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1. Betweenness via Road Systems. We

take the intuitive view that point c lies be-

tween points a and b exactly when every

“road” allowing travel from a to b (and vice

versa) must go through c.

This “roadblock” vision of betweenness has

led to the following simple abstract defini-

tion:

• A road system is a pair 〈X,R〉, where X

is a nonempty set and R is a family of

subsets of X, called roads, satisfying:

◦ Every singleton subset of X is a road.

◦ Every doubleton subset of X is con-

tained in at least one road.

◦ (Additivity Condition): The union of

two intersecting roads is a road.
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If 〈X,R〉 is a road system and a, b ∈ X, the

set of points c between a and b is denoted

[a, b] and is the set
⋂
{R ∈ R : a, b ∈ R}.

The interval membership relation c ∈ [a, b]

defines a ternary relation on the underlying

set X.

A natural question is whether one may

characterize—using first-order terms involv-

ing an abstract ternary relation symbol—

exactly when a ternary relation B ⊆ X3

is the interval membership relation arising

from a road system on X.

This question has an affirmative answer.
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1.1 Theorem (Road Representation): Let

B be a ternary relation on a nonempty set

X. Then there is a road system R on X

with interval membership relation B iff B

satisfies the following five first-order condi-

tions:

R1 (Symmetry) B(a, c, b) → B(b, c, a).

R2 (Reflexivity) B(a, b, b).

R3 (Minimality) B(a, c, a) → c = a.

R4 (Convexity) (B(a, c, b)∧B(a, d, b)∧B(c, e, d)) →

B(a, e, b).

R5 (Disjunctivity) B(a, x, b) → (B(a, x, c) ∨

B(c, x, b)).
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2. Subcontinuum Road Systems. There

are many natural situations, especially in

the theory of trees and in topology, where

road systems come up; the one I want to

discuss today concerns roads that consist

of the subcontinua of a continuum (= con-

nected compact Hausdorff space).

In this setting c ∈ [a, b] means that there is

no subcontinuum of X \ {c} that also con-

tains {a, b}. (In particular, a point that lies

between two other points in a continuum is

a weak cut point of the continuum. More-

over, if X is aposyndetic–i.e., two points

may be separated by a subcontinuum that

contains one of them in its interior and

misses the other–then c is actually a cut

point.)
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Intervals in continua are generally closed;

when they’re also subcontinua, we call the

continuum interval connected.

For example, arcs are interval connected,

as are dendrites in general. The sin(1
x)-

continuum is another example. At the op-

posite extreme, in a simple closed curve

any interval [a, b] consists of the bracketing

points alone. Such intervals, when a 6= b,

are called gaps.

Recall that a continuum is hereditarily uni-

coherent if the intersection of any two of

its overlapping subcontinua is a subcontin-

uum.

2.1 Proposition: A continuum is interval

connected iff it is hereditarily unicoherent.
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3. A Characterization Problem. The is-

sue we wish to focus on today concerns the

question of characterizing—in first-order be-

tweenness terms—the property of being in-

terval connected.

This question is not yet answered, but here

are some plausible characterization sentences,

listed in order of nondecreasing logical strength.

(Gap-free Property):

∀a∀b[a 6= b → ∃c(c ∈ [a, b] ∧ c 6= a ∧ c 6= b)]

(Gap-filling Property):

∀a∀b[a 6= b → ∃c(c ∈ [a, b]∧ c 6= a∧ b /∈ [a, c])]

(Composite Property):

∀a∀b[a 6= b → ∃c(c ∈ [a, b] ∧ a /∈ [c, b] ∧ b /∈

[a, c])]
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The gap-free property clearly follows from

interval connectedness; and, using a sim-

ple “boundary bumping” argument, we can

show that the gap-filling property does as

well. Not so the composite property.

3.1 Theorem: A continuum satisfies the

composite property iff each of its nonde-

generate intervals is a decomposable sub-

continuum.

