On the necessity of large cardinals for some constraints on the cardinality of Lindelöf indestructible spaces with small pseudocharacter

> Rodrigo Roque Dias coauthor: Franklin D. Tall

Instituto de Matemática e Estatística Universidade de São Paulo roque@ime.usp.br

15th Galway Topology Colloquium, Oxford, 2012

Rodrigo Roque Dias (IME-USP)

Indestructible compact spaces

Definition (Tall 1995)

A Lindelöf space is *indestructible* if it remains Lindelöf after forcing with any countably closed partial order.

Proposition

A compact space is indestructible if and only if it remains compact after forcing with any countably closed partial order.

Proof.

Since X is Lindelöf in the extension, every open cover \mathcal{U} of X has a countable subcover $\mathcal{U}_0 \subseteq \mathcal{U}$. But the forcing is countably closed, so \mathcal{U}_0 is in the ground model; therefore, compactness of X in the ground model implies that \mathcal{U}_0 (and hence \mathcal{U}) has a finite subcover.

Rodrigo Roque Dias (IME-USP)

Indestructible compact spaces

Definition (Tall 1995)

A Lindelöf space is *indestructible* if it remains Lindelöf after forcing with any countably closed partial order.

Proposition

A compact space is indestructible if and only if it remains compact after forcing with any countably closed partial order.

Proof.

Since X is Lindelöf in the extension, every open cover \mathcal{U} of X has a countable subcover $\mathcal{U}_0 \subseteq \mathcal{U}$. But the forcing is countably closed, so \mathcal{U}_0 is in the ground model; therefore, compactness of X in the ground model implies that \mathcal{U}_0 (and hence \mathcal{U}) has a finite subcover.

Rodrigo Roque Dias (IME-USP)

Indestructible compact spaces

Definition (Tall 1995)

A Lindelöf space is *indestructible* if it remains Lindelöf after forcing with any countably closed partial order.

Proposition

A compact space is indestructible if and only if it remains compact after forcing with any countably closed partial order.

Proof.

Since X is Lindelöf in the extension, every open cover \mathcal{U} of X has a countable subcover $\mathcal{U}_0 \subseteq \mathcal{U}$. But the forcing is countably closed, so \mathcal{U}_0 is in the ground model; therefore, compactness of X in the ground model implies that \mathcal{U}_0 (and hence \mathcal{U}) has a finite subcover.

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Rodrigo Roque Dias (IME-USP)

Let T be a rooted Hausdorff tree such that all the levels and branches of T have size $\leq \aleph_1$.

We may assume that T is an initial part of $({}^{<\omega_2}(\omega_1 + 1), \subseteq)$ such that, for each $t \in T$, the set $\{\xi \le \omega_1 : t^{\frown}(\xi) \in T\}$ is a successor ordinal. Let \prec be the ordering on the set

 $L_T = \{\bigcup B : B \text{ is a branch of } T\}$

naturally induced by the lexicographical ordering of the branches of T, and regard L_T as a linearly ordered topological space.

Lemma (Todorčević 1984) L $_{\pm}$ is compact and w(L $_{\pm}$) < 17

 $Lemma \\
\psi(L_T) \leq \aleph_1$

Rodrigo Roque Dias (IME-USP)

Let T be a rooted Hausdorff tree such that all the levels and branches of T have size $\leq \aleph_1$.

We may assume that T is an initial part of $({}^{<\omega_2}(\omega_1 + 1), \subseteq)$ such that, for each $t \in T$, the set $\{\xi \leq \omega_1 : t^{-}(\xi) \in T\}$ is a successor ordinal.

Let \prec be the ordering on the set

 $L_T = \{\bigcup B : B \text{ is a branch of } T\}$

naturally induced by the lexicographical ordering of the branches of T, and regard L_T as a linearly ordered topological space.

Lemma (Todorčević 1984)

 L_T is compact and $w(L_T) \leq |T|$.

 $Lemma \\ \psi(L_T) \leq \aleph_1.$

Rodrigo Roque Dias (IME-USP)

Let T be a rooted Hausdorff tree such that all the levels and branches of T have size $\leq \aleph_1$.

We may assume that T is an initial part of $({}^{<\omega_2}(\omega_1+1), \subseteq)$ such that, for each $t \in T$, the set $\{\xi \leq \omega_1 : t^{\frown}(\xi) \in T\}$ is a successor ordinal.

