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Outline

1. General, as background to

2. Sublattices of 2P(X) wrt completeness and compactness

3. Gauging the complexity of Top(X ) within 2P(X).



Powersets as lattices

Given a set X , we can form its powerset P(X ) which naturally
identifies with 2X .

It is a complete and completely distributive Boolean lattice.

One step further: P(P(X )) identifies with 2P(X) and the same
remarks apply.

”Subobjects” are sublattices.



Powersets as topological spaces

The product space 2P(X) is compact, Hausdorff and totally
disconnected.

Note in particular that for any discrete space X , βX is embedded
in 2P(X).

Some (sub)basics: For each A ⊆ X , let

A+ := {F ∈ 2P(X) : A ∈ F} = π−1
A ({1})

and
A− := {F ∈ 2P(X) : A 6∈ F} = π−1

A ({0}).

Note that A+ = 2P(X) \ A− so that each subbasic open set is also
closed.



The interval topology on a poset

Given θ and φ in 2P(X), θ↑ = {t : θ 6 t} and φ↓ = {t : t 6 φ} are
closed subsets of 2P(X). More generally, these (closed) sets provide
a subbasis for the closed sets of the interval topology on 2P(X).

Thus 2P(X)’s product topology contains the interval topology.

Theorem (Frink, 1942)

If L is a lattice with the interval topology, then L is compact if and
only if L is complete.



Completion of sublattices

Let P be a sublattice of 2P(X) and denote by P̂ its lattice-theoretic
completion. Thus P̂ =

⋂
{L ⊆ 2P(X) : P ⊆ L, L a sublattice of

2P(X) and L = L̂}.

Lemma (Morris, 2004)

x ∈ P̂ if and only if x =
∧∨

S for all S ⊆ P so that x 6
∨

S .

Lemma
Let P be a sublattice of 2P(X), let S ⊆ P and let x =

∨
S. If

x 6∈ P, then x is a limit point of P.

Proof.
Let

⋂
A+
i ∩

⋂
B−
j be a basic open neighbourhood of x . Then for

each of the finitely many i , there is si ∈ S such that Ai ∈ si ;
furthermore Bj 6∈ si for each j and each i . Thus∨

i si ∈
⋂

A+
i ∩

⋂
B−
j ∩ P and clearly

∨
i si 6= x .



The order topology on a lattice

Recall that the interval topology on a poset P is the one generated
by {x↑ : x ∈ P} ∪ {x↓ : x ∈ P} ∪ {P, ∅} as a subbase for the closed
sets; we denote it by P<.

The order topology PO on a lattice P is defined in terms of
Moore-Smith convergence. A filter F of subsets from P is said to
Moore-Smith-converge to a point l ∈ P whenever∧

F∈F

∨
F = l =

∨
F∈F

∧
F .

We then take F ⊆ P to be closed if and only if any convergent
filter that contains F converges to a point in F .

For a lattice P, P< ⊆ PO . [Frink, 1942]



Three topologies and a sublattice

Theorem (Frink, 1942)

If P is a lattice with the interval topology, then P is compact if
and only if P is complete.

For a lattice P, P< ⊆ PO .

Lemma
Let P be a sublattice of 2P(X). Then P< ⊆ P ⊆ PO and all three
topologies coincide when P is a complete sublattice of 2P(X).
Moreover, all three topologies on P are compact if and only if P is
complete.

Furthermore

Theorem
Given a sublattice P of 2P(X), P = P̂;
that is, the topological closure of P in 2P(X) coincides with its
lattice-theoretic completion.



Previously . . .

Denote by LatB(X ) the set of all sublattices of P(X ) that contain
∅ and X .

1. LatB(X ) is a (Hausdorff) compactification of Top(X ).

2. Top(X ) is co-dense in LatB(X ).

3. Top(X ) is not locally compact in 2P(X).



Is Top(X ) a Gδ set?

Lemma
Given Ai ⊆ X for all i ∈ ω,

⋂
i∈ω A+

i contains a bounded
sublattice of P(X ) that is not join complete;
that is,

(⋂
i∈ω A+

i

)
∩ (LatB(X )r Top(X )) 6= ∅.

