Thu, 07 Mar 2019

16:00 - 17:00
L6

Algebraic independence for values of integral curves

Tiago Fonseca
(University of Oxford)
Abstract

After a brief introduction to the theory of transcendental numbers, I will discuss Nesterenko's 1996 celebrated theorem on the algebraic independence of values of Eisenstein series, and some related open problems. This motivates the second part of the talk, in which I will report on a recent geometric generalization of Nesterenko's method.

Wed, 27 Feb 2019
11:00
N3.12

Applying Distributional Compositional Categorical Models of Meaning to Language Translation

Brian Tyrrell
(University of Oxford)
Abstract

In 2010 Coecke, Sadrzadeh, and Clark formulated a new model of natural language which operates by combining the syntactics of grammar and the semantics of individual words to produce a unified ''meaning'' of sentences. This they did by using category theory to understand the component parts of language and to amalgamate the components together to form what they called a ''distributional compositional categorical model of meaning''. In this talk I shall introduce the model of Coecke et. al., and use it to compare the meaning of sentences in Irish and in English (and thus ascertain when a sentence is the translation of another sentence) using a cosine similarity score.

The Irish language is a member of the Gaelic family of languages, originating in Ireland and is the official language of the Republic of Ireland.

Wed, 20 Feb 2019
11:00
N3.12

A curve in the Möbius band

Esteban Gomezllata Marmolejo
(University of Oxford)
Abstract


Suppose that you have a long strip of paper, and draw the central line through it. You then glue it together so as to make a Möbius band. Can the drawn curve be contained in a plane?

We'll answer the question in this talk, as well as introduce the concepts from the Geometry of Surfaces course required to go through it; including Gauss' one and only Theorema Egregium! (we won't prove it though).

Wed, 13 Feb 2019
11:00
N3.12

Grothendieck Rings of Varieties and Cubic Hypersurfaces

Søren Gammelgaard
(University of Oxford)
Abstract

The Grothendieck ring of varieties over a field is a simple idea that formalizes various cut-and-paste arguments in algebraic geometry. We will explain how this intuitive construction leads to nontrivial results, such as computing Euler characteristics, counting points of varieties over finite fields, and determining Hodge numbers. As an example, we will investigate cubic hypersurfaces, especially the varieties parametrizing lines on them. If time permits, we will discuss some of the stranger properties of the Grothendieck ring.

Wed, 06 Feb 2019
11:00
N3.12

RSK Insertion and Symmetric Polynomials

Adam Keilthy
(University of Oxford)
Abstract

Young diagrams frequently appear in the study of partitions and representations of the symmetric group. By filling these diagrams with numbers, we obtain Young tableau, combinatorial objects onto which we can define the structure of a monoid via insertion algorithms. We will explore this structure and it's connection to a basis of the ring of symmetric polynomials. If we have time, we will mention alternative monoid structures and their corresponding bases.

Wed, 29 May 2019

18:00 - 19:00
L1

Marcus du Sautoy - The Creativity Code: How AI is learning to write, paint and think

Marcus du Sautoy
(University of Oxford)
Further Information

Oxford Mathematics Public Lectures together with the Simonyi Science Show:

Will a computer ever compose a symphony, write a prize-winning novel, or paint a masterpiece? And if so, would we be able to tell the difference?

In The Creativity Code, Marcus du Sautoy examines the nature of creativity, as well as providing an essential guide into how algorithms work, and the mathematical rules underpinning them. He asks how much of our emotional response to art is a product of our brains reacting to pattern and structure. And might machines one day jolt us in to being more imaginative ourselves?

Marcus du Sautoy is Simonyi Professor for the Public Understanding of Science in Oxford.

6-7pm
Mathematical Institute
Oxford

Please email @email to register.

Watch live:
https://facebook.com/OxfordMathematics
https://livestream.com/oxuni/du-Sautoy2

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Fri, 08 Feb 2019

12:00 - 13:00
L4

Leveraging the Signature for Landmark-based Human Action Recognition

Weixin Yang
(University of Oxford)
Abstract

Landmark-based human action recognition in videos is a challenging task in computer vision. One crucial step is to design discriminative features for spatial structure and temporal dynamics. To this end, we use and refine the path signature as an expressive, robust, nonlinear, and interpretable representation for landmark-based streamed data. Instead of extracting signature features from raw sequences, we propose path disintegrations and transformations as preprocessing to improve the efficiency and effectiveness of signature features. The path disintegrations spatially localize a pose into a collection of m-node paths from which the signatures encode non-local and non-linear geometrical dependencies, while temporally transform the evolutions of spatial features into hierarchical spatio-temporal paths from which the signatures encode long short-term dynamical dependencies. The path transformations allow the signatures to further explore correlations among different informative clues. Finally, all features are concatenated to constitute the input vector of a linear fully-connected network for action recognition. Experimental results on four benchmark datasets demonstrated that the proposed feature sets with only linear network achieves comparable state-of-the-art result to the cutting-edge deep learning methods. 

Mon, 14 Jan 2019

15:45 - 16:45
L3

Nonparametric pricing and hedging with signatures

IMANOL PEREZ
(University of Oxford)
Abstract

We address the problem of pricing and hedging general exotic derivatives. We study this problem in the scenario when one has access to limited price data of other exotic derivatives. In this presentation I explore a nonparametric approach to pricing exotic payoffs using market prices of other exotic derivatives using signatures.

 

Mon, 11 Mar 2019

17:00 - 18:00
L1

Marc Lackenby - Knotty Problems

Marc Lackenby
(University of Oxford)
Further Information

Knots are a familiar part of everyday life, for example tying your tie or doing up your shoe laces. They play a role in numerous physical and biological phenomena, such as the untangling of DNA when it replicates. However, knot theory is also a well-developed branch of pure mathematics.

In his talk, Marc will give an introduction to this theory and will place it in the context of the modern field of topology. This is the branch of mathematics where you are allowed to stretch and deform objects, but not tear them. He will explain how topological techniques can be used to prove some surprising facts about knots. He will also give some problems about knots that mathematicians haven't yet been able to solve.

Marc Lackenby is a Professor of Mathematics in Oxford and a Fellow of St Catherine's College.

5.00pm-6.00pm, Mathematical Institute, Oxford

Please email @email to register.

Watch live:

https://www.facebook.com/OxfordMathematics
https://livestream.com/oxuni/lackenby

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Thu, 31 Jan 2019
12:00
L4

Path-by-path well-posedness of stochastic nonlinear diffusion equations

Benjamin Fehrman
(University of Oxford)
Abstract

In this talk, which is based on joint work with Benjamin Gess, I will describe a pathwise well-posedness theory for stochastic porous media and fast diffusion equations driven by nonlinear, conservative noise. Such equations arise in the theory of mean field games, as an approximation to the Dean–Kawasaki equation in fluctuating hydrodynamics, to describe the fluctuating hydrodynamics of a zero range process, and as a model for the evolution of a thin film in the regime of negligible surface tension.  Our methods are motivated by the theory of stochastic viscosity solutions, which are applied after passing to the equation’s kinetic formulation, for which the noise enters linearly and can be inverted using the theory of rough paths.  I will also mention the application of these methods to nonlinear diffusion equations with linear, multiplicative noise.

Subscribe to University of Oxford