Let \prec be the ordering on the set

 $L_T = \{\bigcup B : B \text{ is a branch of } T\}$

naturally induced by the lexicographical ordering of the branches of T, and regard L_T as a linearly ordered topological space.

Lemma (Todorčević 1984)

 L_T is compact and $w(L_T) \leq |T|$.

 $Lemma \\ \psi(L_T) \leq \aleph_1.$

Rodrigo Roque Dias (IME–USP)

Let T be a rooted Hausdorff tree such that all the levels and branches of T have size $\leq \aleph_1$.

We may assume that T is an initial part of $({}^{<\omega_2}(\omega_1 + 1), \subseteq)$ such that, for each $t \in T$, the set $\{\xi \le \omega_1 : t^{\frown}(\xi) \in T\}$ is a successor ordinal.

Let \prec be the ordering on the set

 $L_T = \{\bigcup B : B \text{ is a branch of } T\}$

naturally induced by the lexicographical ordering of the branches of T, and regard L_T as a linearly ordered topological space.

Lemma (Todorčević 1984)

 L_T is compact and $w(L_T) \leq |T|$.

Lemma $\psi(L_T) \leq leph_1$

Rodrigo Roque Dias (IME–USP)

Let T be a rooted Hausdorff tree such that all the levels and branches of T have size $\leq \aleph_1$.

We may assume that T is an initial part of $({}^{<\omega_2}(\omega_1+1), \subseteq)$ such that, for each $t \in T$, the set $\{\xi \leq \omega_1 : t^{\frown}(\xi) \in T\}$ is a successor ordinal.

Let \prec be the ordering on the set

 $L_T = \{\bigcup B : B \text{ is a branch of } T\}$

naturally induced by the lexicographical ordering of the branches of T, and regard L_T as a linearly ordered topological space.

Lemma (Todorčević 1984)

 L_T is compact and $w(L_T) \leq |T|$.

Lemma

 $\psi(L_T)\leq\aleph_1.$

Rodrigo Roque Dias (IME-USP)

Indestructible compact lines

Proposition

The following conditions are equivalent:

- (a) L_T is destructible;
- (b) there is a countably closed forcing that adds a new Dedekind cut in (L_T, \prec) ;
- (c) there is a countably closed forcing that adds a new branch of uncountable cofinality in T;
- (d) T contains a copy of the tree ($^{<\omega_1}2,\subseteq$).

Rodrigo Roque Dias (IME–USP)

Indestructible compact lines

Proposition

The following conditions are equivalent:

(a) L_T is destructible;

- (b) there is a countably closed forcing that adds a new Dedekind cut in (L_T, ≺);
- (c) there is a countably closed forcing that adds a new branch of uncountable cofinality in T;
- (d) T contains a copy of the tree ($^{<\omega_1}2,\subseteq$).

Rodrigo Roque Dias (IME-USP)

Theorem (Solovay)

If ω_2 is not inaccessible in ${\bf L},$ then there is a Kurepa tree.

Theorem

If T is a Kurepa tree, then L_T is a compact Hausdorff indestructible space of weight $\leq \aleph_1$ and size $\geq \aleph_2$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Corollary

The existence of an inaccessible cardinal and the statement "every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$ " are equiconsistent.

Rodrigo Roque Dias (IME–USP)

Theorem (Solovay)

If ω_2 is not inaccessible in L, then there is a Kurepa tree.

Theorem

If T is a Kurepa tree, then L_T is a compact Hausdorff indestructible space of weight $\leq \aleph_1$ and size $\geq \aleph_2$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Corollary

The existence of an inaccessible cardinal and the statement "every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$ " are equiconsistent.

Rodrigo Roque Dias (IME–USP)

Theorem (Solovay)

If ω_2 is not inaccessible in L, then there is a Kurepa tree.

Theorem

If T is a Kurepa tree, then L_T is a compact Hausdorff indestructible space of weight $\leq \aleph_1$ and size $\geq \aleph_2$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Corollary

The existence of an inaccessible cardinal and the statement "every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$ " are equiconsistent.

Rodrigo Roque Dias (IME–USP)

Theorem (Solovay)

If ω_2 is not inaccessible in L, then there is a Kurepa tree.

