On topologies on X as points within $2^{\mathcal{P}(X)}$: lattice theory meets topology

Jorge Bruno, Aisling McCluskey

Galway Topology Colloquium 15: Oxford, 11 July 2012

On topologies on X as points within $2^{\mathcal{P}(X)}$: lattice theory meets topology

Jorge Bruno, Aisling McCluskey

Galway Topology Colloquium 15: Oxford, 11 July 2012

Outline

- 1. General, as background to
- 2. Sublattices of $2^{\mathcal{P}(X)}$ wrt completeness and compactness
- 3. Gauging the complexity of Top(X) within $2^{\mathcal{P}(X)}$.

Powersets as lattices

Given a set X, we can form its powerset $\mathcal{P}(X)$ which naturally identifies with 2^X .

It is a complete and completely distributive Boolean lattice.

One step further: $\mathcal{P}(\mathcal{P}(X))$ identifies with $2^{\mathcal{P}(X)}$ and the same remarks apply.

"Subobjects" are sublattices.

Powersets as topological spaces

The product space $2^{\mathcal{P}(X)}$ is compact, Hausdorff and totally disconnected.

Note in particular that for any discrete space X, βX is embedded in $2^{\mathcal{P}(X)}$.

Some (sub)basics: For each $A \subseteq X$, let

$$A^{+} := \{ \mathcal{F} \in 2^{\mathcal{P}(X)} : A \in \mathcal{F} \} = \pi_{A}^{-1}(\{1\})$$

and

$$A^{-} := \{ \mathcal{F} \in 2^{\mathcal{P}(X)} : A \notin \mathcal{F} \} = \pi_{A}^{-1}(\{0\}).$$

Note that $A^+ = 2^{\mathcal{P}(X)} \setminus A^-$ so that each subbasic open set is also closed.

The interval topology on a poset

Given θ and ϕ in $2^{\mathcal{P}(X)}$, $\theta^{\uparrow} = \{t : \theta \leq t\}$ and $\phi^{\downarrow} = \{t : t \leq \phi\}$ are closed subsets of $2^{\mathcal{P}(X)}$. More generally, these (closed) sets provide a subbasis for the closed sets of the *interval topology on* $2^{\mathcal{P}(X)}$.

Thus $2^{\mathcal{P}(X)}$'s product topology contains the interval topology.

Theorem (Frink, 1942)

If L is a lattice with the interval topology, then L is compact if and only if L is complete.

Completion of sublattices

Let P be a sublattice of $2^{\mathcal{P}(X)}$ and denote by \hat{P} its lattice-theoretic completion. Thus $\hat{P} = \bigcap \{L \subseteq 2^{\mathcal{P}(X)} : P \subseteq L, L \text{ a sublattice of } 2^{\mathcal{P}(X)} \text{ and } L = \hat{L} \}.$

Lemma (Morris, 2004)

 $x \in \hat{P}$ if and only if $x = \bigwedge \bigvee S$ for all $S \subseteq P$ so that $x \leq \bigvee S$.

Lemma

Let P be a sublattice of $2^{\mathcal{P}(X)}$, let $S \subseteq P$ and let $x = \bigvee S$. If $x \notin P$, then x is a limit point of P.

Proof.

Let $\bigcap A_i^+ \cap \bigcap B_j^-$ be a basic open neighbourhood of x. Then for each of the finitely many i, there is $s_i \in S$ such that $A_i \in s_i$; furthermore $B_j \notin s_i$ for each j and each i. Thus $\bigvee_i s_i \in \bigcap A_i^+ \cap \bigcap B_j^- \cap P$ and clearly $\bigvee_i s_i \neq x$.

The order topology on a lattice

Recall that the *interval topology* on a poset P is the one generated by $\{x^{\uparrow} : x \in P\} \cup \{x^{\downarrow} : x \in P\} \cup \{P, \emptyset\}$ as a subbase for the closed sets; we denote it by $P_{<}$.

