Fri, 20 May 2022

16:00 - 17:00
L2

New perspectives for higher-order methods in convex optimisation

Yurii Nesterov
(Universite catholique de louvain)
Further Information

This colloquium is the annual Maths-Stats colloquium, held jointly with the Statistics department.

Abstract
In the recent years, the most important developments in Optimization were related to clarification of abilities of the higher-order methods. These schemes have potentially much higher rate of convergence as compared to the lower-order methods. However, the possibility of their implementation in the form of practically efficient algorithms was questionable during decades. In this talk, we discuss different possibilities for advancing in this direction, which avoid all standard fears on tensor methods (memory requirements, complexity of computing the tensor components, etc.). Moreover, in this way we get the new second-order methods with memory, which converge provably faster than the conventional upper limits provided by the Complexity Theory.
Tue, 24 Nov 2020

15:30 - 16:30
Virtual

Asymptotics for averages over classical orthogonal ensembles

Tom Claeys
(Universite catholique de louvain)
Further Information

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

Averages of multiplicative eigenvalue statistics of Haar distributed unitary matrices are Toeplitz determinants, and asymptotics for these determinants are now well understood for large classes of symbols, including symbols with gaps and (merging) Fisher-Hartwig singularities. Similar averages for Haar distributed orthogonal matrices are Toeplitz+Hankel determinants. Some asymptotic results for these determinants are known, but not in the same generality as for Toeplitz determinants. I will explain how one can systematically deduce asymptotics for averages in the orthogonal group from those in the unitary group, using a transformation formula and asymptotics for certain orthogonal polynomials on the unit circle, and I will show that this procedure leads to asymptotic results for symbols with gaps or (merging) Fisher-Hartwig singularities. The talk will be based on joint work with Gabriel Glesner, Alexander Minakov and Meng Yang.

Mon, 04 Feb 2019

16:00 - 17:00
L4

Ginzburg–Landau functionals with a general compact vacuum manifold on planar domains

Jean Van Schaftingen
(Universite catholique de louvain)
Abstract

Ginzburg–Landau type functionals provide a relaxation scheme to construct harmonic maps in the presence of topological obstructions. They arise in superconductivity models, in liquid crystal models (Landau–de Gennes functional) and in the generation of cross-fields in meshing. For a general compact manifold target space we describe the asymptotic number, type and location of singularities that arise in minimizers. We cover in particular the case where the fundamental group of the vacuum manifold in nonabelian and hence the singularities cannot be characterized univocally as elements of the fundamental group. The results unify the existing theory and cover new situations and problems.

This is a joint work with Antonin Monteil and Rémy Rodiac (UCLouvain, Louvain- la-Neuve, Belgium)

Wed, 27 Jan 2016
15:00
L4

STAR-Vote: A Secure, Transparent, Auditable and Reliable Voting System

Olivier Pereira
(Universite catholique de louvain)
Abstract

STAR-Vote is voting system that results from a collaboration between a number of
academics and the Travis County, Texas elections office, which currently uses a
DRE voting system and previously used an optical scan voting system. STAR-Vote
represents a rare opportunity for a variety of sophisticated technologies, such
as end-to-end cryptography and risk limiting audits, to be designed into a new
voting system, from scratch, with a variety of real world constraints, such as
election-day vote centers that must support thousands of ballot styles and run
all day in the event of a power failure.
We present and motivate the design of the STAR-Vote system, the benefits that we
expect from it, and its current status.

This is based on joint work with Josh Benaloh, Mike Byrne, Philip Kortum,
Neal McBurnett, Ron Rivest, Philip Stark, Dan Wallach
and the Office of the Travis County Clerk

Mon, 12 May 2014

17:00 - 18:00
L6

Desingularization of stationary shallow water vortices

Jean Van Schaftingen
(Universite catholique de louvain)
Abstract

I will show how families of concentrating stationary vortices for the shallow

water equations can be constructed and studied asymptotically. The main tool

is the study of asymptotics of solutions to a family of semilinear elliptic

problems. The same method also yields results for axisymmetric vortices for

the Euler equation of incompressible fluids.

Thu, 22 Jun 2006

14:00 - 15:00
Comlab

Global performance of the Newton method

Prof Yurii Nesterov
(Universite catholique de louvain)
Abstract

In this talk we present different strategies for regularization of the pure Newton method

(minimization problems)and of the Gauss-Newton method (systems of nonlinear equations).

For these schemes, we prove general convergence results. We establish also the global and

local worst-case complexity bounds. It is shown that the corresponding search directions can

be computed by a standard linear algebra technique.

Thu, 05 Jun 2008

14:00 - 15:00
Comlab

Conic optimization: a unified framework for structured convex optimization

Prof François Glineur
(Universite catholique de louvain)
Abstract
Among optimization problems, convex problems form a special subset with two important and useful properties: (1) the existence of a strongly related dual problem that provides certified bounds and (2) the possibility to find an optimal solution using polynomial-time algorithms. In the first part of this talk, we will outline how the framework of conic optimization, which formulates structured convex problems using convex cones, facilitates the exploitation of those two properties. In the second part of this talk, we will introduce a specific cone (called the power cone) that allows the formulation of a large class of convex problems (including linear, quadratic, entropy, sum-of-norm and geometric optimization).
For this class of problems, we present a primal-dual interior-point algorithm, which focuses on preserving the perfect symmetry between the primal and dual sides of the problem (arising from the self-duality of the power cone).
Thu, 07 Feb 2008

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

Some graph optimization problems in data mining

Prof Paul Van Dooren
(Universite catholique de louvain)
Abstract

Graph-theoretic ideas have become very useful in understanding modern large-scale data-mining techniques. We show in this talk that ideas from optimization are also quite useful to better understand the numerical behavior of the corresponding algorithms. We illustrate this claim by looking at two specific graph theoretic problems and their application in data-mining.

The first problem is that of reputation systems where the reputation of objects and voters on the web are estimated; the second problem is that of estimating the similarity of nodes of large graphs. These two problems are also illustrated using concrete applications in data-mining.

Subscribe to Universite catholique de louvain