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1. Introduction

Consider the Taylor-expansion

(1) log(1 + x) = x− x2

2
+ . . .+ (−1)nx

n

n
+ . . . ,

which can be derived by elementary means to be valid for |x| < 1. Due to the singularity at x = 1, where the
logarithm is undefined1 this series has a radius of convergence equal to one. One might well ask whether it is
possible to deduce that log 2 = 1− 1

2 + 1
3 + . . . from the above equation. The answer is ‘yes, but not yet’.

Substituting x = 1 in the above formula uses the fact that limx→c f(x) = f(c), which is equivalent to the
function f(x) being continuous at c. Do we know this to be true? Well, we know that, since this is a power
series with radius of convergence 1, the series is uniformly convergent for in any region 0 ≤ |x| ≤ ρ < 1 for any
ρ < 1. We also know that a uniformly convergent series converges to a continuous function. So unfortunately
we do not know that log(1 + x) is continuous at x = 1 and so we cannot proceed as we might have hoped -
indeed we need the following

Abel’s Theorem. Suppose that
∑
anx

n has radius of convergence equal to unity, and that
∑
an → s. Then∑

anx
n → s,

where the convergence is uniform, hence
lim
x→1

∑
anx

n = s.

So, in the case of the logarithm, the sum of the coefficients {− 1
n} converges and hence we can say with

confidence that log 2 = 1− 1
2 + 1

3 + . . . .

2. Tauber’s Theorem

Abel’s Theorem says ∑
an → s =⇒ lim

x→1

∑
anx

n = s;

the converse of this result is false in general. Take f(x) =
∑∞

n=0 anx
n = 1

x+1 , and this geometric series is valid
whenever |x| < 1. Then f(1) = 1

2 but
∑∞

n=0(−1)n is divergent. Tauber’s Theorem provides a partial solution
to this converse problem

Tauber’s Theorem. Suppose that f(x)→ s as x→ 1 and that an = o
(

1
n

)
. Then

∑
an → s.

For the proof we need the following auxiliary result which is left as an exercise

Exercise. If bn → 0 as n→∞, then
b0 + b1 + . . .+ bn

n+ 1
→ 0.

Littlewood [2] was able to relax the condition on the rate of growth of the coefficients to prove Tauber’s
Theorem when an = O

(
1
n

)
. In the seminar we will discuss a specific problem of Hadwiger and Agnew [1] as

well as more general ’Tauberian theorems’.
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1Note that, blasphemous as it is to write such things, that the left hand side then diverges to − log∞ as x→ −1, and the right
hand side does the same - a result written by Euler in the 18th century.
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