Mon, 13 May 2013

12:00 - 13:00
L3

Stationary holographic plasma quenches and numerical methods for non-Killing horizons

Pau Figueras
(DAMTP)
Abstract
In this talk I will explain a new method to numerically construct stationary black holes with non-Killing horizons. As an example, I will use AdS/CFT to describe a time-independent CFT plasma flowing through a static spacetime which asymptotes to Minkowski in the flow's past and future, with a varying spatial geometry in-between. When the boundary geometry varies slowly, the holographic stress tensor is well-described by viscous hydrodynamics. For fast variations it is not, and the solutions are stationary analogs of dynamical quenches, with the plasma being suddenly driven out of equilibrium. We find evidence that these flows become unstable for sufficiently strong quenches and speculate that the instability may be turbulent. The gravitational dual of these flows are the first examples of stationary black holes with non-Killing horizons.
Tue, 08 Jun 2010

12:00 - 13:00
L3

G_2 structures, rational curves, and ODEs

Dr Dunajski
(DAMTP)
Abstract

Consider the space M of parabolas y=ax^2+bx+c, with (a, b, c) as coordinates on M. Two parabolas generically intersect at two (possibly complex) points, and we can define a conformal structure on M by declaring two points to be null separated iff the corresponding parabolas are tangent. A simple calculation of discriminant shows that this conformal structure is flat.

In this talk (based on joint works with Godlinski and Sokolov) I shall show how replacing parabolas by rational plane curves of higher degree allows constructing curved conformal structures in any odd dimension. In dimension seven one can use this "twistor" construction to find G_2 structures in a conformal class.

Subscribe to DAMTP