Thu, 14 Nov 2019

16:00 - 17:30
L3

Formation and Spatial Localization of Phase Field Quasicrystals

Priya Subramanian
(University of Oxford)
Abstract

The dynamics of many physical systems often evolve to asymptotic states that exhibit periodic spatial and temporal variations in their properties such as density, temperature, etc. Such regular patterns look the same when moved by a basic unit and/or rotated by certain special angles. They possess both translational and rotational symmetries giving rise to discrete spatial Fourier transforms. In contrast, an aperiodic crystal displays long range spatial order but no translational symmetry. 

Recently, quasicrystals which are related to aperiodic crystals have been observed to form in diverse physical systems such as metallic alloys (atomic scale) and dendritic-, star-, and block co-polymers (molecular scale). Such quasicrystals lack the lattice symmetries of regular crystals, yet have discrete Fourier spectra. We look to understand the minimal mechanism which promotes the formation of such quasicrystalline structures using a phase field crystal model. Direct numerical simulations combined with weakly nonlinear analysis highlight the parameter values where the quasicrystals are the global minimum energy state and help determine the phase diagram. 

By locating parameter values where multiple patterned states possess the same free energy (Maxwell points), we obtain states where a patch of one type of pattern (for example, a quasicrystal) is present in the background of another (for example, the homogeneous liquid state) in the form of spatially localized dodecagonal (in 2D) and icosahedral (in 3D) quasicrystals. In two dimensions, we compute several families of spatially localized quasicrystals with dodecagonal structure and investigate their properties as a function of the system parameters. The presence of such meta-stable localized quasicrystals is significant as they may affect the dynamics of the crystallisation in soft matter.

Tue, 04 Jun 2019

12:45 - 14:00
C3

Multiple scales analysis of a conductive-radiative thermal transfer model

Caoimhe Rooney
(University of Oxford)
Abstract


Multiple scales analysis is a powerful asymptotic technique for problems where the solution depends on two scales of widely different sizes. Standard multiple scales involves the introduction of a macroscale and microscale which are assumed to be independent. A common (and usually acceptable) assumption is that when considering behaviour on the microscale, the macroscale variable can be taken as constant, however there are instances where this assumption is not valid. In this talk, I will explain one such situation, that is, when considering conductive-radiative thermal transfer within a solid matrix with spherical perforations and discuss the appropriate measures when converting the radiative boundary condition into multiple-scales form.
 

Wed, 29 May 2019
11:00
N3.12

Hilbert's Fifth Problem

Arturo Rodriguez
(University of Oxford)
Abstract

Hilbert's fifth problem asks informally what is the difference between Lie groups and topological groups. In 1950s this problem was solved by Andrew Gleason, Deane Montgomery, Leo Zippin and Hidehiko Yamabe concluding that every locally compact topological group is "essentially" a Lie group. In this talk we will show the complete proof of this theorem.

Tue, 21 May 2019

12:45 - 14:00
C3

Optimising the parallel picking strategy for a Besi component wafer

Jonathan Grant-Peters
(University of Oxford)
Abstract

The time bottleneck in the manufacturing process of Besi (company involved in ESGI 149 Innsbruck) is the extraction of undamaged dies from a component wafer. The easiest way for them to speed up this process is to reduce the number of 'selections' made by the robotic arm.  Each 'selection' made by this robotic arm can be thought of as choosing a 2x2 submatix of a large binary matrix, and editing the 1's in this submatrix to be 0's.  The quesiton is: what is the fewest number of 2x2 submatrices required to cover the full matrix, and how can we find this number. This problem can be solved exactly using integer programming methods, although this approach proves to be prohibitively expensive for realistic sizes. In this talk I will describe the approach taken by my team at EGSI 149, as well as directions for further improvement.

Wed, 15 May 2019
11:00
N3.12

The Yang-Mills equations and Uhlenbeck Compactness

Hector Papoulias
(University of Oxford)
Abstract

This talk is a brief introduction to the analysis of Donaldson theory, a branch of gauge theory. Roughly, this is an area of differential topology that aims to extract smooth structure invariants from the geometry of the space of solutions (moduli space) to a system of partial differential equations: the Yang-Mills equations.

I will start by discussing the differential geometric background required to talk about Yang-Mills connections. This will involve introducing the concepts of principal fibre bundles, connections and curvature. In the second half of the talk I will attempt to convey the flavour of the mathematics used to address technical issues in gauge theory. I plan to do this by presenting a sketch of the proof of Uhlenbeck's compactness theorem, the main technical tool involved in the compactification of the moduli space.

Mon, 08 Jul 2019 11:30 -
Tue, 09 Jul 2019 14:00
L5

UK Fluids Network Special Interest Group: Fluid Mechanics of Cleaning and Decontamination

Various Speakers
(University of Oxford)
Further Information

Program [[{"fid":"55601","view_mode":"default","fields":{"format":"default"},"link_text":"SIG Cleaning and Decontamination Program.pdf","type":"media","field_deltas":{"12":{"format":"default"}},"attributes":{"class":"media-element file-default","data-delta":"12"}}]]

[[{"fid":"55350","view_mode":"embedded_landscape_image_full_width","fields":{"class":"media-element file-banner-image-1140-x-250-","data-delta":"11","format":"embedded_landscape_image_full_width","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false},"type":"media","field_deltas":{"11":{"class":"media-element file-banner-image-1140-x-250-","data-delta":"11","format":"embedded_landscape_image_full_width","field_file_image_alt_text[und][0][value]":false,"field_file_image_title_text[und][0][value]":false}},"attributes":{"class":"media-element file-embedded-landscape-image-full-width","data-delta":"11"}}]]

Please Register here

 

Wed, 08 May 2019
11:00
N3.12

Completing Kronecker-Weber (via completing the rationals)

Jay Swar
(University of Oxford)
Abstract

KW states that every finite abelian extension of the rationals is contained in a cyclotomic extension. In a previous talk, this was reduced to considering cyclic extensions of the local fields Q_p of prime power order l^r. When l\neq p, general theory is sufficient, however for l=p, more specific (although not necessarily more abstruse) descriptions become necessary.
I will focus on the simple structure of Q_p's extensions to obstruct the remaining obstructions to KW (and hopefully provoke some interest in local fields in those less familiar). Time-permitting, I will talk about this theorem in the context of class field theory and/or Hilbert's 12th problem.

Tue, 14 May 2019

17:00 - 18:00
L4

Book launch: The Mathematical World of Charles L. Dodgson (Lewis Carroll)

Robin Wilson
(University of Oxford)
Further Information

There has been much recent interest in the mathematical activities of C. L. Dodgson (Lewis Carroll), especially with the publication of Dodgson’s diaries and my popular paperback, ‘Lewis Carroll in Numberland’ which described his mathematical ‘day job’ in the context of Victorian Oxford and his role as Mathematical Lecturer at Christ Church. But for some time there’s been a need for a more serious single-volume book that covers all aspects of his mathematical activities, written by experts from around the world, and this was achieved in February with the publication of this book by Oxford University Press edited by Robin Wilson and Amirouche Moktefi.

This talk will outline his mathematical career and specifically his work in geometry, algebra, logic, voting theory and recreational mathematics, and will be followed by an opportunity to acquire the book at a reduced cost.

Wed, 01 May 2019
11:00
N3.12

The Kronecker-Weber theorem

Konstantinos Kartas
(University of Oxford)
Abstract

The Kronecker-Weber theorem states that every finite abelian extension of the rationals is contained in some cyclotomic field. I will present a proof that emphasizes the standard local-global philosophy by first proving it for the p-adics and then deducing the global case.

Subscribe to University of Oxford