Thu, 20 Oct 2022
14:00
L6

A tale of 2-groups: Dp(USp(2N)) theories

Alessandro Mininno
(Universität Hamburg)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is possible to join online via Zoom.

Abstract

After a brief introduction, I elucidate a technique, dubbed "bootstrap'', which generates an infinite family of D_p(G) theories, where for a given arbitrary group G and a parameter b, each theory in the same family has the same number of mass parameters, same number of marginal deformations, same 1-form symmetry, and same 2-group structure. This technique is utilized to establish the presence or absence of the 2-group symmetries in several classes of D_p(G) theories. I, then, argue that we found the presence of 2-group symmetries in a class of Argyres-Douglas theories, called D_p(USp(2N)), which can be realized by Z_2-twisted compactification of the 6d N=(2,0) of the D-type on a sphere with an irregular twisted puncture and a regular twisted full puncture. I will also discuss the 3d mirror theories of general D_p(USp(2N)) theories that serve as an important tool to study their flavor symmetry and Higgs branch.

Thu, 31 May 2012
16:00
DH 1st floor SR

On a simplified fluid dynamic description of some renewable power plants

Ingenuin Gasser
(Universität Hamburg)
Abstract

In this seminar we discuss the gas dynamics of chimneys, solar updraft towers and energy towers. The main issue is to discuss simple fluid dynamic models which still describe the main features of the mentioned applications. We focus first on one dimensional compressible models. Then we apply a small Mach number asymptotics to reduce to complexity and to avoid the known problems

of fully compressible models in the small Mach number regime. In case of the energy tower in addition we have to model the evaporation process.

Finally we obtain a much simpler fluid dynamic model which allows robust and very fast numerical simulations. We discuss the qualitative behaviour and the good agreement with expermental data (in cases such data are available).

Subscribe to Universität Hamburg