence T0, T1, . . . , Tm ∈ R which specifies the cooling schedule, as well as a function
accept( fprev, fproposed, T) : R3 → [0, 1] which gives the probability that a step of the
walk will be accepted at the given temperature.

1. Initialize k stabilizer states U1, U2, . . . Uk to some fixed value. Let U = α1U1 +

α2U2 + · · ·+ αkUk throughout.

2. Set the temperature as T = T0, and let s = 0.

3. Compute fprev = F (S, U) as the maximum fidelity over all choices of αj.

4. Pick a random integer 1 ≤ i ≤ k and save the value of Ui as U′.

5. Choose a Pauli string P⃗ of size n uniformly at random, and apply the Pauli expo-
nential P⃗(π

2 ) to Ui.

6. Compute fproposed = F (S, U) as the maximum fidelity over all choices of αj. If
fproposed = 1, then we are done, and can return U.

7. Pick r ∈ [0, 1) uniformly randomly. If r < accept( fprev, fproposed, Ts), set fprev =

fproposed, otherwise set Ui = U′.

8. Update s = s + 1, and if s = m we are done, otherwise go to step four.

In order to converge, every point in the state space must be accessible from
every other point in the state space by some series of steps. There are two po-
tential obstacles to this - firstly, we fix the angle of the Pauli exponentials applied
to be π

2 , and secondly, it may be that applying a particular Pauli exponential cuts
down the accessible search space. Thankfully, both of these can be alleviated with
the following lemma.

Lemma 6.4 ([Kv22, 5.3.2]). We have that P⃗(θ1) ◦ P⃗(θ2) = P⃗(θ1 + θ2) for any Pauli
string P⃗ and angles θ1, θ2 ∈ R.

Proof. First, note that we can combine any adjacent Pauli boxes of the same type,
up to a scalar factor:

I I =
π1= = I

X X = IH=
SFZ= = X

(6.25)
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Y Y = −π
2

π
2

−π
2

π
2

SFZ= −π
2

π
2

IX= −π
2

π
2

SFZ= −π
2

π
2 = Y

Z Z = SFZ= = Z

With this, we can see the following

P1

P2

Pn

...

P1

P2

Pn

...

θ1 θ2

P1

P2

Pn

...

θ1 θ2

=

P1

P2

Pn

...

θ1 θ2

SC
=

P1

P2

Pn

...

θ1 + θ2

SFZ= (6.26)

which completes the proof.

Firstly, this implies that we can form any P⃗(θ) for θ = k π
2 with k ∈ Z, since

P⃗(θ) = P⃗(π
2 )

◦k for k ≥ 0 (which we can always assume as angles are considered
modulo 2π). Secondly, this shows that the Pauli exponentials form a group if we
take the identity to be the identity tensor on n inputs and outputs, since we have
P⃗(θ) ◦ P⃗(−θ) = P⃗(0) and P⃗(0) ◦ P⃗(θ) = P⃗(θ), and we can see that for any P⃗, P⃗(0)
is the identity:

I =X = SFZ=
IH ,IZ=

Y = SFZ,IZ=
SFX ,IX=−π

2
π
2

−π
2

π
2 Z = SFZ,IZ=

=
(6.27)

P1

P2

...
P1

P2

...
...=

π1=

Because of this, any stabilizer diagram is reachable from any other stabilizer dia-
gram by a sequence of Pauli exponentials.

In terms of implementation, the stabilizer states Ui are kept in memory as their
vectorized forms, vec(Ui), so that the QR decomposition of U′ can be computed
directly, and therefore O(k2n) memory is required to operate the algorithm. To
apply Pauli operators when the states are stored in this form, it has been shown
that is possible to write vec(P⃗(θ) ◦ S) = cos θvec(S) + sin θMvec(S), where M =

PD is the product of a permutation matrix and a diagonal matrix. Therefore, each
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application of a Pauli product costs only O(2n) time, and the dominant step of the
algorithm is the QR decomposition for finding the maximum fidelity, which can
be done in O(k22n) time [TI97, Lecture 10], so the algorithm executes in O(mk22n)

time total. In principle, this can be reduced to O(k22n + mk2n) by making use of
specialized algorithms for updating QR decompositions [HL08] when a column
is changed, but this is quite complicated and so was not used for this project.

The author’s implementation of this algorithm is available online [The], under
a permissive open-source license and integrates with the popular Python pack-
age NumPy to allow stabilizer decompositions to be found for arbitrary states in
vectorized form.

6.2 Other Search Methods

In addition to simulated annealing, several other methods were tried to pick suit-
able stabilizer states U1, U2, . . . , Uk so that a stabilizer decomposition of size k can
be found by maximizing the fidelity between U = α1U1 + · · ·+ αkUk and the tar-
get state S. In particular, we will detail two strategies which were implemented:
stabilizer testing for cancellation, and a genetic algorithm approach.

6.2.1 Genetic Algorithms

Given any stabilizer state S with n outputs, we can reduce it to GSLC form de-
scribed above. This form can be uniquely specified using n2+5n

2 binary variables:
n(n−1)

2 variables are required to specify the adjacency matrix of which Z-spiders
are connected to which other Z-spiders via Hadamard edges, 2n variables can
be used to specify the phase of each Z-spider (since the phase must be one of
{0, π

2 , π, −π
2 , a two-bit number suffices to encode this), and the remaining n vari-

ables specify whether each Z-spider is connected to its output by a Hadamard
gate or just an edge.

