Jamie Vicary (joint with Dominic Verdon) Department of Computer Science, University of Oxford

Oxford Cryptography Day Mathematical Institute, University of Oxford 17 March 2016

Communication channels are a useful and common abstraction.

Communication channels are a useful and common abstraction.

We usually assume they transmit arbitrary quantum or classical information.

Communication channels are a useful and common abstraction.

We usually assume they transmit arbitrary quantum or classical information.

Such information is *speakable*.

Communication channels are a useful and common abstraction.

We usually assume they transmit arbitrary quantum or classical information.

Such information is *speakable*.

But there is a hidden assumption: parties share a reference frame.

Communication channels are a useful and common abstraction.

We usually assume they transmit arbitrary quantum or classical information.

Such information is *speakable*.

But there is a hidden assumption: parties share a reference frame.

More generally, you cannot transmit *resources*, like charge.

Unspeakable information can't be transmitted through a channel.

Unspeakable information can't be transmitted through a channel.

Information can *become* unspeakable when there is no shared reference frame.

Unspeakable information can't be transmitted through a channel.

Information can *become* unspeakable when there is no shared reference frame.

Unspeakable information can be transmitted by *material objects*.

Unspeakable information can't be transmitted through a channel.

Information can *become* unspeakable when there is no shared reference frame.

Unspeakable information can be transmitted by *material objects*.

To an aviator lost in fog, without instruments—how do you transmit the *direction* of home?

Unspeakable information can't be transmitted through a channel.

Information can *become* unspeakable when there is no shared reference frame.

Unspeakable information can be transmitted by *material objects*.

To an aviator lost in fog, without instruments—how do you transmit the *direction* of home?

Given a classical channel to an alien species, how do you *define* 'left' and 'right'?

Qubit teleportation involves the following steps:

• Alice has a qubit state $|\psi\rangle$ to be transmitted.

- Alice has a qubit state $|\psi\rangle$ to be transmitted.
- Alice and Bob share a Bell state.

- Alice has a qubit state $|\psi\rangle$ to be transmitted.
- Alice and Bob share a Bell state.
- Alice performs a bipartite measurement, receiving result $i \in \{00, 01, 10, 11\}$, which is sent to Bob by a *classical channel*.

- Alice has a qubit state $|\psi\rangle$ to be transmitted.
- Alice and Bob share a Bell state.
- Alice performs a bipartite measurement, receiving result $i \in \{00, 01, 10, 11\}$, which is sent to Bob by a *classical channel*.
- Bob then performs a unitary operator U_i to his system.

- Alice has a qubit state $|\psi\rangle$ to be transmitted.
- Alice and Bob share a Bell state.
- Alice performs a bipartite measurement, receiving result $i \in \{00, 01, 10, 11\}$, which is sent to Bob by a *classical channel*.
- Bob then performs a unitary operator U_i to his system.
- Success means that Bob's system is now in state $|\psi\rangle$.

Can $|\phi\rangle$ still be teleported?

Can $|\phi\rangle$ still be teleported?

If Bob is rotated by 180°, his system exhibits a representation of \mathbb{Z}_2 , defined by some unitary *V* such that $V^2 = id$.

Can $|\phi\rangle$ still be teleported?

If Bob is rotated by 180°, his system exhibits a representation of \mathbb{Z}_2 , defined by some unitary *V* such that $V^2 = id$.

When Bob applies a unitary U_i , it appears *in Alice's frame* that he is performing $V^{\dagger}U_iV$.

Can $|\phi\rangle$ still be teleported?

If Bob is rotated by 180°, his system exhibits a representation of \mathbb{Z}_2 , defined by some unitary *V* such that $V^2 = id$.

When Bob applies a unitary U_i , it appears *in Alice's frame* that he is performing $V^{\dagger}U_iV$.

This *breaks* quantum teleportation: "unspeakable information cannot be teleported".

New idea: Alice encodes her 2 bits unspeakably, as physical arrows.

