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We want to start with a group G and an abelian G-module M (that is a Z[G]-module M)1 and to find a
series of simple enough groups (the cohomology groups) which will encode in some sense properties not only
of the action of G on M but also of G and M themselves. How exactly these groups are used and what
they imply for arithmetic algebraic geometry will be elaborated more in the seminar. For now, we start with
definitions. A projective module P is one such that for every surjective homomorphism α : N → M , the map
HomG(P, N) → HomG(P, M) given by λ 7→ α ◦ λ is surjective:
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Projective modules are in a sense quite close to free modules, as P is a projective module if and only if there
exists a module M and a free module F such that P ⊕M ∼= F (†). Now, consider a sequence of homomorphisms
between infinitely many R-modules

· · ·
di−1

−−−→ Ai di

−→ Ai+1 di+1

−−−→ Ai+2 di+2

−−−→ · · ·

We say that this forms a cohomological complex if di+1 ◦ di = 0 for all i, and that it’s an exact sequence if
im di = ker di+1. Obviously any exact sequence is a cohomological complex. Now, for a ring R and an R-module
A, we say that the exact sequence · · · → P1 → P0 → A → 0 is a projective resolution of A if the Pi are all
projective R-modules. Given an A it is not hard to construct a projective resolution. One can for example take
P0 = ⊕a∈AR as the free R-module which is an infinite direct sum of copies of R indexed by elements of A. This
gives a clear surjection p0 : P0 → A and P0 is free and so is projective from (†). Next, inductively, when Pi, pi are
defined, one does the same thing as above, but for ker pi instead of A, to construct Pi+1, pi+1. Now, to construct

the cohomology groups Hi(G, M), we pick any projective resolution · · ·
p2
−→ P1

p1
−→ P0

p0
−→ Z → 0 of A = Z and

form the complex (it’s not exact!)

HomG(Z, M)
d−1

−−→ HomG(P0, M)
d0

−→ HomG(P1, M)
d1

−→ HomG(P2, M)
d2

−→ · · · (1)

where di : λ 7→ λ ◦ pi+1. For i ≥ 0 define the i-th cohomology group Hi(G, M) = ker(di)/ im(di−1). The magic
behind this definition is that not only can we always derive one such complex since there’s always a projective
resolution of Z, but also that even if we picked a different resolution, the cohomology groups would be isomorphic
(needs proof but isn’t too hard)! The above construction can be made much more explicit if we consider the

resolution · · ·
p2
−→ Z[G2]

p1
−→ Z[G]

p0
−→ Z → 0 where pi(σ0, . . . , σi) =

∑i
j=1(−1)j(σ0, . . . , σj−1, σj+1, . . . , σi), that

is we remove the j-th entry for every summand. In this setting, applying the same HomG construction as before,
one calls elements of HomG(Z[Gi+1], M) the i-cochains, whereas ker(di) are the i-cocycles and im(di−1) the i-
coboundaries. If we change the maps pi slightly (it’s slightly more cumbersome to write down, but following the
same ideas) one derives the inhomogeneous cochains construction. Here, we can explicitly say what the kernel
and image of the di’s is. The easiest cases are

H0(G, M) = AG = {a ∈ A : g · a = a ∀g ∈ G} (2)

H1(G, M) = {s 7→ as : G → A|ast = as · s(at)} /
{

∃a : s 7→ a−1s(a)
}

(3)

Theorem. (Hilbert’s 90 Original) Let L/K be a finite Galois extension such that G = Gal(L/K) = 〈σ〉 is
a cyclic group. For a ∈ L we have that NL/K(a) = 1 if and only if a = b/σ(b) for some b ∈ L.

Theorem. (H90 General) Let L/K be any finite Galois extension. Then using (3) prove H1(Gal(L/K), L×) =
0.

1Remember that for a ring R and a group G, the group ring R[G] is defined as the set {
P

rigi : ri ∈ R, gi ∈ G} of finite R-

linear combinations of elements of G with the obvious addition, and R-linear multiplication in G: e.g. (r1g1 + r2g2) ∗ (r3g3) =
(r1r2)g1 · g3 + (r1r3)g2 · g3 and so on...
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Proof. Let G = Gal(L/K) and consider a cocycle s 7→ as in H1(G, L×). For c ∈ L, consider the Poincaré series
b =

∑

s∈G as · s(c). First, prove that the elements of G are linearly independent over L (Hint: By contradiction
on the minimality of n in an assumed a1σ1 + . . . + anσn = 0 with ai 6= 0, but don’t get too bogged down with
this as it doesn’t need cohomology!). Using this fact we can pick a c such that b 6= 0. Apply s to b and show
that as is a coboundary. ὄ.ἕ.δ.

Proposition. Calculate all the cohomology groups of an abelian Z[Z]-module A using the definition after (1)
only.

Proof. First check that for σ a generator of the cyclic group Z, we have that 0
p2
−→ Z[Z]

p1
−→ Z[Z]

p0
−→ Z → 0,

where p1 is multiplication by σ − 1 and p0 maps σ to 1, is a projective resolution of Z. Next, apply the
HomZ[Z](−, A) functor to the resolution and write down explicitly the maps di between the hom-groups. Noting
that HomG(Z, B) ∼= BG for any group G and G-module B, write down explicitly the kernel and image of the
necessary di’s and calculate the relevant quotients giving rise to the cohomology groups. ὄ.ἕ.δ.

As you may have guessed, Galois cohomology is just the cohomology of G = Gal(L/K)-modules M for some
Galois field extension L/K. This cohomology can still be formed using explicit resolutions and the cochain
constructions as above, but it has more properties that just simple group cohomology. Namely, we know that G
is a profinite group and hence a topological group (with the profinite topology). The cocycles and coboundaries
are thus not only as above, but also continuous maps in this topology. What’s even more striking is that for G a
profinite group and M a G-module, we have that Hp(G, M) is finite for p ≥ 1. More about Galois cohomology
in the seminar.
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