Thu, 13 Oct 2016

17:15 - 18:15
L1

Fashion, Faith, and Fantasy in the New Physics of the Universe - Roger Penrose SOLD OUT

Roger Penrose
(University of Oxford)
Abstract

What can fashionable ideas, blind faith, or pure fantasy have to do with the scientific quest to understand the universe? Surely, scientists are immune to trends, dogmatic beliefs, or flights of fancy? In fact, Roger Penrose argues that researchers working at the extreme frontiers of mathematics and physics are just as susceptible to these forces as anyone else. In this lecture, based on his new book, Roger will argue that fashion, faith, and fantasy, while sometimes productive and even essential, may be leading today's researchers astray, most notably in three of science's most important areas - string theory, quantum mechanics, and cosmology. Yet Roger will also describe how fashion, faith, and fantasy have, ironically, also been invaluable in shaping his own work.

Roger will be signing copies of his book after the lecture.

This lecture is now SOLD OUT. Any questions, please email: @email

 

 

Tue, 17 May 2016

12:45 - 13:30
C5

Sorting of micro-swimmers in flowing visco-elastic fluids

Arnold Mathijssen
(University of Oxford)
Abstract

Interactions between micro-swimmers and their complex flow environments are important in many biological systems, such as sperm cells swimming in cervical mucus or bacteria in biofilm initiation areas. We present a theoretical model describing the dynamics of micro-organisms swimming in a plane Poiseuille flow of a viscoelastic fluid, accounting for hydrodynamic interactions and biological noise. General non-Newtonian effects are investigated, including shear-thinning and normal stress differences that lead to migration of the organisms across the streamlines of the background flow. We show that micro-swimmers are driven towards the centre-line of the channel, even if countered by hydrodynamic interactions with the channel walls that typically lead to boundary accumulation. Furthermore, we demonstrate that the normal stress differences reorient the swimmers at the centre-line in the direction against the flow so that they swim upstream. This suggests a natural sorting mechanism to select swimmers with a given swimming speed larger than the tunable Poiseuille flow velocity. This framework is then extended to study trapping and colony formation of pathogens near surfaces, in corners and crevices. 

Tue, 10 May 2016
14:30
L5

Low-rank compression of functions in 2D and 3D

Nick Trefethen
(University of Oxford)
Abstract

Low-rank compression of matrices and tensors is a huge and growing business.  Closely related is low-rank compression of multivariate functions, a technique used in Chebfun2 and Chebfun3.  Not all functions can be compressed, so the question becomes, which ones?  Here we focus on two kinds of functions for which compression is effective: those with some alignment with the coordinate axes, and those dominated by small regions of localized complexity.

 

Thu, 03 Nov 2016
17:00
L1

How Can We Understand Our Complex Economy? - Doyne Farmer

Doyne Farmer
(University of Oxford)
Abstract

We are increasingly better at predicting things about our environment. Modern weather forecasts are a lot better than they used to be, and our ability to predict climate change illustrates our better understanding of our effect on our environment. But what about predicting our collective effect on ourselves?  We now use tools like Google maps to predict how long it will take us to drive to work, and other small things, but we fail miserably when it comes to many of the big things. For example, the recent financial crisis cost the world tens of trillions of pounds, yet our ability to forecast, understand and mitigate the next economic crisis is very low. Is this inherently impossible? Or perhaps we are just not going about it the right way? The complex systems approach to economics, which brings in insights from the physical and natural sciences, presents an alternative to standard methods. Doyne will explain what this new approach is and give a few examples of its successes so far. He will then present a vision of the economics of the future which will need to confront the serious problems that the world will soon face.
 

Please email @email to register

Tue, 14 Jun 2016
15:00
L5

Exchanging a key: how hard can it be?

Cas Cremers
(University of Oxford)
Abstract
During the last thirty years, there have been many advances in the development of protocols for
authenticated key exchange. Although signature-based variants of Diffie-Hellman have been
known since the start of this development, dozens of new (two message) protocols are still proposed each
year. In this talk, we present some of the recent history of security definitions for Authenticated Key
Exchange, their many relatives, and discuss strengths and weaknesses. We motivate why there
has been little convergence in terms of protocols or security definitions. I will also present some of our 
recent work in this domain, including new stronger security definitions, and how to achieve them.
Subscribe to University of Oxford