Alice' result	Bob's action	Bop's action
$\uparrow \uparrow$	$U_{\uparrow\uparrow}$	$V^{\dagger} U_{\downarrow\downarrow} V$

Alice' result	Bob's action	Bop's action
$\uparrow \uparrow$	$U_{\uparrow\uparrow}$	$V^{\dagger} U_{\downarrow\downarrow} V$
$\uparrow\downarrow$	$U_{\uparrow\downarrow}$	$V^{\dagger}U_{\downarrow\uparrow}V$

Alice' result	Bob's action	Bop's action
$\uparrow \uparrow$	$U_{\uparrow\uparrow}$	$V^{\dagger} U_{\downarrow\downarrow} V$
$\uparrow \downarrow$	$U_{\uparrow\downarrow}$	$V^{\dagger}U_{\downarrow\uparrow}V$
$\downarrow\uparrow$	$U_{\downarrow\uparrow}$	$V^{\dagger}U_{\uparrow\downarrow}V$

Alice' result	Bob's action	Bop's action
$\uparrow \uparrow$	$U_{\uparrow\uparrow}$	$V^{\dagger} U_{\downarrow\downarrow} V$
$\uparrow\downarrow$	$U_{\uparrow\downarrow}$	$V^{\dagger}U_{\downarrow\uparrow}V$
$\downarrow\uparrow$	$U_{\downarrow\uparrow}$	$V^{\dagger} U_{\uparrow\downarrow} V$
$\downarrow\downarrow$	$U_{\downarrow\downarrow}$	$V^{\dagger}U_{\uparrow\uparrow}V$

Alice' result	Bob's action	Bop's action
$\uparrow \uparrow$	$U_{\uparrow\uparrow}$	$V^{\dagger} U_{\downarrow\downarrow} V$
$\uparrow\downarrow$	$U_{\uparrow\downarrow}$	$V^{\dagger} U_{\downarrow\uparrow} V$
$\downarrow\uparrow$	$U_{\downarrow\uparrow}$	$V^{\dagger} U_{\uparrow\downarrow} V$
$\downarrow\downarrow$	$U_{\downarrow\downarrow}$	$V^{\dagger} U_{\uparrow\uparrow} V$

If columns 2 and 3 are identical, teleportation always succeeds.

Here is a solution:

$$\begin{split} U_{\downarrow\downarrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \qquad U_{\downarrow\uparrow} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \\ -\sqrt{2} + \sqrt{6} & \sqrt{2} + \sqrt{6} \end{pmatrix} \\ U_{\uparrow\uparrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \qquad U_{\uparrow\downarrow} = \frac{1}{4} \begin{pmatrix} \sqrt{2} - \sqrt{6} & -\sqrt{2} - \sqrt{6} \\ -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \end{pmatrix} \\ V &= \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix} \end{split}$$

Here is a solution:

$$\begin{split} U_{\downarrow\downarrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \qquad U_{\downarrow\uparrow} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \\ -\sqrt{2} + \sqrt{6} & \sqrt{2} + \sqrt{6} \end{pmatrix} \\ U_{\uparrow\uparrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \qquad U_{\uparrow\downarrow} = \frac{1}{4} \begin{pmatrix} \sqrt{2} - \sqrt{6} & -\sqrt{2} - \sqrt{6} \\ -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \end{pmatrix} \\ V &= \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix} \end{split}$$

So unspeakable quantum teleportation is possible in this situation.

Here is a solution:

$$\begin{split} U_{\downarrow\downarrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \qquad U_{\downarrow\uparrow} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \\ -\sqrt{2} + \sqrt{6} & \sqrt{2} + \sqrt{6} \end{pmatrix} \\ U_{\uparrow\uparrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \qquad U_{\uparrow\downarrow} = \frac{1}{4} \begin{pmatrix} \sqrt{2} - \sqrt{6} & -\sqrt{2} - \sqrt{6} \\ -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \end{pmatrix} \\ V &= \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix} \end{split}$$

So unspeakable quantum teleportation *is* possible in this situation. Previous approaches have been more complex, involving:

Here is a solution:

$$\begin{split} U_{\downarrow\downarrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \qquad U_{\downarrow\uparrow} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \\ -\sqrt{2} + \sqrt{6} & \sqrt{2} + \sqrt{6} \end{pmatrix} \\ U_{\uparrow\uparrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \qquad U_{\uparrow\downarrow} = \frac{1}{4} \begin{pmatrix} \sqrt{2} - \sqrt{6} & -\sqrt{2} - \sqrt{6} \\ -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \end{pmatrix} \\ V &= \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix} \end{split}$$