Therefore, for a vector of size k n2+5n
2 with binary entries, we can define an

objective function given by interpreting this as k stabilizer states in GSLC form,
and finding the maximal fidelity between the sum of these states and some tar-
get state. We can then use any generic high-dimensional discrete optimization
algorithm to try and find stabilizer decompositions of size k by maximizing this
objective function.

Since the number of dimensions is so high for any practical application, ge-
netic algorithms [KCK21] are one of the only algorithms equipped to deal with
such problems. This was implemented using the PyGAD Python library [Gad20],

68



but in practice never converged, even when a stabilizer decomposition of the re-
quested size was known to exist. As such, this method will not be considered
further in this work - it seems that the maximum fidelity may be a bad metric for
this style of optimization, and more tuning is required.

6.2.2 Stabilizer Testing for Cancellation

Suppose that the states A and B have stabilizer decompositions into n and m
terms given by A = α1A1 + · · ·+ αn An and B = β1B1 + · · ·+ βmBm, then A ⊗ B
has a stabilizer decomposition into nm terms given by A ⊗ B = α1β1A1 ⊗ B1 +

α1β2A1 ⊗ B2 + · · · + αnβm An ⊗ Bm. However, it may be the case that some of
these terms cancel out - we may have that αiβ j Ai ⊗ Bj + αkβl Ak ⊗ Bl is actually a
stabilizer state, and so there is a decomposition of A ⊗ B into nm − 1 terms. For
instance, this was noted in practice by Kocia [Koc22].

However, this technique can be extended by applying one stabilizer decom-
position but using a different stabilizer decomposition of the remaining non-
stabilizer part of the diagram in each of the terms. For instance, suppose A has
a stabilizer decomposition of size n given by α1A1 + · · · + αn An, and B has n
(not necessarily unique) stabilizer decompositions of size m1, m2, . . . , mn given
by B = βi1Bi1 + · · ·+ βimi Bimi for all 1 ≤ i ≤ n. Then there is a stabilizer decom-
position of A ⊗ B into m1 + m2 + · · ·+ mn terms given by

A ⊗ B = α1β11A1 ⊗ B11 + · · ·+ α1β1m1 A1 ⊗ B1m1 + · · ·
+ αnβn1An ⊗ Bn1 + · · ·+ αnβnmn An ⊗ Bnmn

(6.28)

and similarly to before, it may be the case that some pairs of these terms cancel
out and can be replaced by their sum.

This technique was used to search for stabilizer decompositions of tensor
products of a state with itself. We shall use S⊗n to refer to a state S tensored
with itself n times. Given a state S we proceed as follows:

1. Start with a list of decompositions of S⊗1.

2. Randomly pick small integers i and j and a decomposition of S⊗i into n
terms. Further pick n decompositions of S⊗j randomly with replacement,
and create a decomposition of S⊗(i+j) as above.

3. For each pair of terms in this new decomposition, check if their sum is ac-
tually a stabilizer state. If it is, replace these terms with their sum. Repeat
until no terms can be further combined.
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4. If any terms were removed from this decomposition, add it to the list of
decompositions.

5. Return to step two.

This process can be terminated when decompositions of large enough tensor
products have been considered.

In order to test whether a sum of two stabilizer states is also a stabilizer state,
we can find the vectorization of the sum and use the previous simulated anneal-
ing method to try and find a stabilizer decomposition of size one. Many optimiza-
tions are available in this case - the maximum fidelity is given by the dot product
of the two states, and so the QR decomposition of B′ need not be computed at all
- and so this test can be done extremely quickly.

Another option that was tested is to use an algorithm dedicated to testing if a
state is a stabilizer state, such as those presented Damanik [Dam18]. Since these
algorithms are designed to be run on quantum computers, this was implemented
using the IBM Qiskit toolkit [GTN+21] to run a simulation of a quantum com-
puter.

6.3 Decompositions Found

In the next chapter, we will apply stabilizer decompositions to ZH-diagrams for
#kSAT instances. As such, we are interested in finding stabilizer decompositions
of the following four tensors

0 0 0 00 0 π (6.29)

which we will call H1
1 [0], Hstate, H+

link, and H−
link respectively, as well as tensor

products of these with themselves.
Note that so far, we have only considered stabilizer decompositions of ZX-

diagrams, as stabilizer diagrams are defined as ZX-diagrams. However, we can
define an equivalent fragment StabZH of the ZH calculus, by noting the following
embedding of StabZX up to scalar factors:

α

. . .

. . .
α

. . .

. . .
7→

n

m

n

m

α

. . .

. . .
α

. . .

. . .
7→

n

m

n

m

2−
1
27→

21− n+m
2 (6.30)
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In this way, we can see that Eval(StabZH) is also computable in polynomial time,
and all the rewriting rules for StabZX apply to StabZH up to scalar factors since
the ZX calculus is sound.

