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1. Notations and basic definitions

Every space in this talk will be a Tychonoff space.

For a topological space X , let CL(X) be the hy-

perspace of nonempty closed subsets of X with the

Vietoris Topology.

Let us consider the following subspaces of CL(X):

K(X) = {K ∈ CL(X) : K is compact},

Fn(X) = {F ∈ CL(X) : |F | ≤ n},
and

F(X) =
⋃

n∈N

Fn(X).
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Recall that the Vietoris topology in CL(X) has the

collection of all the sets of the form

V + = {A ∈ CL(X) : A ⊆ V }
and

V − = {A ∈ CL(X) : A ∩ V 6= ∅}

where V is an open subset of X , as a subbase.

So, given open subsets U1,. . . ,Un of X , the set

<U1, . . . , Un> = {T ∈ CL(X) : T ∈ (∪1≤k≤nUk)
+

and T ∈ U−
k for each 1 ≤ k ≤ n},

is a canonical open set in CL(X).
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I am going to talk to you about some results that

Juan Angoa, Rodrigo Hernández-Gutierrez, Yasser

Ortiz-Castillo and I obtained about compactness-like

and disconnectness-like properties of hyperspaces with

their Vietoris Topology.
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2. Properties related to compactness in

hyperspaces

In 1951, E.A. Michael proved:

Theorem 2.1. A space X is compact if and only

if CL(X) is compact;

With respect to countable compactness, in 1985 D.

Milovaněvić proved:

Theorem 2.2. The following statements are equiv-

alent:

(1) Every σ-compact set of X has a compact clo-

sure in X (X is ω-hyperbounded);

(2) K(X) is countably compact;

(3) K(X) is ω-bounded; and

(4) Every σ-compact subspace of K(X) has a com-

pact closure in K(X) (K(X) is ω-hyperbounded).

Recall that a space X is ω-bounded if every count-

able subset of X is contained in a compact subspace

of X .
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With respect to Milovaněvić’s result we obtained

the following theorem. First, some definitions.

Definitions 2.3. Let X be a topological space.

(1) X is initially κ-compact if every set A ∈ [X ]≤κ

has a complete accumulation point.

(2) X is κ-bounded if every set A ∈ [X ]≤κ has a

compact closure in X ;

(3) X is κ-hyperbounded if for each family {Sξ :

ξ < κ} of compact sets of X , ClX(∪ξ<κSξ) is

a compact subspace.

Theorem 2.4. (J. Angoa, Y.F. Ortiz-Castillo and

Á. Tamariz-Mascarúa, 2011)

Let X be an space and let κ be an infinite car-

dinal. Then the following statements are equiva-

lent:

(1) X is κ-hyperbounded;

(2) K(X) is initially κ-compact;

(3) K(X) is κ-bounded; and

(4) K(X) is κ-hyperbounded.

For example, for every infinite cardinal κ, K([0, κ+))

is initially κ-compact. Moreover, K(Σ({0, 1}ω1,0))

is not countably compact.
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3. Pseudocompactness of hyperspaces

We obtained a characterization of pseudocompact-

ness of K(X) in terms of the following property in

X :

Definition 3.1. Let X be a space. We say that

X is pseudo-ω-bounded if for each countable family

U of non-empty open subsets of X , there exists a

compact set K ⊆ X such that, for each U ∈ U ,

K ∩ U 6= ∅.
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Theorem 3.2. (J. Angoa, Y.F. Ortiz-Castillo, Á.

Tamariz-Mascarúa, 2011)

Let X be a space. Then the following statements

are equivalent:

(1) X is pseudo-ω-bounded;

(2) K(X) is pseudocompact; and

(3) K(X) is pseudo-ω-bounded.

For example, for every p ∈ βω \ω, K(βω \ {p}) is

not pseudocompact, and K(Σ({0, 1}ω1,0)) is pseu-

docompact.
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When K(X) is C∗-embedded in CL(X), we ob-

tained:

Theorem 3.3. (J. Angoa, R. Hernández-Gutiérrez,

Y.F. Ortiz-Castillo and A. Tamariz-Mascarúa, 2011)

Let X be a space such that K(X) is C∗-embedded

in CL(X). Then the next statements are equiva-

lent:

(1) X is compact,

(2) X is σ-compact,

(3) K(X) is compact,

(4) K(X) is σ-compact,

(5) K(X) is Lindelöf, and

(6) K(X) is paracompact.
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4. Disconnectness of hyperspaces and

some related topics

Recall that a space X is

(1) zero-dimensional if each point in X has a lo-

cal base of neighborhoods constituted by clopen

subsets of X ;

(2) totally disconnected if for every pair of points

x, y ∈ X with x 6= y, there is a clopen set O

such that x ∈ O, y /∈ O; and

(3) hereditarily disconnected if the only non-empty

connected subspaces of X are those having only

one point.

