Thu, 27 May 2021

16:45 - 17:30

C*-equivalence of directed graphs

Soren Eilers
(Copenhagen)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The graph C*-algebra construction associates a unital C*-algebra to any directed graph with finitely many vertices and countably many edges in a way which generalizes the fundamental construction by Cuntz and Krieger. We say that two such graphs are C*-equivalent when they define isomorphic C*-algebras, and give a description of this relation as the smallest equivalence relation generated by a number of "moves" on the graph that leave the C*-algebras unchanged. The talk is based on recent work with Arklint and Ruiz, but most of these moves have a long history that I intend to present in some detail.

Tue, 21 May 2019
12:00
L4

Combinatorial structures in cosmology

Paolo Benincasa
(Copenhagen)
Abstract

  Our understanding of physical phenomena is intimately linked to the way we understand the relevant observables describing them. While a big deal of progress has been made for processes occurring in flat space-time, much less is known in cosmological settings. In this context, we have processes which happened in the past and which we can detect the remnants of at present time. Thus, the relevant observable is the late-time wavefunction of the universe. Questions such as "what properties they ought to satisfy in order to come from a consistent time evolution in cosmological space-times?", are still unanswered, and are compelling given that in these quantities time is effectively integrated out. In this talk I will report on some recent progress in this direction, aiming towards the idea of a formulation of cosmology "without time". Amazingly enough, a new mathematical structure, we called "cosmological polytope", which has its own first principle definition, encodes the singularity structure we ascribe to the perturbative wavefunction of the universe, and makes explicit its (surprising) relation to the flat-space S-matrix. I will stress how the cosmological polytopes allow us to: compute the wavefunction of the universe at arbitrary points and arbitrary loops (with novel representations for it); interpret the residues of its poles in terms of flat-space processes; provide a  general geometrical proof for the flat-space cutting rules; reconstruct the perturbative wavefunction from the knowledge of the flat-space S-matrix and a subset of symmetries enjoyed by the wavefunction.

Mon, 13 May 2019

14:15 - 15:15
L4

Segre-Driven Ideal Membership Testing

Martin Helmer
(Copenhagen)
Abstract

In this talk we discuss new effective methods to test pairwise containment of arbitrary (possibly singular) subvarieties of any smooth projective toric variety and to determine algebraic multiplicity without working in local rings. These methods may be implemented without using Gröbner bases; in particular any algorithm to compute the number of solutions of a zero-dimensional polynomial system may be used. The methods arise from techniques developed to compute the Segre class s(X,Y) of X in Y for X and Y arbitrary subschemes of some smooth projective toric variety T. In particular, this work also gives an explicit method to compute these Segre classes and other associated objects such as the Fulton-MacPherson intersection product of projective varieties.
These algorithms are implemented in Macaulay2 and have been found to be effective on a variety of examples. This is joint work with Corey Harris (University of Oslo).

 

Mon, 16 Oct 2017
15:45
L6

Higher categories of higher categories

Rune Haugseng
(Copenhagen)
Abstract

I will discuss ongoing work aimed at constructing higher categories of (enriched) higher categories. This should give the appropriate targets for many interesting examples of extended topological quantum field theories, including extended versions of the classical examples of TQFTs due to Turaev-Viro, Reshetikhin-Turaev, etc.

Mon, 13 Mar 2017

14:00 - 15:00
L5

Operad groups and the homology of the Higman-Thompson groups

Nathalie Wahl
(Copenhagen)
Abstract

 Markus Szymik and I computed the homology of the Higman-Thompson groups by first showing that they stabilize (with slope 0), and then computing the stable homology. I will in this talk give a new point of view on the computation of the stable homology using Thumann's "operad groups". I will also give an idea of how scanning methods can enter the picture. (This is partially joint work with Søren Galatius.) 

Mon, 26 Apr 2010
15:45
L3

Higher string topology

David Ayala
(Copenhagen)
Abstract

The talk will begin with a brief account of the construction of string topology operations. I will point out some mysteries with the formulation of these operations, such as the role of (moduli) of surfaces, and pose some questions. The remainder of the talk will address these issues. In particular, I will sketch some ideas for a higher-dimensional version of string topology. For instance, (1) I will describe an E_{d+1} algebra structure on the (shifted) homology of the free mapping space H_*(Map(S^d,M^n)) and (2) I will outline how to obtain operations H_*(Map(P,M)) -> H_*(Map(Q,M)) indexes by a moduli space of zero-surgery data on a smooth d-manifold P with resulting surgered manifold Q.

Mon, 07 May 2007
15:45
L3

Local-to-global principles for classifying spaces

Jesper Grodal
(Copenhagen)
Abstract
  In this talk I will show how one can sometimes "uncomplete" the p-completed classifying space of a finite group, to obtain the original (non-completed) classifying space, and hence the original finite group. This "uncompletion" process is closely related to well-known local-to-global questions in group theory, such as the classification of finite simple groups. The approach goes via the theory of p-local finite groups. This talk is a report on joint work with Bob Oliver.  
Subscribe to Copenhagen