The order topology P_O on a lattice P is defined in terms of Moore-Smith convergence. A filter \mathcal{F} of subsets from P is said to Moore-Smith-converge to a point $I \in P$ whenever

$$\bigwedge_{F\in\mathcal{F}}\bigvee F=I=\bigvee_{F\in\mathcal{F}}\bigwedge F.$$

We then take $F \subseteq P$ to be *closed* if and only if any convergent filter that contains F converges to a point in F.

For a lattice P, $P_{<} \subseteq P_{O}$. [Frink, 1942]

Three topologies and a sublattice

Theorem (Frink, 1942)

If P is a lattice with the interval topology, then P is compact if and only if P is complete.

For a lattice P, $P_{<} \subseteq P_{O}$.

Lemma

Let P be a sublattice of $2^{\mathcal{P}(X)}$. Then $P_{\leq} \subseteq P \subseteq P_{O}$ and all three topologies coincide when P is a complete sublattice of $2^{\mathcal{P}(X)}$. Moreover, all three topologies on P are compact if and only if P is complete.

Furthermore

Theorem

Given a sublattice P of $2^{\mathcal{P}(X)}$, $\overline{P} = \hat{P}$; that is, the topological closure of P in $2^{\mathcal{P}(X)}$ coincides with its lattice-theoretic completion.

Previously ...

Denote by LatB(X) the set of all sublattices of $\mathcal{P}(X)$ that contain \emptyset and X.

- 1. LatB(X) is a (Hausdorff) compactification of Top(X).
- 2. Top(X) is co-dense in LatB(X).
- 3. Top(X) is not locally compact in $2^{\mathcal{P}(X)}$.

Is Top(X) a G_{δ} set?

Lemma

Given $A_i \subseteq X$ for all $i \in \omega$, $\bigcap_{i \in \omega} A_i^+$ contains a bounded sublattice of $\mathcal{P}(X)$ that is not join complete; that is, $\left(\bigcap_{i \in \omega} A_i^+\right) \cap (LatB(X) \smallsetminus Top(X)) \neq \emptyset$.

Proof.

Let $\langle \{A_i : i \in \omega\} \rangle_L$ denote the sublattice of $\mathcal{P}(X)$ generated by $\{A_i : i \in \omega\}$, adding in X or \emptyset if not already generated, and suppose that it is join complete (otherwise, we are done). Notice that its countable cardinality demands that only finitely many of the A_i s can be singletons. Since X is infinite, we may choose a countably infinite collection of singletons $S = \{\{p\} : p \in X\}$ from $\mathcal{P}(X)$ and generate a lattice $K = \langle \{A_i : i \in \omega\} \cup S \rangle_L$. Then K cannot be join complete for there are uncountably many subsets of $\cup S$ (i.e. joins of S) and only \aleph_0 many elements in K.

Top(X) is not a G_{δ} set.

Proof.

Suppose that $Top(X) = \bigcap_{k \in \omega} \mathfrak{O}_k$, where

$$\mathfrak{O}_{k} = \bigcup_{\alpha \in \beta_{k}} \left(\left(\bigcap_{i_{\alpha} \leqslant n_{\alpha}} A_{i_{\alpha}}^{+} \right) \cap \left(\bigcap_{j_{\alpha} \leqslant m_{\alpha}} B_{j_{\alpha}}^{-} \right) \right)$$

Now, the discrete topology \mathcal{D} on X must be in this intersection of open sets. Thus for each $k \in \omega$, it must belong to at least one basic open set of the form $(\bigcap_{i_{\alpha} \leq n_{\alpha}} A_{i_{\alpha}}^{+}) \cap (\bigcap_{j_{\alpha} \leq m_{\alpha}} B_{j_{\alpha}}^{-})$ and since \mathcal{D} contains all sets, then no subbasic open set can be of the form B^{-} . That is, $\mathcal{D} \in \bigcap_{k \in \omega} A_{k}^{+}$ after some renumeration of the As. Applying the previous Lemma to $\bigcap_{k \in \omega} A_{k}^{+}$, we can find a sublattice of $\mathcal{P}(X)$ that belongs to $\bigcap_{k \in \omega} A_{k}^{+}$ and that is not join complete - a contradiction.

