Definition For topological spaces X, Y, and Z, a function $f : X \times Y \to Z$ is continuous with respect to x if $f|_{X \times \{y\}}$ is continuous for every $y \in Y$. Similarly, f is continuous with respect to y if $f|_{\{x\} \times Y}$ is continuous for every $x \in X$. The function f is separately continuous if f is continuous with respect to x and continuous with respect to y.

Definition A space X is Namioka if for every compact space Y and every metric space Z, every separately continuous function f: $X \times Y \to Z$ is continuous at each point of $D \times Y$ for some dense G_{δ} subset D of X

Proposition 1 (Saint-Raymond 1983) Every completely regular Namioka space is Baire and any metrizable or separable Baire space is Namioka. **Definition** A space X is *weakly Namioka* if for every second countable space Y and every metric space Z, every separately continuous function $f: X \times Y \to Z$ is continuous at each point of $D \times Y$ for some dense G_{δ} subset D of X

Lemma 2 Let Y be second countable, (M, d) be metric and f: $X \times Y \to M$ be such that f is continuous with respect to y and $f|_{X \times \{y\}}$ is continuous for every $y \in D$ for some D dense in Y. There is then a residual set A in X such that f is continuous on $A \times Y$.

Proposition 3 Baire spaces are weakly Namioka.

Proposition 4 (Maslyuchenko, Mykhaylyuk, Sobchuk 1992) Let A be a set of first category and of type F_{σ} in the perfectly normal space X and y_0 a non-isolated point in the completely regular second countable space Y. Then there exists a separately continuous function $f: X \times Y \to \mathbb{R}$ whose set of points of dicontinuity is $A \times \{y_0\}$.

Corollary 5 Perfectly normal weakly Namioka spaces are Baire.

Theorem 6 Completely regular, separable, weakly Namioka spaces are Baire.

Theorem 7 (Main Theorem) Let X be either a completely regular separable space or a perfectly normal space. Then X is Baire if and only if X is weakly Namioka. **Definition** A point $x \in X$ is a *P*-point if any G_{δ} set containing x is a neighborhood of x.

Definition A space X is a *P*-space if every $x \in X$ is a P-point.

Proposition 8 (Henriksen, Woods 1999) Let X, Y be completely regular spaces, $x_0 \in X$ be a *P*-point and $y_0 \in Y$ have a separable neighborhood. If $f : X \times Y \to \mathbb{R}$ is separately continuous, then f is continuous at (x_0, y_0) .

Theorem 9 Let $x_0 \in X$ be a *P*-point, $y_0 \in Y$ have a separable neighborhood, and *Z* be regular. If $f : X \times Y \to Z$ is continuous with respect to *x* and continuous with respect to *y* on a dense set *D* of *X*, then *f* is continuous at (x_0, y_0) .

Example (Gruenhage, Lutzer 2000) There exists a Lindelof, hereditarily paracompact, linearly ordered P-space that is not a Baire space.

Definition A space X is *ultradisconnected* if it is crowded (has no isolated points) and if every two disjoint crowded subsets of X have disjoint closures.

Lemma 10 First countable, ultradisconnected spaces are weakly Namioka.

Fact Countable ultradisconnected spaces are not Baire

Example (van Douwen 1993) There exists a countable, regular, ultradisconnected space.

Example (Talagrand 1979) The function

 $f: [0,1] \times C_p([0,1], [0,1]) \to [0,1]$ given by f(x,y) = y(x) is separately continuous and discontinuous at *every* point of $X \times Y$. It can be shown that $Y = C_p([0,1], [0,1])$, the function space with the topology of pointwise convergence, is hereditarily Lindelof and hereditarily separable.

Example (Piotrowski 1986) J.B. Brown shows there exists a separately continuous real-valued function defined on the Cartesian product of the closed interval [0, 1] and the topological sum of \mathfrak{c} many intervals – hence complete metric – such that the conclusion of Namioka theorem fails.

Piotrowski (2003) refines J.B Brown's techniques by constructing a separately continuous real-valued function f defined on the Cartesian product of two complete metric spaces X, Y such that the (in fact, dense G_{δ}) set C(f) of points of (joint) continuity fails to contain either $A \times Y$ or $X \times B$ for any dense G_{δ} -set $A \subset X$ or any dense G_{δ} set $B \subset Y$.