Since our methods for finding stabilizer decompositions require only the vec-
torization of the underlying tensor to work, the fact that these are defined by
ZH-diagrams is irrelevant, and we can translate the decompositions back in ZH-
diagrams by adjusting the scalar factors as above. Note also that we can trans-
form any diagram into a state by applying cups to the inputs, and because of the
yanking equations, applying caps to the corresponding outputs on the terms of
the decomposition will yield a decomposition for the original diagram.

6.3.1 Stabilizer Testing for Cancellation

This method was used to find decompositions for H1
1 [0]

⊗2 and H1
1 [0]

⊗3. The algo-
rithm was initialized with the following six decompositions of H1

1 [0], which were
found by manually inspecting the tensor:

0 = +1
2

1
2 = π π−

= + π π = π +

= π+ = π+

(6.31)

Using the simulated annealing method to test whether sums of states are stabi-
lizers, the algorithm was run for several hundred iterations, and the following
decompositions were found:

0

0
=

π π

π π
+ +1

2
1
2 (6.32)

0

0
=

π π

π π
+ −1

2
1
2 (6.33)

0

0 =

π π

π π+ +1
4

1
4

0

+1
4

1
4+

π π

(6.34)

Whilst discovered automatically by this method, decomposition (6.33) was also
previously found manually by John van de Wetering.

6.3.2 Simulated Annealing

Bravyi, Smith, and Smolin [BSS16, Appendix A] suggest the following param-
eters for the simulated annealing algorithm: the cooling schedule is defined by
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T0 = 1 and Tm = 1
4000 with the remaining steps interpolated by a geometric se-

quence as Ti = (Tm)
i
m , where m = 100000, and the probability of accepting a

step on the walk is given by accept( fprev, fproposed, T) = e−
fprev− fproposed

T . Except for
m, which was increased to 106, these were left unchanged. Using this method,
we obtained the following decompositions for the diagrams H1

1 [0]
⊗3, H⊗3

state and
H⊗4

state, and (H+
link)

⊗2 and (H−
link)

⊗2:

0

0 =

π π

π π+ −1
4

1
4

0

+1
4

1
4+

π π

(6.35)

0

0

0

= π2 − π + 7 + 2 (6.36)

0

0

0

0

π

π

π

π

π

π

−+++ 451833
2= (6.37)

0 0

0 0
= 3 + 3

2 −
π π

π π
1
2 (6.38)

0 0

0 0
= 2 + 2 −

π π

π π

π

π
(6.39)

In each case, the ZH-diagram corresponding to each term was obtained from
their vectorizations by utilizing the genetic algorithm method described above,
since it operates directly on GSLC form ZX-diagrams. Indeed this use case is the
only time when the method converged.
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CHAPTER 7

Solving #2SAT with Decompositions

This chapter extends an algorithm of Kissinger and van de Wetering [Kv21] [KvV22]
to give a novel method for solving #2SAT, in an approach suggested by John van de
Wetering and Konstantinos Meichanetzidis. The expected runtime of several variations
on this algorithm are then analyzed and implemented.

Previously, in chapter five examining the DPLL algorithm, we saw that writ-
ing a #SAT diagram as a sum of other diagrams and applying simplification
works well both theoretically and in practice. A similar technique has previously
also been used to great success for evaluating ZX-diagrams that exist in a certain
fragment of the ZX calculus known as Clifford+T. This had previously been ex-
plored indirectly by Bravyi, Smith, and Smolin [BSS16], and further by Qassim et
al [QPG21]. However, it was first presented in this form by Aleks Kissinger and
John van de Wetering [Kv21] [KvV22], and recently improved by Julien Codsi
[Cod22]. The technique consists of alternating between replacing a non-stabilizer
part of the diagram with its stabilizer decomposition, and applying a simplifica-
tion routine known as Clifford simplification.

Definition 7.1 ([Kv21, 2.3]). The Clifford simplification routine for ZX-diagrams is as
follows:

1. Ensure that the diagram is in graph-like form.

2. Apply the spider fusion rule SFZ and identity rules IZ and IH as much as possible.

3. Apply local complementation simplification, Lemma 6.1, and pivot simplification,
Lemma 6.2, wherever possible.

4. Apply boundary pivoting, Lemma 6.3, wherever doing so would not increase the
size of the diagram.

5. If any simplification occurred, return to step two, otherwise terminate.
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While in practice, the worst-case time bound of this algorithm is the same
bound as found by Qassim et al [QPG21] without diagrammatic simplification
routines, this interleaving routine appears to work well in practice, saving orders
of magnitude of time compared to no simplification. As such, we will attempt
to apply a similar method to #2SAT diagrams, using the stabilizer decomposi-
tions developed in the last chapter, and the rewriting rules presented earlier for
#2SAT. This yields an algorithm for Eval(ZH0

π) which we will call #Decompose.
The author acknowledges John van de Wetering and Konstantinos Meichanet-
zidis for suggesting this approach. #Decompose is defined in much the same
way as #DPLL, and is given as follows.

Definition 7.2. Given a ZH0
π-diagram D, the algorithm #Decompose is given as fol-

lows:

1. Apply the Clifford simplification routine, adapted to ZH-diagrams via additional
scalar factors described in the previous chapter.