Theorem

If T is a Kurepa tree, then L_T is a compact Hausdorff indestructible space of weight $\leq \aleph_1$ and size $\geq \aleph_2$.

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that every Lindelöf T_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$.

Corollary

The existence of an inaccessible cardinal and the statement "every Lindelöf \mathcal{T}_3 indestructible space of weight $\leq \aleph_1$ has size $\leq \aleph_1$ " are equiconsistent.

Rodrigo Roque Dias (IME–USP)

Definition

The \aleph_1 -Borel Conjecture is the statement "a Lindelöf space is indestructible if and only if all of its continuous images in $[0,1]^{\omega_1}$ have cardinality $\leq \aleph_1$ ".

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Corollary

The \aleph_1 -Borel Conjecture and the existence of an inaccessible cardinal are equiconsistent.

Proof.

In face of the previous results, this follows from the fact that Tychonoff spaces of weight $\leq \aleph_1$ are embeddable in $[0,1]^{\omega_1}$.

Rodrigo Roque Dias (IME-USP)

Definition

The \aleph_1 -Borel Conjecture is the statement "a Lindelöf space is indestructible if and only if all of its continuous images in $[0,1]^{\omega_1}$ have cardinality $\leq \aleph_1$ ".

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Corollary

The \aleph_1 -Borel Conjecture and the existence of an inaccessible cardinal are equiconsistent.

Proof.

In face of the previous results, this follows from the fact that Tychonoff spaces of weight $\leq \aleph_1$ are embeddable in $[0,1]^{\omega_1}$.

Rodrigo Roque Dias (IME-USP)

Definition

The \aleph_1 -Borel Conjecture is the statement "a Lindelöf space is indestructible if and only if all of its continuous images in $[0,1]^{\omega_1}$ have cardinality $\leq \aleph_1$ ".

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Corollary

The \aleph_1 -Borel Conjecture and the existence of an inaccessible cardinal are equiconsistent.

Proof.

In face of the previous results, this follows from the fact that Tychonoff spaces of weight $\leq \aleph_1$ are embeddable in $[0, 1]^{\omega_1}$.

Rodrigo Roque Dias (IME-USP)

Definition

The \aleph_1 -Borel Conjecture is the statement "a Lindelöf space is indestructible if and only if all of its continuous images in $[0,1]^{\omega_1}$ have cardinality $\leq \aleph_1$ ".

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is an inaccessible cardinal, then it is consistent with ZFC that the \aleph_1 -Borel Conjecture holds.

Corollary

The \aleph_1 -Borel Conjecture and the existence of an inaccessible cardinal are equiconsistent.

Proof.

In face of the previous results, this follows from the fact that Tychonoff spaces of weight $\leq \aleph_1$ are embeddable in $[0,1]^{\omega_1}$.

Rodrigo Roque Dias (IME–USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf \mathcal{T}_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Corollary

The existence of a weakly compact cardinal and the statement "there is no Lindelöf space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 " are equiconsistent.

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf \mathcal{T}_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Corollary

The existence of a weakly compact cardinal and the statement "there is no Lindelöf space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 " are equiconsistent.

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf \mathcal{T}_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Corollary

The existence of a weakly compact cardinal and the statement "there is no Lindelöf space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 " are equiconsistent.

Rodrigo Roque Dias (IME-USP)

Theorem (Tall-Usuba 2012)

If it is consistent with ZFC that there is a weakly compact cardinal, then it is consistent with ZFC that there is no Lindelöf T_1 space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf \mathcal{T}_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Corollary

The existence of a weakly compact cardinal and the statement "there is no Lindelöf space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 " are equiconsistent.

Rodrigo Roque Dias (IME-USP)

Theorem (Jensen 1972, König 2003)

If ω_2 is not weakly compact in **L**, then there is a sequence $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ of functions $f_{\alpha} : \alpha \to \alpha$ that is *coherent* — *i.e.* satisfies $f_{\alpha} =^* f_{\beta} \upharpoonright \alpha$ for every $\alpha, \beta \in \lim(\omega_2)$ with $\alpha < \beta$ — and such that $(\mathcal{T}(\mathcal{F}), \subseteq)$ is an ω_2 -Aronszajn tree, where

$$T(\mathcal{F}) = igcup_{\xi \in \omega_2} igcup_{lpha \in \mathsf{lim}(\omega_2) \setminus \xi} \{ f \in {}^{\xi}\xi : f = {}^{*}f_{lpha} \restriction \xi \}.$$

Rodrigo Roque Dias (IME-USP)

Lemma

If $\mathcal{F} = (f_{\alpha})_{\alpha \in \mathsf{lim}(\omega_2)}$ is coherent, then no branch of $(\mathcal{T}(\mathcal{F}), \subseteq)$ has cofinality ω_1 .

