Thu, 10 May 2018
12:00
L4

Untangling of trajectories for non-smooth vector fields and Bressan's Compactness Conjecture

Paolo Bonicatto
(Universität Basel)
Abstract

Given $d \ge 1$, $T>0$ and a vector field $\mathbf b \colon [0,T] \times \mathbb R^d \to \mathbb R^d$, we study the problem of uniqueness of weak solutions to the associated transport equation $\partial_t u + \mathbf b \cdot \nabla u=0$ where $u \colon [0,T] \times \mathbb R^d \to \mathbb R$ is an unknown scalar function. In the classical setting, the method of characteristics is available and provides an explicit formula for the solution of the PDE, in terms of the flow of the vector field $\mathbf b$. However, when we drop regularity assumptions on the velocity field, uniqueness is in general lost.
In the talk we will present an approach to the problem of uniqueness based on the concept of Lagrangian representation. This tool allows to represent a suitable class of vector fields as superposition of trajectories: we will then give local conditions to ensure that this representation induces a partition of the space-time made up of disjoint trajectories, along which the PDE can be disintegrated into a family of 1-dimensional equations. We will finally show that if $\mathbf b$ is locally of class $BV$ in the space variable, the decomposition satisfies this local structural assumption: this yields in particular the renormalization property for nearly incompressible $BV$ vector fields and thus gives a positive answer to the (weak) Bressan's Compactness Conjecture. This is a joint work with S. Bianchini.
 

Thu, 17 May 2012

12:30 - 13:30
Gibson 1st Floor SR

Two uniqueness results for the two-dimensional continuity equation with velocity having L^1 or measure curl

Gianluca Crippa
(Universität Basel)
Abstract

In this seminar I will present two results regarding the uniqueness (and further properties) for the two-dimensional continuity equation

and the ordinary differential equation in the case when the vector field is bounded, divergence free and satisfies additional conditions on its distributional curl. Such settings appear in a very natural way in various situations, for instance when considering two-dimensional incompressible fluids. I will in particular describe the following two cases:\\

(1) The vector field is time-independent and its curl is a (locally finite) measure (without any sign condition).\\

(2) The vector field is time-dependent and its curl belongs to L^1.\\

Based on joint works with: Giovanni Alberti (Universita' di Pisa), Stefano Bianchini (SISSA Trieste), Francois Bouchut (CNRS &

Universite' Paris-Est-Marne-la-Vallee) and Camillo De Lellis (Universitaet Zuerich).

Subscribe to Universität Basel