The Borel hierarchy

In fact, that Lemma proves something much stronger. Define recursively:

$$\begin{split} G^0_{\delta\sigma} &:= \{ \text{all } G_{\delta} \text{ sets} \} \\ G^0_{\delta\sigma} &:= \{ \text{all countable unions of } G_{\delta} \text{ sets} \} \\ G^\beta_{\delta\sigma} &:= \{ \text{all countable intersections of } G^{\beta-1}_{\delta\sigma} \text{ sets} \} & (\beta \text{ a succ. ordinal}) \\ G^\beta_{\delta\sigma} &:= \{ \text{all countable unions of } G^\beta_{\delta} \text{ sets} \} & (\beta \text{ a succ. ordinal}) \\ G^\gamma_{\delta} &:= \bigcup_{\beta \in \gamma} G^\beta_{\delta} & (\gamma \text{ limit ordinal}) \\ G^\gamma_{\delta\sigma} &:= \bigcup_{\beta \in \gamma} G^\beta_{\delta\sigma} & (\gamma \text{ limit ordinal}) \end{split}$$

$Top(X) ot\in G_{\delta}^{\beta}$ for $\beta \in \omega_1$

In other words, it is not possible to generate (in the sense of Borel) Top(X) from open sets in $2^{\mathcal{P}(X)}$.

Corollary Top(X) is not Čech complete.

Proof.

We showed above that any countable intersection of open sets from $2^{\mathcal{P}(X)}$ containing the discrete topology on X contains an element of $LatB(X) \smallsetminus Top(X)$. Hence, Top(X) is not a G_{δ} set in LatB(X).

Is Top(X) an F_{σ} set?

Strategy: We will show that if $Top(X) = \bigcup_{k \in \omega} C_k$ where each C_k is a closed set, at least one such closed set must contain a (convergent) sequence of topologies whose limit is not a topology. It then follows that Top(X) cannot be such a union. We prove the above for $|X| = \aleph_0$ and note that the same is true for any X with $|X| \ge \aleph_0$.

Let $k : [0,1] \to \mathcal{P}(\mathbb{N})$ be an injective order morphism so that $\forall a \in [0,1], \bigcup_{b < a} k(b) = k(a)$ and $k(1) \neq \mathbb{N}$. That is, k([0,1]) is a dense and uncountable linear order in $\mathcal{P}(\mathbb{N})$ where $a < b \Rightarrow k(a) \subset k(b)$.

Next, for any *a* define $\tau_a = \mathcal{P}(k(a)) \cup \{\mathbb{N}\}.$

Notice that $\forall a \in [0,1]$, $\tau_a \in Top(\mathbb{N})$ and $\bigcup_{b < a} \tau_b \notin Top(\mathbb{N})$ (since $k(a) \notin \bigcup_{b < a} \tau_b$), and $\{\tau_a\}_{a \in [0,1]}$ is an uncountable dense linear order in $Top(\mathbb{N})$.

Top(X) is not an F_{σ} set

If $Top(\mathbb{N}) = \bigcup_{k \in \omega} C_k$ where each C_k is closed then there must exist one set C from $\{C_k\}_{k \in \omega}$ which contains an uncountable set $D \subset \{\tau_a\}_{a \in [0,1]}$.

We immediately get that D must contain a densely ordered subset that in turn contains a strictly increasing sequence, call it S.

Now $\bigcup S \notin Top(\mathbb{N})$ yet $\bigcup S \in C$, a contradiction.

The wishful

We wish to consider a notion of evolution of topologies:

Is there a path $p:[0,1] \to \mathit{Top}(X)$ such that, for example,

- $(X, p(0)) \cong \mathbb{R}$ and $(X, p(1)) \cong \omega_1$ (CH), or
- (X, p(0)) is Hausdorff and (X, p(1)) is compact, or
- if $(X, \sigma) \cong (X, \tau)$, then $p(0) = \sigma$ and $p(1) = \tau$
- and so on ...?