So unspeakable quantum teleportation *is* possible in this situation. Previous approaches have been more complex, involving:

• extra steps, like synchronizing the reference frames;

Here is a solution:

$$\begin{split} U_{\downarrow\downarrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1\\ -1 & 1 \end{pmatrix} \qquad U_{\downarrow\uparrow} = \frac{1}{4} \begin{pmatrix} -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \\ -\sqrt{2} + \sqrt{6} & \sqrt{2} + \sqrt{6} \end{pmatrix} \\ U_{\uparrow\uparrow} &= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1\\ 1 & 1 \end{pmatrix} \qquad U_{\uparrow\downarrow} = \frac{1}{4} \begin{pmatrix} \sqrt{2} - \sqrt{6} & -\sqrt{2} - \sqrt{6} \\ -\sqrt{2} - \sqrt{6} & -\sqrt{2} + \sqrt{6} \end{pmatrix} \\ V &= \begin{pmatrix} \sqrt{3}/2 & 1/2 \\ 1/2 & -\sqrt{3}/2 \end{pmatrix} \end{split}$$

So unspeakable quantum teleportation *is* possible in this situation. Previous approaches have been more complex, involving:

- extra steps, like synchronizing the reference frames;
- extra resources, like more shared entanglement.

There is a deep analogy between classical encryption and quantum teleportation.

There is a deep analogy between classical encryption and quantum teleportation.

Encrypted communication

There is a deep analogy between classical encryption and quantum teleportation.

There is a deep analogy between classical encryption and quantum teleportation.

Encrypted communication

There is a deep analogy between classical encryption and quantum teleportation.

There is a deep analogy between classical encryption and quantum teleportation.

Encrypted communication

There is a deep analogy between classical encryption and quantum teleportation.

This lets us translate ideas between the two settings.

Here is a simple model for 'unspeakable' one-time-pad encryption.

Here is a simple model for 'unspeakable' one-time-pad encryption. Suppose Alice and Bob share a secret key, but lack a shared reference frame.

Here is a simple model for 'unspeakable' one-time-pad encryption.

Suppose Alice and Bob share a secret key, but lack a shared reference frame.

Alice can still securely transmit directional information to Bob with the following scheme:

Plaintext	Key	Ciphertext
	1	\downarrow
	0	↑
\downarrow	1	↑
\downarrow	0	\downarrow

Here is a simple model for 'unspeakable' one-time-pad encryption.

Suppose Alice and Bob share a secret key, but lack a shared reference frame.

Alice can still securely transmit directional information to Bob with the following scheme:

Plaintext	Key	Ciphertext
\uparrow	1	\downarrow
\uparrow	0	\uparrow
\downarrow	1	\uparrow
\downarrow	0	\downarrow

Key and ciphertext can't both be speakable or unspeakable.

Research process:

• Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.
- Working out what on earth it's supposed to mean.

Research process:

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.
- Working out what on earth it's supposed to mean.

Information is *unspeakable* when it is encoded in a nontrivial representation of a group.

Research process:

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.
- Working out what on earth it's supposed to mean.

Information is *unspeakable* when it is encoded in a nontrivial representation of a group.

Spatial degree of freedom: $G \subset SO(3)$

Research process:

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.
- Working out what on earth it's supposed to mean.

Information is *unspeakable* when it is encoded in a nontrivial representation of a group.

Spatial degree of freedom: $G \subset SO(3)$

Charge degree of freedom: $G \subset SU(3) \times SU(2) \times U(1)$

Research process:

- Identifying the abstract structure of teleportation internal to **Hilb**, the category of Hilbert spaces.
- Looking for the same structure in **Rep**(*G*), the category of unitary representations of a finite group.
- Realizing this is nontrivial.
- Working out what on earth it's supposed to mean.

Information is *unspeakable* when it is encoded in a nontrivial representation of a group.

Spatial degree of freedom: $G \subset SO(3)$

Charge degree of freedom: $G \subset SU(3) \times SU(2) \times U(1)$

Thanks for listening!