Proof.

Suppose, to the contrary, that $B \subseteq T(\mathcal{F})$ is a branch of cofinality ω_1 . Let $g = \bigcup B$ and $\gamma = \operatorname{dom}(g) \in \lim(\omega_2)$, and fix a sequence of limit ordinals $(\gamma_\eta)_{\eta \in \omega_1}$ with $\gamma_\eta \nearrow \gamma$. Since $g \upharpoonright \gamma_\eta \in T(\mathcal{F})$ for each $\eta \in \omega_1$ and \mathcal{F} is coherent, we have $g \upharpoonright \gamma_\eta =^* f_{\gamma_\eta} =^* f_\gamma \upharpoonright \gamma_\eta$. It follows that

$$\omega_1 = \bigcup_{k \in \omega} \{ \eta \in \omega_1 : |\{ \xi \in \gamma_\eta : g(\xi) \neq f_\gamma(\xi) \}| = k \},$$

and so there are $k_0 \in \omega$ and $\eta_0 \in \omega_1$ with $|\{\xi \in \gamma_\eta : g(\xi) \neq f_\gamma(\xi)\}| = k_0$ for every $\eta \in \omega_1 \setminus \eta_0$. But then $|\{\xi \in \gamma : g(\xi) \neq f_\gamma(\xi)\}| = k_0$, which implies $g \in T(\mathcal{F})$, thus contradicting the choice of B.

Rodrigo Roque Dias (IME-USP)

Lemma

If $\mathcal{F} = (f_{\alpha})_{\alpha \in \mathsf{lim}(\omega_2)}$ is coherent, then no branch of $(\mathcal{T}(\mathcal{F}), \subseteq)$ has cofinality ω_1 .

Proof.

Suppose, to the contrary, that $B \subseteq T(\mathcal{F})$ is a branch of cofinality ω_1 . Let $g = \bigcup B$ and $\gamma = \operatorname{dom}(g) \in \lim(\omega_2)$, and fix a sequence of limit ordinals $(\gamma_\eta)_{\eta \in \omega_1}$ with $\gamma_\eta \nearrow \gamma$. Since $g \upharpoonright \gamma_\eta \in T(\mathcal{F})$ for each $\eta \in \omega_1$ and \mathcal{F} is coherent, we have $g \upharpoonright \gamma_\eta =^* f_{\gamma_\eta} =^* f_\gamma \upharpoonright \gamma_\eta$. It follows that

$$\omega_1 = \bigcup_{k \in \omega} \{ \eta \in \omega_1 : |\{ \xi \in \gamma_\eta : g(\xi) \neq f_\gamma(\xi) \}| = k \},\$$

and so there are $k_0 \in \omega$ and $\eta_0 \in \omega_1$ with $|\{\xi \in \gamma_\eta : g(\xi) \neq f_\gamma(\xi)\}| = k_0$ for every $\eta \in \omega_1 \setminus \eta_0$. But then $|\{\xi \in \gamma : g(\xi) \neq f_\gamma(\xi)\}| = k_0$, which implies $g \in T(\mathcal{F})$, thus contradicting the choice of B.

Rodrigo Roque Dias (IME–USP)

Lemma

Assume CH. If $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ is coherent, then $(\mathcal{T}(\mathcal{F}), \subseteq)$ does not have a subtree isomorphic to $({}^{<\omega_1}2, \subseteq)$.

Proof.