2. Apply the rewriting rules given in Lemmas 5.4, 5.5, and 5.6, and Lemma 7.1 as
much as possible.

3. Repeat the previous two steps until no further simplification occurs.

4. If the diagram is empty, or consists of just scalars, multiply them together and
return this. If the diagram has a zero scalar anywhere, then return zero.

5. If D consists of disconnected components D = D1 ⊗ · · · ⊗ Dk, then recursively
evaluate c1 = #Decompose(D1), ..., ck = #Decompose(Dk) and return c1 . . . ck.

6. If the diagram only contains one H1
1 [0]-box, then apply one of the decompositions

given in (6.31) to write D = D1 + D2.

7. If it is possible to apply one of the decompositions (6.38), (6.39), (6.37), or (6.36),
in this order of preference, pick a random place to apply it and write D = D1 +

· · ·+ Dk.

8. Otherwise, pick a decomposition from (6.32), (6.33), (6.35), or (6.34) and a place to
apply it using some strategy, then write D = D1 + · · ·+ Dk.

9. Recursively evaluate c1 = #Decompose(D1), c2 = #Decompose(D2), ..., ck =

#Decompose(Dk), and return c1 + c2 + · · ·+ ck.

Lemma 7.1. The following rewrite for ZH0
π diagrams holds:

0π π0π = = π (7.1)
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Proof. We have that

0π π 0π
BAZ=

5.8
= 0 π

0π
SF
= π π

(3.8)
= π

SF
= π

(7.2)

which completes the proof.

7.1 Upper Bounds and Limiting Behaviour

Note that we have left the choice of which decomposition to apply and where to
apply it undefined in step eight. In this section, we will examine several strategies
for choosing decompositions and their expected behaviour in the limiting case of
small or large density diagrams. First we will put an upper bound on the runtime
of the whole algorithm, independent of any selection strategy. Unlike variants of
#DPLL, #Decompose is designed to decompose clauses, not variables. As such,
we will analyze the scaling of the algorithm in terms of m.

Theorem 7.1. The algorithm #Decompose has a worst-case runtime upper bound of
O(poly(n, m)20.7740m).

Proof. First note that any decomposition that removes k H[0]11-boxes removes k
clauses since each clause consists of a H[0]11-box and some stabilizer parts of the
diagram, which will be removed by Clifford simplification after the H1

1 [0]-box is
removed. Therefore, for each step, we can establish a polynomial time bound or
a branching number:

1. The first three steps run in polynomial time, since each of the rewriting rules
can be applied in time O(poly(n, m)), and there can be at most O(poly(n, m))

applicable instances before either no more simplification can be performed
or the diagram is empty.

2. The fourth step takes O(1) time.

3. As in #DPLL, component analysis in the fifth step cannot increase the run-
time of the algorithm.

4. If the sixth step applies, then the diagram will be evaluated as the sum of
two stabilizer diagrams, which will be eliminated in polynomial time by the
first step of the algorithm, and thus the whole step takes polynomial time.
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5. If the seventh step applies, we have one of the following branching num-
bers: τ(4, 4, 4), τ(4, 4, 4, 4, 4), or τ(3, 3, 3, 3). The maximum of these is given
by τ(3, 3, 3, 3) = 2

2
3 ≈ 1.5874.

6. Otherwise if the eighth step applies, we can pick decomposition (6.35) or
(6.34) to obtain a branching number of τ(3, 3, 3, 3, 3) = 5

1
3 ≈ 1.7100.

Therefore, we have α = max{log2 τ(3, 3, 3, 3), log2 τ(3, 3, 3, 3, 3)} ≤ 0.7740. Note
that in the cases for steps seven and eight, we ignored any cancellation that might
occur as a result of applying the decompositions. If this occurs it can only de-
crease the runtime, meaning we have obtained an upper bound.

While in the above proof we assumed that no cancellation occurs when ap-
plying stabilizer decompositions, this cancellation is the whole motivation for
applying this method. Therefore, we should aim to pick a strategy for apply-
ing these decompositions that maximizes the amount of cancellation, at least in
the average case. We present three strategies for this: applying decompositions
to clauses connected to vertices of maximum degree, applying decompositions
clustered at low-degree vertices, and applying decompositions to a frontier to
maximize Clifford simplification.

7.1.1 Clauses with High Degree Variables

Given some #2SAT-diagram, suppose we could pick two H1
1 [0]-boxes, c1 and c2,

that were seperated far apart in the diagram, and are each connected (we will
assume that all H1

1 [0]-boxes are not connected through NOT gates without loss
of generality), to two Z-spiders each with high degrees, v11, v12, v21, and v22, as
below:

0
0

0

0

0

...
...· · ·

c2

v21 v22

0
0

0

0

0

...
...

c1

v11 v12

(7.3)

Then if we apply the decomposition (6.32) or (6.33), no cancellation will occur in
the first and second terms, but in the third term, we see the following:

0

0

0

0

...
...· · ·

0

0

0

0

...
... π ππ π

BAZ=
0

0

0

0

...
...· · ·

0

0

0

0

...
...

ππ π

π π π

π

π

5.4
=

...
...· · ·...

...

