A minimisation method of W. M. Schmidt

Jahan Zahid

Let K denote a \mathfrak{p} -adic field with ring of integers \mathcal{O}_K , and residue class field \mathbb{F}_q . Let π denote a uniformizer for \mathcal{O}_K . If $\alpha \in K - \{0\}$, we may write $\alpha = \pi^s u$, where u is a unit in K. We define the π -adic order $v(\cdot)$ by setting $v(\alpha) = s$.

We let

$$F_1(\mathbf{x}), \dots, F_r(\mathbf{x}) \in K[\mathbf{x}]$$

denote a system of homogenous polynomials (forms) of degrees d_1, \ldots, d_r respectively in the variables $\mathbf{x} = (x_1, \ldots, x_n)$. From now on we shall assume that $d_1 \geq \ldots \geq d_r$ and for brevity write the above system of forms as \mathbf{F} .

We are interested in determining the existence of a point $\mathbf{x} \in K^n - \{\mathbf{0}\}$ such that $\mathbf{F}(\mathbf{x}) = \mathbf{0}$. Clearly we may assume that the coefficients of the forms \mathbf{F} and the variables \mathbf{x} are in \mathcal{O}_K , since this does not effect existence of a zero.

Let $\tau \in GL(n, \mathcal{O}_K)$ and we write \mathbf{F}_{τ} to denote $\mathbf{F}(\tau \mathbf{x}) = (F_1(\tau \mathbf{x}), \dots, F_r(\tau \mathbf{x}))^t$. Also we write $T = (t_{ij})$ to denote the $(r \times r)$ upper triangular matrix with entries $t_{ij}(\mathbf{x}) = \pi^{-c_i}G_{ij}(\mathbf{x})$, where $G_{ij} \in \mathcal{O}_K[\mathbf{x}]$ denotes an arbitrary form of degree deg $F_i - \deg F_j \geq 0$, for $i \leq j$ and $c_i \geq 0$.

For $\omega_1, \ldots, \omega_r > 0$ we write

$$\mathbf{F} \succeq_{\omega_i} \mathbf{F}'$$
,

if **F** and **F**' are both defined over \mathcal{O}_K and

$$\mathbf{F}' = T\mathbf{F}_{\tau}$$

with

$$\sum c_i \omega_i - s > 0$$

where $s = v(\det \tau)$.

We say that **F** is (ω_i) -bottomless if there is an infinite chain

$$\mathbf{F} \succsim_{\omega_i} \mathbf{F^{(1)}} \succsim_{\omega_i} \mathbf{F^{(2)}} \succsim_{\omega_i} \cdots$$

otherwise, **F** will be called (ω_i) -bottomed. We also say that **F** is (ω_i) -reduced if there does not exist any **F**' such that

$$\mathbf{F} \succeq_{\omega_i} \mathbf{F}'$$
.

We say that two systems \mathbf{F} and \mathbf{F}' are equivalent, if both systems are defined over \mathcal{O}_K and

$$\mathbf{F}' = T\mathbf{F}_{\tau}$$

where $c_i = 0$ for all $1 \le i \le r$ and $v(\det \tau) = 0$ in T and τ as above. We define the "h-invariant" for a system \mathbf{F} , denoted $h(\mathbf{F})$ as the least integer h such that we can write

$$F_i(\mathbf{x}) = x_1 H_{i1} + \ldots + x_h H_{ih} \pmod{\pi}, \qquad 1 \le i \le r$$

for all systems equivalent to \mathbf{F} .

In this talk we shall deal with the simple case of when **F** is a system of a cubic and quadratic form and discuss how this gives us "useful" information about the h-invariant over the residue class field. Moreover we use this to verify Artin's conjecture for this case provided q > 293 viz. every cubic and quadratic form has a simultaneous zero in K for $n > 2^2 + 3^2$ and q > 293.

Problem 1. Let $\mathbf{F} = (F, G)^t$ denote a system of a cubic and quadratic form over \mathcal{O}_K . Suppose \mathbf{F} is (ω_1, ω_2) -reduced where $\omega_1 > 3$ and $\omega_2 > 2$. Show that

$$h(\mathbf{F}) > 5, \qquad h(F - LG) > 3, \qquad h(G) > 2$$

for all linear forms $L(\mathbf{x}) \in \mathcal{O}_K[\mathbf{x}]$.