Suppose there is $\{g_s : s \in {}^{<\omega_1}2\} \subseteq T(\mathcal{F})$ such that $g_s \subseteq g_t \leftrightarrow s \subseteq t$ for all $s, t \in {}^{<\omega_1}2$. By CH, we have that $\delta = \sup\{\operatorname{dom}(g_s) : s \in {}^{<\omega_1}2\} \in \omega_2$. For each $h \in {}^{\omega_1}2$, let $g_h = \bigcup\{g_{h \restriction \alpha} : \alpha \in \omega_1\}$, and then define $\tilde{g}_h = g_h \cup (f_\delta \upharpoonright (\delta \setminus \operatorname{dom}(g_h)))$; note that $g_h \in T(\mathcal{F})$ by the previous lemma, and thus $\tilde{g}_h \in T(\mathcal{F})$. But the δ -th level of $T(\mathcal{F})$ is the set $\{f \in {}^{\delta}\delta : f = {}^*f_{\delta}\}$, which has cardinality \aleph_1 ; this leads to a contradiction, since this set must contain $\{\tilde{g}_h : h \in {}^{\omega_1}2\}$ and $h \mapsto \tilde{g}_h$ is one-to-one.

Rodrigo Roque Dias (IME-USP)

Lemma

Assume CH. If $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ is coherent, then $(\mathcal{T}(\mathcal{F}), \subseteq)$ does not have a subtree isomorphic to $({}^{<\omega_1}2, \subseteq)$.

Proof.

Suppose there is $\{g_s : s \in {}^{<\omega_1}2\} \subseteq T(\mathcal{F})$ such that $g_s \subseteq g_t \leftrightarrow s \subseteq t$ for all $s, t \in {}^{<\omega_1}2$. By CH, we have that $\delta = \sup\{\operatorname{dom}(g_s) : s \in {}^{<\omega_1}2\} \in \omega_2$. For each $h \in {}^{\omega_1}2$, let $g_h = \bigcup\{g_{h \upharpoonright \alpha} : \alpha \in \omega_1\}$, and then define $\tilde{g}_h = g_h \cup (f_\delta \upharpoonright (\delta \setminus \operatorname{dom}(g_h)))$; note that $g_h \in T(\mathcal{F})$ by the previous lemma, and thus $\tilde{g}_h \in T(\mathcal{F})$. But the δ -th level of $T(\mathcal{F})$ is the set $\{f \in {}^{\delta}\delta : f = {}^*f_{\delta}\}$, which has cardinality \aleph_1 ; this leads to a contradiction, since this set must contain $\{\tilde{g}_h : h \in {}^{\omega_1}2\}$ and $h \mapsto \tilde{g}_h$ is one-to-one. \Box

Rodrigo Roque Dias (IME–USP)

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf T_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Proof.

If CH fails, then any subspace $X \subseteq \mathbb{R}$ with $|X| = \aleph_2$ will satisfy the required conditions, since every hereditarily Lindelöf space is indestructible. If CH holds, consider the space $L_{\mathcal{T}(\mathcal{F})}$ obtained from a coherent family $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ given by the Jensen-König Theorem. We have that $L_{\mathcal{T}(\mathcal{F})}$ is a compact T_2 indestructible space with $\psi(L_{\mathcal{T}(\mathcal{F})}) \leq \aleph_1$; it remains only to show that $|L_{\mathcal{T}(\mathcal{F})}| = \aleph_2$. On the one hand, the fact that $\mathcal{T}(\mathcal{F})$ is ω_2 -Aronszajn implies that $|L_{\mathcal{T}(\mathcal{F})}| \geq \aleph_2$; on the other hand, since $\mathcal{T}(\mathcal{F})$ does not have branches of uncountable cofinality, it also implies that every branch of $\mathcal{T}(\mathcal{F})$ has countable cofinality, and thus $L_{\mathcal{T}(\mathcal{F})} \subseteq \{\bigcup C : C \in [\mathcal{T}(\mathcal{F})]^{\leq \aleph_0}\}$; since $|\mathcal{T}(\mathcal{F})| = \aleph_2$, this yields $|L_{\mathcal{T}(\mathcal{F})}| \leq \aleph_2^{\aleph_0} = \aleph_1^{\aleph_0} \cdot \aleph_2 = \aleph_2$ by CH.

Rodrigo Roque Dias (IME-USP)

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf T_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Proof.

If CH fails, then any subspace $X \subseteq \mathbb{R}$ with $|X| = \aleph_2$ will satisfy the required conditions, since every hereditarily Lindelöf space is indestructible.

