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A frequent problem in complex analysis is determining the location of the
zeroes of a function. More specifically one wishes to calculate the number of
zeroes of an analytic function1 in some region. One way to undertake such a
task is via Jensen’s Theorem.

Theorem 1 If, for a complex variable s = reiθ

• the function f(s) is analytic in the region |s| ≤ R; and

• f(s) has no zeroes on |s| = R; and

• f(0) = 1, then

(2π)−1

∫ 2π

0

log |f(Reiθ)| dθ =
∫ R

0

n(r)
r

dr, (1)

where the function n(r) is the number of zeroes of f(s) inside the disc |s| = r

Some Comments

The first two conditions are required to use Cauchy’s integral theorem later
on. The condition that f(0) = 1 is not necessary, but is used for convenience.
Indeed as the prove unfolds this fact will be made apparent.

Proof

First we recall that logarithms of complex numbers require more attention to
detail than their real counterparts. Indeed for a complex variable z, one writes
log z = log |z|+ i arg z +2πki, where k (an integer) is only determined when the
corresponding branch cut in the complex plane is determined: in particular

Re log z = log |z|. (2)

Furthermore once a branch cut has been determined, one can write

log f(Reiθ) − log f(0) =
∫ R

0

df(reiθ)
f(reiθ)

dr. (3)

1The terms regular, analytic, holomorphic are all identically used to describe a function
which is differentiable in every point of some region A. If this region is not specified, the
implication is that the function is analytic everywhere, in which case it is said to be entire.
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One combines these two facts to write the right hand side of (1) as

(2π)−1

∫ 2π

0

log |f(Reiθ)| dθ = (2π)−1

∫ 2π

0

Re

{∫ R

0

df(reiθ)
f(reiθ)

}
dθ, (4)

where the term log f(0) has been evaluated to be zero, by assumption (see that it
can be carried through until the end). Now one writes df(reiθ) = f ′(reiθ)eiθ dr,
and after a change of variable s = reiθ it follows that

(2π)−1

∫ 2π

0

Re

{∫ R

0

df(reiθ)
f(reiθ)

}
dθ = (2πi)−1

∫ R

0

1
r
Re

{(∫
|s|=r

f ′(s)
f(s)

ds

)}
dr

(5)
Now to use Cauchy’s integral formula2 we note that the only3 poles are those
zeroes of the function f(s). One can check4 that, if f(s) has a zero of multiplicity
m at some point a, then the residue of f ′(s)/f(s) is equal to m. Thus the right
hand side of the above equation5 is equal to∫ R

0

n(r)
r

dr, (6)

and all is right with the world.

Further Comments

One can also write this last equation (6) in another format. Suppose that the
zeroes of the function f(s) are at points s1, s2, . . . , sn, such that each si is located
at a distance ri. Then one may write∫ R

0

n(r)
r

dr =

(∫ r1

0

+
∫ r2

r1

+ . . . +
∫ R

rn

)
n(r)

r
dr (7)

=
∫ r1

0

0
r

dr +
∫ r2

r1

1
r

dr +
∫ r3

r2

2
r

dr + . . . +
∫ R

rn

n

r
dr (8)

= log(r2 − r1) + 2 log(r3 − r2) + . . . + n log(R − rn) (9)
= n log R − (log r1 + log r2 + . . . + log rn) (10)

=
log Rn

|s1 · s2 · · · sn|
(11)

Benediction - More in the Seminar

Jensen’s Theorem may be used to show the correct upper bound on the order
of magnitude for the number of zeroes of the zeta-function to height T .

2That is the integral of an analytic function around a closed contour is 2πi times the sum
of the residues. The residue of a function f(s) at the point a is just the coefficient of the term
(s− a)−1 in the (Laurent series) expansion.

3These are the only poles since f(s) is analytic.
4Write f(s) = g(s)(s− a)m, since the function g(s) must be analytic and be free of zeroes

at s = a (why?) then . . .
5Notice that the ’real part’ has slipped away . . . how?
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