(7.4)
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This removes the two clauses c1 and c2, but also all the other neighbouring clauses
of vij. Therefore, if vij has degree ∆ij, we will remove 2 + ∆ clauses in total,
where ∆ = ∑ij(∆ij − 1). Therefore, this decomposition has a branching num-
ber of τ(2, 2, 2 + ∆). If we performed the same analysis for three H1

1 [0]-boxes
using decomposition (6.35) or (6.34), then we would find a branching number of
τ(3, 3, 3, 3, 3 + ∆) (since similarly, cancellation only happens in the last term).

If we assume ∆ = 0 (i.e the worst case upper bound, as above), then we obtain
τ(3, 3, 3, 3, 3) = 1.7100 < τ(2, 2, 2) = 1.7321. Interestingly, however, we have:

lim
∆→∞

τ(2, 2, 2 + ∆) =
√

2 ≈ 1.4142

lim
∆→∞

τ(3, 3, 3, 3, 3 + ∆) = 3
√

4 ≈ 1.5874
(7.5)

And in fact, τ(2, 2, 2 + ∆) < τ(3, 3, 3, 3, 3 + ∆) for all ∆ ≥ 1. Therefore, if we pick
c1 and c2 such that ∆ is maximized, we would actually expect the decompositions
(6.32) and (6.33) to perform better in almost all cases.

Ideally, we could assume ∆ ≥ 2, since when ∆ ≤ 1, we can apply the decom-
positions (6.36) and (6.37), which have better branching numbers and use this to
obtain a lower upper bound in general. While this is true for a #2SAT-diagram
which we assumed above, this decomposition does not preserve the structure of
the diagram like variable branching does in #DPLL, and so we may have the
situation where some of the neighbours of vij are not H1

1 [0]-boxes, but in fact
stabilizer parts of the diagram introduced by previous decompositions. There-
fore, this upper bound does not apply to #Decompose. In practice, however, this
method may still be effective.

7.1.2 Eliminating Low Degree Variables

While in the previous section, we decomposed clauses that were far apart in or-
der to exploit unit propagation as much as possible, we can instead decompose
clauses that are maximally close together to exploit Clifford simplification. Specif-
ically, suppose we have four variables v0,1,2,3 and three clauses c1,2,3 in the follow-
ing arrangement:

0
0

0

0
0

0

0
0

0

v0

v2
v3

v1

c2

c3

c1

...

. . .

...

(7.6)
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Then by applying decomposition (6.34), we observe the following cancellation.
In the first three terms, we obtain the following (up to a rotation):

0
0 0

00
0

0
0 0

00
0

SFZ=

0
0 0

00
0

BAZ=2 2

0
0

0
0

5.4
= 2

...

. . .

...

...

. . .

...

...

. . .

...

...

. . .

...
(7.7)

In the fourth term, no cancellation occurs, but in the fifth term, we have the
following (throughout, we have assumed that all H1

1 [0]-boxes are connected to
Z-spiders directly, but the cancellation is maintained even when this is not the
case):

0
0 0

00
0

ππ
ππ BAZ=

...

. . .

...

ππ

0
0

0

0
0

0

π
π ...

. . .

...

π

π
π

π
5.4
=

...
. . .

...

(7.8)

Therefore, if we assume that vi has degree ∆i, then the branching number for this
case is given by τ(2+∆1, 2+∆2, 2+∆3, 3, ∆1 +∆2 +∆3). Assuming that ∆i → ∞,
we find that

τ(2 + ∆1, 2 + ∆2, 2 + ∆3, 3, ∆1 + ∆2 + ∆3) → 1 (7.9)

and consequently α → 0, which would imply that higher densities become easier,
exactly as we saw for #DPLL. However, we can’t assume that this will hold up
in practice - increasing δ will, on average, increase ∆i, but will also decrease the
likelihood that a variable with degree three exists in the first place. Therefore,
in practice, we need to pair this with one of the other two strategies to handle
this case. Additionally, it is possible to perform a similar analysis for variables of
degree two (or two variables of degree one) with decomposition (6.32).

7.1.3 Maximizing Clifford Simplification

Finally, we will consider the case of optimizing decomposition placement to max-
imize the amount of Clifford simplification taking place, since that is the main
novelty of this method. While the previous method did utilize Clifford simpli-
fication, it did not make use of the fact that previous decompositions may leave
stabilizer parts to the diagram that can be combined with another decomposition
to yield something that is simplifiable.

In particular, notice that the major Clifford simplification rules, Lemmas 6.1
and 6.2, do not apply unless the stabilizer part of the diagram is quite large (it
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must contain at least three Z-spiders connected by Hadamard gates). Therefore,
it may be helpful to try and cluster decompositions close together to make larger
stabilizer regions in the diagram. One strategy for this is as follows:

• Maintain a list of all variables whose clauses have been decomposed thus
far. Initially, this is empty.

• In order to select a decomposition, pick three random clauses that are con-
nected to a variable in the list.

• If the list is empty, pick randomly from all clauses.

• If the diagram has been split into disconnected components and the compo-
nent being considered does not have any variables on the list, pick clauses
randomly in this component.

• Find the variables connected to these clauses and add them to the list if they
hadn’t been already.