Of course, every zero-dimensional space is totally

disconnected and the totally disconnected spaces are

herditarily disconnected.
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Theorem 4.1. (E.A. Michael, 1951) For a space

X we have that:

(1) X is connected if and only if H is connected

where F(X) ⊆ H ⊆ CL(X).

(2) X is discrete if and only if K(X) is discrete,

(3) X is zero-dimensional if and only if K(X) is

zero-dimensional,

(4) X is totally disconnected if and only if K(X)

is totally disconnected.
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Now, we present some results about classes of highly

disconnected spaces.

(1) If X is a space and p ∈ X , we call p a P -point

of X if p belongs to the interior of every Gδ set

that contains it.

(2) We say that X is a P -space if all its points are

P -points of X .

(3) A basically disconnected space is a space in

which every cozero set has open closure.

(4) A space is extremely disconnected if every open

set has open closure.
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Definition 4.2. (1) An F-space is a space in which

every cozero set is C∗-embedded.

(2) We may also consider F ′-spaces, that is, spaces

in which each pair of disjoint cozero sets have

disjoint closures.
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Proposition 4.3. (R.J. Hernández-Gutiérrez and

Á. Tamariz-Mascarúa, 2010)

Let X be a space and F2(X) ⊆ H ⊆ K(X).

Then H is extremely disconnected if and only if

X is discrete.

Theorem 4.4. (R.J. Hernández-Gutiérrez and

Á. Tamariz-Mascarúa, 2010)

Let X be a space and F2(X) ⊆ H ⊆ K(X).

Then the following are equivalent:

(a) X is a P -space,

(b) H is a P -space,

(c) H is basically disconnected,

(d) H is an F -space, and

(e) H is an F ′-space.

So, βω is basically disconnected but K(βω) is not

basically disconnected, and K(2ω{0, 1}ω1) is a P -

space.
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The most interesting question about disconnected-

ness of hyperspaces is:

When is CL(X) orK(X) hereditarily disconnected?

Problem 4.5. (A. Illanes y S. Nadler, 1999) Is

either CL(X) or K(X) hereditarily disconnected

when X is metrizable and hereditarily disconnected?
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E. Pol and R. Pol proved in 2000 that the answer

to this question is in the negative by giving some ex-

amples. Afterwards, we obtained the following result

which gives a method to locate connected sets in a

hyperspace.

Proposition 4.6. (R.J. Hernández-Gutiérrez and

Á. Tamariz-Mascarúa, 2010) Let X be a space.

Assume there is K ∈ K(X) such that X is the

only clopen subset of X containing K. Then C =

{K ∪ {x} : x ∈ X} is a connected subspace of

K(X).
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For example, the Knaster-Kuratowski fan without

its vertex, F, is hereditarily disconnected but K(F)

is not hereditarily disconnected. In fact there is a

function h from the Cantor set C to [0, 1
2
) such that

the graph of h is a compact subset K of F satisfying

the conditions in Proposition 4.5.
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The Main Theorem of this talk is the following:

Theorem 4.7. (R.J. Hernández-Gutiérrez and

Á. Tamariz-Mascarúa, 2010)

Assume that there is a closed subset F of X

such that

(a) F and X \ F are totally disconnected, and

(b) the quotient space X/F is hereditarily dis-

connected.

Then, K(X) is hereditarily disconnected.

Moreover, we obtained a partial convers:

Theorem 4.8. (R.J. Hernández-Gutiérrez and

Á. Tamariz-Mascarúa, 2010)

Assume that X = Y ∪T where Y and T are to-

tally disconnected and T is compact. Then, K(X)

is hereditarily disconnected if and only if X/T is

hereditarily disconnected.
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As an application of these theorems we obtained

the following examples.

Let φ : {0, 1}ω → [0,∞] be the function defined as

φ(t) = Σn<ω
tm

m+1
where t = (tn)n<ω.

Take X = {x ∈ {0, 1}ω : φ(x) < ∞},

X0 = {(x, φ(x)) : x ∈ X}, and

let Y = X0 ∪ (X × {∞}).

It happens that K(Y ) is hereditarily disconnected.
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On the other hand, if we take

Z = X0 ∪ (2ω × {∞},
it can be proved that K(Y ) is not hereditarily dis-

connected.
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5. Problem

Problem 5.1. What we can say about beeing K(X)

(or CL(X)) hereditarily disconnected when we have

a richer structure in X; for example, when X is

a topological group?