Proof.
Let < {Ai : i ∈ ω} >L denote the sublattice of P(X ) generated by
{Ai : i ∈ ω}, adding in X or ∅ if not already generated, and
suppose that it is join complete (otherwise, we are done). Notice
that its countable cardinality demands that only finitely many of
the Ai s can be singletons. Since X is infinite, we may choose a
countably infinite collection of singletons S = {{p} : p ∈ X } from
P(X ) and generate a lattice K =< {Ai : i ∈ ω} ∪ S >L. Then K
cannot be join complete for there are uncountably many subsets of
∪S (i.e. joins of S) and only ℵ0 many elements in K .



Top(X ) is not a Gδ set.

Proof.
Suppose that Top(X ) =

⋂
k∈ω Ok , where

Ok =
⋃
α∈βk

(
⋂

iα6nα

A+
iα
) ∩ (

⋂
jα6mα

B−
jα
)

 .
Now, the discrete topology D on X must be in this intersection of
open sets. Thus for each k ∈ ω, it must belong to at least one
basic open set of the form (

⋂
iα6nα

A+
iα
) ∩ (

⋂
jα6mα

B−
jα
) and since

D contains all sets, then no subbasic open set can be of the form
B−. That is, D ∈

⋂
k∈ω A+

k after some renumeration of the As.
Applying the previous Lemma to

⋂
k∈ω A+

k , we can find a
sublattice of P(X ) that belongs to

⋂
k∈ω A+

k and that is not join
complete - a contradiction.



The Borel hierarchy

In fact, that Lemma proves something much stronger. Define
recursively:

G 0
δ := {all Gδ sets}

G 0
δσ := {all countable unions of Gδ sets}

Gβδ := {all countable intersections of Gβ−1
δσ sets} (β a succ. ordinal)

Gβδσ := {all countable unions of Gβδ sets} (β a succ. ordinal)

Gγδ :=
⋃
β∈γ

Gβδ ( γ limit ordinal)

Gγδσ :=
⋃
β∈γ

Gβδσ (γ limit ordinal)



Top(X ) 6∈ Gβδ for β ∈ ω1

In other words, it is not possible to generate (in the sense of Borel)
Top(X ) from open sets in 2P(X).

Corollary

Top(X ) is not Čech complete.

Proof.
We showed above that any countable intersection of open sets from
2P(X) containing the discrete topology on X contains an element
of LatB(X )rTop(X ). Hence, Top(X ) is not a Gδ set in LatB(X ).



Is Top(X ) an Fσ set?

Strategy: We will show that if Top(X ) =
⋃

k∈ω Ck where each Ck

is a closed set, at least one such closed set must contain a
(convergent) sequence of topologies whose limit is not a topology.
It then follows that Top(X ) cannot be such a union.
We prove the above for |X | = ℵ0 and note that the same is true
for any X with |X | > ℵ0.

Let k : [0, 1]→ P(N) be an injective order morphism so that
∀a ∈ [0, 1],

⋃
b<a k(b) = k(a) and k(1) 6= N.

That is, k([0, 1]) is a dense and uncountable linear order in P(N)
where a < b ⇒ k(a) ⊂ k(b).

Next, for any a define τa = P(k(a)) ∪ {N}.

Notice that ∀a ∈ [0, 1], τa ∈ Top(N) and
⋃

b<a τb 6∈ Top(N) (since
k(a) 6∈

⋃
b<a τb), and {τa}a∈[0,1] is an uncountable dense linear

order in Top(N).



Top(X ) is not an Fσ set

If Top(N) =
⋃

k∈ω Ck where each Ck is closed then there must
exist one set C from {Ck }k∈ω which contains an uncountable set
D ⊂ {τa}a∈[0,1].

We immediately get that D must contain a densely ordered subset
that in turn contains a strictly increasing sequence, call it S .

Now
⋃

S 6∈ Top(N) yet
⋃

S ∈ C , a contradiction.



The wishful....

We wish to consider a notion of evolution of topologies:

Is there a path p : [0, 1]→ Top(X ) such that, for example,

• (X , p(0)) ∼= R and (X , p(1)) ∼= ω1 (CH), or

• (X , p(0)) is Hausdorff and (X , p(1)) is compact, or

• if (X , σ) ∼= (X , τ), then p(0) = σ and p(1) = τ

• and so on . . . ?