If CH holds, consider the space $L_{\mathcal{T}(\mathcal{F})}$ obtained from a coherent family $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ given by the Jensen-König Theorem. We have that $L_{\mathcal{T}(\mathcal{F})}$ is a compact T_2 indestructible space with $\psi(L_{\mathcal{T}(\mathcal{F})}) \leq \aleph_1$; it remains only to show that $|L_{\mathcal{T}(\mathcal{F})}| = \aleph_2$. On the one hand, the fact that $\mathcal{T}(\mathcal{F})$ is ω_2 -Aronszajn implies that $|L_{\mathcal{T}(\mathcal{F})}| \geq \aleph_2$; on the other hand, since $\mathcal{T}(\mathcal{F})$ does not have branches of uncountable cofinality, it also implies that every branch of $\mathcal{T}(\mathcal{F})$ has countable cofinality, and thus $L_{\mathcal{T}(\mathcal{F})} \subseteq \{\bigcup C : C \in [\mathcal{T}(\mathcal{F})]^{\leq \aleph_0}\}$; since $|\mathcal{T}(\mathcal{F})| = \aleph_2$, this yields $|L_{\mathcal{T}(\mathcal{F})}| \leq \aleph_2^{\aleph_0} = \aleph_1^{\aleph_0} \cdot \aleph_2 = \aleph_2$ by CH. \Box

Rodrigo Roque Dias (IME-USP)

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf T_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Proof.

If CH fails, then any subspace $X \subseteq \mathbb{R}$ with $|X| = \aleph_2$ will satisfy the required conditions, since every hereditarily Lindelöf space is indestructible. If CH holds, consider the space $L_{T(\mathcal{F})}$ obtained from a coherent family $\mathcal{F} = (f_{\alpha})_{\alpha \in \lim(\omega_2)}$ given by the Jensen-König Theorem. We have that $L_{\mathcal{T}(\mathcal{F})}$ is a compact T_2 indestructible space with $\psi(L_{T(F)}) \leq \aleph_1$; it remains only to show that $|L_{T(\mathcal{F})}| = \aleph_2$. On the one hand, the fact that $T(\mathcal{F})$ is

Rodrigo Roque Dias (IME-USP)

Theorem

If ω_2 is not weakly compact in **L**, then there is a Lindelöf T_3 indestructible space of pseudocharacter $\leq \aleph_1$ and size \aleph_2 .

Proof.

If CH fails, then any subspace $X \subseteq \mathbb{R}$ with $|X| = \aleph_2$ will satisfy the required conditions, since every hereditarily Lindelöf space is indestructible. If CH holds, consider the space $L_{T(\mathcal{F})}$ obtained from a coherent family $\mathcal{F} = (f_{\alpha})_{\alpha \in \mathsf{lim}(\omega_2)}$ given by the Jensen-König Theorem. We have that $L_{\mathcal{T}(\mathcal{F})}$ is a compact T_2 indestructible space with $\psi(L_{T(\mathcal{F})}) \leq \aleph_1$; it remains only to show that $|L_{T(\mathcal{F})}| = \aleph_2$. On the one hand, the fact that $T(\mathcal{F})$ is ω_2 -Aronszajn implies that $|L_{\mathcal{T}(\mathcal{F})}| \geq \aleph_2$; on the other hand, since $\mathcal{T}(\mathcal{F})$ does not have branches of uncountable cofinality, it also implies that every branch of $T(\mathcal{F})$ has countable cofinality, and thus $L_{T(\mathcal{F})} \subseteq \{\bigcup C : C \in [T(\mathcal{F})]^{\leq \aleph_0}\};\$ since $|T(\mathcal{F})| = \aleph_2$, this yields $|L_{T(\mathcal{F})}| \leq \aleph_2^{\aleph_0} = \aleph_1^{\aleph_0} \cdot \aleph_2 = \aleph_2$ by CH.

Rodrigo Roque Dias (IME-USP)

References

- R. B. Jensen, *The fine structure of the constructible hierarchy*, Annals of Mathematical Logic **4** (1972), 229–308.
- B. König, *Local coherence*, Annals of Pure and Applied Logic **124** (2003), 107–139.
- F. D. Tall, On the cardinality of Lindelöf spaces with points G_{δ} , Topology and its Applications **63** (1995), 21–38.
- F. D. Tall and T. Usuba, Lindelöf spaces with small pseudocharacter and an analog of Borel's Conjecture for subsets of [0, 1]^{ℵ1}, submitted.
- S. Todorčević, *Trees and linearly ordered sets*, Handbook of set-theoretic topology (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam, 1984, 235–293.

Rodrigo Roque Dias (IME-USP)