Therefore, during operation, we start with some random ‘seed’ clauses and
grow a frontier of decompositions around these. This results in an expanding
stabilizer part to the diagram, inside which simplifications can occur. While this
may seem worse than the previous strategy, as that guarantees simplification, this
instead permits simplification across the whole frontier, and not just localized to
one Z-spider, which may be beneficial - we have given three different strategies
that are all optimized for particular situations, and so in practice, some combina-
tion of the three may be better than any one alone.

7.2 Practical Implementation

Now that we have a complete algorithm, we will see how it performs empiri-
cally. However, this testing does not focus on performance compared to existing
algorithms for this problem, but rather on the relative efficacy of the different
strategies described above, as well as the limits of what can be expected from this
method. Simply put, this is because this method is much slower than existing
algorithms - even the most basic forms of #DPLL like the CDP algorithm of Birn-
baum and Lozinskii [BL99]. We will discuss in the next section why this is, and
what might be done to improve the situation.

The algorithm was implemented in the Rust programming language and is
built on top of QuiZX, a library for representing and simplifying ZX-diagrams.
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Figure 7.1: The degree distribution of random formulae generated by first picking
a random graph with a fixed number of edges. Generated from 200 samples with
n = 10 variables and m = 10, 20, 30, 40.

This was adapted for ZH-calculus by adding a new type of node to diagrams
that represents an H1

1 [0]-box. The algorithm #Decompose was implemented as
specified above, except that step seven (the application of the decompositions
(6.38), (6.39), (6.36), and (6.37)) was removed, to make it easier to see the effects
of changing the decomposition selection strategy.

Similarly to the phase-transition measurements from chapter five, the number
of recursive calls (which we call the number of terms) made by the algorithm was
measured in lieu of execution time, since time measurements are inherently non-
deterministic and prone to noise. Random #2SAT instances with m clauses and
n variables were generated by picking m distinct pairs of variables uniformly at
random (i.e a random graph with m edges), and then assigning each variable of
the pair a uniformly random polarity (either negated or not) to produce clauses.
To aid in reproducibility, samples were generated in this manner for n = 10 and
m = 10, 20, 30, 40, and the distribution of degrees is presented in Figure 7.1.

Note that the rest of the plots will make extensive use of the violinplot style -
in this style, each set of samples is represented by a partially transparent symmet-
rical region aligned with the x-axis value of the measurement. The width of the
region indicates the density of samples at that y-axis value, and the marker bars
indicate the median sample. All data will be generated by taking 200 random
samples as described above for every pair of m and n.

First, we compare the difference between the strategy of decomposing clauses
at high-degree variables with two clauses and three clauses per decomposition.
As discussed, we would expect the growth rate to converge to O(poly(n, m)

√
2

m
)
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Figure 7.2: The number of terms needed to evaluate #2SAT diagrams by decom-
posing either two or three clauses connected to high-degree variables. Linear fits
with corresponding α-values are given.

and O(poly(n, m) 3
√

4
m
) for two and three clauses, respectively, as m (and thus ∆)

increases. This corresponds to α-values of log2(
√

2) = 1
2 and log2(

3
√

4) = 2
3 . We

measure these α-values directly by examining the gradient of a linear fit of the
base-2 logarithm of the number of terms against the number of clauses. Results
are presented for n = 6 and n = 7 in Figure 7.2.

Indeed, we can see that the measured α-values of α = 0.46 for the two clause
decomposition and α = 0.63 for the three clause decomposition over the whole
range are close to the expected values but slightly lower. This is almost certainly
because of cascading unit propagation, due to its independence from the number
of clauses. In order to observe the convergence, the α-value of the first decompo-
sition for each instance was also calculated exactly through empirical calculations
of the branching number, given how many clauses were cancelled in each term.
These results are presented in Figure 7.3 in terms of the density.

We can see that the α-values converge quickly to the expected values. Note
that we would expect larger α for low δ, and indeed many samples do have this,
however, there appears to be a bimodal distribution of α-values at low δ. One
possible explanation for the second, lower, mode is that at low δ, it is more likely
for the graph to be disconnected, so when this is the case, the α-value is much
lower.

Moving on to the strategy of optimizing Clifford simplification by placing
decompositions close to previous decompositions, the number of terms needed
to solve #2SAT instances with n = 6 and n = 7 was measured and compared
to the previous strategy of decomposing highly-connected clauses. The results
are presented in Figure 7.4. We can see that the Clifford simplification strategy
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Figure 7.3: Average α value of the first decomposition of a diagram evaluated by
decomposing two or three highly connected clauses.
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Figure 7.4: The number of terms needed to evaluate #2SAT diagrams by decom-
posing three clauses near previous decompositions vs three clauses connected to
high-degree variables. Linear fits with corresponding α-values are given.

appears to be largely identical, with a measured α-value of 0.63 as before. The
median number of terms is slightly lower across the range, but the spread of
samples significantly overlaps, so we cannot say conclusively which is better.

In order to evaluate whether this strategy is successful at introducing Clifford
simplification, the average proportion of clauses that were simplified out after
two decompositions was measured for both strategies. Since two decomposi-
tions is the minimum number before Clifford simplification can occur, we would
expect to see some simplification if the Clifford simplification strategy is effective.
This was measured for n = 7 and n = 8 and is presented in Figure 7.5.