And when we strengthen gap-freeness in a

completely different way, we get an even

stronger condition on intervals. To explain

this, first define a continuum (or any road

system) to be antisymmetric if [a, b] = [a, c]
implies b = c. This is clearly a first-order

property, it’s present in aposyndetic con-

tinua, and we have:

3.2 Theorem: A continuum is antisymmet-

ric and satisfies the gap-free property iff

each of its nondegenerate intervals is a gen-

eralized arc.
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4. The Crooked Torus. A continuum

is hereditarily indecomposable if the inter-

section of any two of its overlapping sub-

continua is one or the other of them. The

celebrated pseudo-arc is an example of this

phenomenon.

The composite property is too strong to

characterize interval connectedness in gen-

eral because hereditarily indecomposable con-

tinua are hereditarily unicoherent; hence in-

tervals are indecomposable subcontinua.

But the ever so slightly weaker gap-filling

property is too weak.

Define a continuum X to be a crooked

torus if it may be decomposed as a union

K ∪ M of two hereditarily indecomposable

subcontinua such that K ∩ M has exactly

two components, each nondegenerate.
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4.1 Theorem: Every crooked torus satisfies

the gap-filling property, while failing to be

interval connected.

Some remarks: Let X = K ∪ M , where

K, M are subcontinua such that K ∩M is a

union A∪B of disjoint nondegenerate sub-

continua.

(1) If a ∈ A and b ∈ B, then [a, b] is clearly

not connected.

(2) If H is a subcontinuum of X that in-

tersects both K and M , and if C is a

component of H in K, then C inter-

sects M . (“Boundary bumping,” just

uses fact that X = K ∪ M .)
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Now assume that both K and M are hered-

itarily indecomposable.

(3) If H is a subcontinuum of X that inter-

sects both A and B, then A ∪ B ⊆ H.

(4) Hence, if a ∈ A and b ∈ B, then [a, b] ⊇

A ∪ B. (In fact, they’re equal.)

(5) In general, we show X satisfies gap fill-

ing by proving that, no matter where

a, b lie in X, [a, b] is either connected,

or contains two nondegenerate disjoint

subcontinua, one containing a, the other

containing b.

(6) A crooked torus also satisfies another

consequence of being interval connected,

namely the centroid property : for any

a, b, c ∈ X, [a, b] ∩ [a, c] ∩ [b, c] 6= ∅.
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5. Proof Outline for 3.1.

(1) If [a, b] decomposes into K ∪ M , both

proper subcontinua, then any c ∈ K∩M wit-

nesses that the composite property holds.

(2) If the composite property holds and in-

tervals are connected, then the nondegen-

erate ones are easily seen to be decompos-

able.

(3) If A and B are disjoint nonempty closed

subsets of X, a Zorn’s lemma argument al-

lows you to find a ∈ A and b ∈ B such that

for any a′ ∈ A, b′ ∈ B, if [a′, b′] ⊆ [a, b],

then [a′, b′] = [a, b]. (a and b are minimally

close).
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(4) In the absence of interval connected-

ness, we have subcontinua K, M with K ∩

M = A ∪ B, where A and B are closed,

nonempty, and disjoint. Let a ∈ A and

b ∈ B be minimally close (relative to A,

B). If c ∈ [a, b], then either c ∈ A or c ∈ B.

In the first case [c, b] = [a, b]; in the second

[a, c] = [a, b]. Thus the composite property

fails for X.
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6. Summary.

Call a property P of continua B-definable if

there is a first-order sentence φ in an alpha-

bet with equality and one ternary predicate

symbol, such that a continuum is in class

P iff the corresponding interval member-

ship relation satisfies φ.

Examples of properties that are B-definable

include:

• Having every nondegenerate interval a

decomposable continuum.

• Having every nondegenerate interval a

generalized arc.

• Being hereditarily indecomposable.

• Being irreducible.

14



Examples of properties that are not B-definable

include:

• Being of dimension n.

• Being chainable.

• Being homogeneous.

• Being self-similar.
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And in addition to our focus question of

whether being interval connected (= hered-

itarily unicoherent) is B-definable, here are

some properties for which B-definability is

unknown:

• Being indecomposable. [B-definable when

we restrict to metric continua.]

• Having every interval an indecompos-

able continuum.

16



GO RAIBH MILE MAITH AGAIBH!
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