We can see that indeed at low densities, some extra simplification occurs with
the Clifford strategy, although the spread is very wide and overlaps significantly.
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Figure 7.5: The average proportion of terms simplified after two decomposi-
tions, either by decomposing three clauses near previous decompositions vs three
clauses connected to high-degree variables.

One reason this may not happen at higher densities is that the degree of Z-spiders
is higher on average, so two decompositions may not be enough to generate a Z-
spider which has no connected clauses, and thus might be removed by Clifford
simplification.

In order to implement the strategy of picking decompositions clustered around
low-degree vertices, it was modified to use the previous strategy of decomposing
two clauses at high-degree variables whenever no low-degree variable is avail-
able. This was compared to just the high-degree technique alone, and the num-
ber of terms required is presented in Figure 7.6. We can see that this strategy
has two distinct modes of behaviour - at lower densities, the number of terms is
fairly flat, before making a sharp transition at a certain density when low-degree
variables are no longer present. The flat region is probably a balance between the
increasing number of Clauses and the decreasing branching number.

To see this transition more clearly, the α-value of the first decomposition was
measured empirically, as before, and is presented in Figure 7.7. As predicted, we
can see that α decreases towards zero, as the density increases since ∆i increases,
but then when no low-density clauses are present, it transitions to the expected
α = 1

2 of the high-degree method. Also, note that this transition does not occur at
the same point for n = 6 and n = 7 - this may be because the minimum degree
of a random graph depends on both the density and the number of vertices n,
shown by Riordan and Selby. This is shown experimentally in Figure 7.8, which
shows how the proportion of random instances with a minimum degree of at
most three varies with n and δ.
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Figure 7.6: The number of terms needed to evaluate #2SAT diagrams by decom-
posing three clauses around a low-degree variable vs two clauses connected to
high-degree variables.
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Figure 7.7: Average α value of the first decomposition of a diagram evaluated
by decomposing three clauses around a low-degree variable, and two clauses at
high-degree variables.
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Figure 7.8: The proportion of randomly sampled #2SAT instances which have a
minimum degree of at most three according to n and δ.

Finally, an attempt was made to measure the best possible performance of
this method: instances were sampled, and the decompositions were picked by
considering 100 random decomposition locations, substituting and simplifying
these, and measuring the branching number of each choice empirically. The de-
composition with the lowest α-value is picked at each step. The number of terms
required by this strategy is compared to the previous strategies in Figure 7.9.

This also exhibits two distinct behaviour modes, and so in order to character-
ize the transition point, the number of terms was measured for n = 6 to 10 and is
compared to density in Figure 7.10. We can see that the transition point appears
earlier, around δ = 1.6 to δ = 1.8, as opposed to δ ≥ 2, and does not appear to
change as n increases.

Furthermore, we observe little to no scaling as n increases, especially in the
linear region, suggesting that the branching number is essentially dependent on
the density. This is unexpected because if n increases while keeping δ constant,
the number of clauses increases, which we would expect to require more terms
to decompose. Since the instances sampled here are so small, further data collec-
tion and analysis would be required to determine the behaviour of this method
conclusively.

7.3 Challenges and Future Directions

All the instances used in this chapter have been very small, with n ≤ 10 and
m ≤ 45, and this is because the algorithm operates very slowly (e.g hours per
instance for m = 45). A natural question is, why is this method so slow, even
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Figure 7.9: The number of terms needed to evaluate #2SAT diagrams by picking
the best decomposition from 100 random options at each step compared to all
previous strategies. Note that only the median values are shown to reduce clutter.
High Degree 2 and 3 refer to decomposing two and three clauses connected to
high-degree variables, respectively.
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Figure 7.10: The number of terms needed to evaluate #2SAT diagrams by pick-
ing the best decomposition from 100 random options compared to itself for
n = 6, 7, 8, 9, 10.
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though the algorithm it is inspired by for Clifford+T is very effective? There are
several factors at play.

Firstly, there is one crucial implementation choice that makes the rewriting
steps slow: H1

1 [0]-boxes and NOT gates are represented explicitly in the diagram
as vertices, and not as edges like in #DPLL2. This has several consequences:

1. All operations, like checking connectivity between variables or finding the
variables that a clause connects to, require walking multiple steps through
the graph. This is O(1), but much more costly than the native graph opera-
tions.

2. The rewrite rules given by Lemmas 5.4, and 7.1 are implemented in O(m)

time and not O(n) time.

3. The rewrite rule Lemma 5.5 requires O(m) time - if clauses were considered
edges, this could be amortized as O(1) by incorporating it into the operation
of adding a new edge.

4. The rewrite rule given by Lemma 5.6, is implemented in O(m2) time, and
requires this much time to check if it is even applicable! If clauses were
considered edges, this could also be implemented in amortized O(1) time
by incorporating it into the operation of adding new edges.

5. While Clifford simplification usually takes at most O(n) time to check if
rewriting can occur, since our diagram has O(n + m) vertices, it takes at
least O(n + m) time, even if no simplification occurs.

In total, this means the cost of rewriting at each step is at least O(m2), compared to
O(n2) that Kissinger and van de Wetering argue for their algorithm. In the worst
case, where m = O(n2), this gives a runtime of O(n4)! For n = 10, this is already
a factor of 100 times slower, not taking into account the extra time required for
basic graph operations.

Secondly, in the algorithm for Clifford+T diagrams, Clifford simplification is
guaranteed after every decomposition and may cascade. However, in #Decompose,
note that a π

2 phase is never introduced into any Z-spider by any of the decompo-
sitions or simplifications. This is problematic because it means that pivoting and
boundary pivoting are the only operative simplifications.

These require a pair of Pauli vertices connected via Hadamard gates and con-
nected to their neighbours only with Hadamard gates to operate, and so it means
this means at least two layers of decompositions must take place before this is
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ever applicable in a #2SAT diagram, and in practice, it may take many more lay-
ers if the degrees of the variables are high - this was seen in practice in Figure 7.5,
where simplifications only occur at low-density. In contrast, in the method for
Clifford+T diagrams, all diagrams are converted to graph-like form, and every
pair of Z-spiders is connected by Hadamard edges, so Clifford simplification is
directly applicable.

Now that we’ve examined why this method is not performing well, what
could be done to remedy it? One of the most important steps would be to reim-
plement the algorithm to consider H1

1 [0]-boxes and their attached NOT gates to
be edges between Z-spiders, not generators in their own right. While this may
seem to be a departure from the main thesis of this dissertation that the ZH cal-
culus is a valuable tool for examining the #SAT problem, this need only be an
implementation detail.

Secondly, clearly, H1
1 [0]-box decompositions are not an adequate way of intro-

ducing stabilizer regions to the diagram that can be simplified. To this end, look-
ing for more rewriting rules that can be used to introduce stabilizer parts to the
diagram without decompositions would be very valuable. For instance, the fol-
lowing rule allows a special case of the pure literal rule for degree-one variables
(which is normally only applicable to SAT) to be applied to #SAT in exchange for
introducing a Hadamard gate:

π
0

0 = 0 (7.10)

In particular, rewrites like this that also remove H1
1 [0]-boxes would be very pow-

erful and show the usefulness of the method.
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CHAPTER 8

Conclusion

In this dissertation, we explored how the ZH calculus could be applied to an-
alyze the #SAT problem. We outlined the work of de Beudrap, Kissinger, and
Meichanetzidis [dKM21] showing that #SAT instances can be embedded into ZH-
diagrams and extended it to show that evaluating a large subset of ZH-diagrams
is not only #P-hard but FP#P-complete.

Motivated by this equivalence, we showed how the classic algorithm of Davis,
Putnam, Loveland, and Logemann [DLL62] for SAT and its variants for #SAT can
be expressed in the ZH calculus. Using diagrammatic methods, we gave a novel
extension of this algorithm to consider clauses and variables equally and used
this to show an upper bound on the runtime of #kSAT that is independent of k
and improves on the existing upper bounds for small densities, as well as a novel
unconditional upper bound for #4SAT in terms of clauses.

We employed stabilizer decompositions to give an algorithm for #2SAT in-
corporating Clifford simplification that is directly derived from the algorithm for
evaluating ZX-diagrams developed by Kissinger and van de Wetering [Kv21]. In
order to facilitate this, several novel stabilizer decompositions were found using
the method of Bravyi, Smith, and Smolin [BSS16], and a generalization of the
method of Kocia [Koc22]. The algorithm was implemented and different decom-
position strategies were evaluated to measure how Clifford simplification can be
used effectively in this instance. It was found that this method cannot be effec-
tive without modifications, and some potential directions of improvement were
suggested.

Finally, we will conclude with some ideas for future research directions:

• While embedding general #SAT into ZH calculus was demonstrated by de
Beudrap, Kissinger, and Meichanetzidis, other similar problems may also
have nice embeddings, either into ZH calculus or other graphical calculi.
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In particular, it would be interesting to explore the connection between #1-
in-3SAT and the ZW calculus, or how MaxSAT might be embedded in a
graphical calculus.

• Resolution is a technique (shown graphically as Equation (3.12)) that was
originally used by Davis and Putnam [DP60] to solve SAT but has fallen out
of favour since then for SAT and #SAT because it tends to increase the size
of clauses, leading to inefficiency. However, for 2SAT and #2SAT, this is not
the case, and in fact, the resolution rule shows that 2SAT can be evaluated in
polynomial time [dKM21, 4.3]. Therefore, one possible avenue of research is
to see how resolution can be used graphically to simplify #2SAT instances.

• Since we have shown that Eval(ZHQ
π/4) is FP#P-complete, it would be in-

teresting to try and apply this reduction to practical ZH-diagrams. In par-
ticular, ZH-diagrams for representing simulations of quantum computers,
for which the calculus was originally introduced, exist in the ZH π

4
fragment

and so could be evaluated in this way. Given that state-of-the-art #SAT
solvers can solve instances with hundreds of thousands of variables, this
may be an efficient way to evaluate these ZH-diagrams, and could be com-
pared to other methods of simulating quantum computers, such as the al-
gorithm of Kissinger and van de Wetering that we adapted earlier.
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