Tue, 03 Dec 2019

14:00 - 15:00
L6

Characterisation of quasirandom permutations by a pattern sum

Yanitsa Pehova
(University of Warwick)
Further Information

We say that a sequence $\{\Pi_i\}$ of permutations is quasirandom if, for each $k\geq 2$ and each $\sigma\in S_k$, the probability that a uniformly chosen $k$-set of entries of $\Pi_i$ induces $\sigma$ tends to $1/k!$ as $i$ tends to infinity. It is known that a much weaker condition already forces $\{\Pi_i\}$ to be quasirandom; namely, if the above property holds for all $\sigma\in S_4$. We further weaken this condition by exhibiting sets $S\subseteq S_4$, such that if a randomly chosen $k$-set of entries of $\Pi_i$ induces an element of $S$ with probability tending to $|S|/24$, then $\{\Pi_i\}$ is quasirandom. Moreover, we are able to completely characterise the sets $S$ with this property. In particular, there are exactly ten such sets, the smallest of which has cardinality eight. 
This is joint work with Timothy Chan, Daniel Kráľ, Jon Noel, Maryam Sharifzadeh and Jan Volec.

Wed, 27 Nov 2019
16:00
C1

Hierarchies in one-relator groups

Marco Linton
(University of Warwick)
Abstract

A group splits as an HNN-extension if and only if the rank of its abelianisation is strictly positive. If we fix a class of groups one may ask a few questions about these splittings: How distorted are the vertex and edge groups? What form can the vertex and edge groups take? If they remain in our fixed class, do they also split? If so, under iteration will we terminate at something nice? In this talk we will answer all these questions for the class of one-relator groups and go through an example or two. Time permitting, we will also discuss possible generalisations to groups with staggered presentations.

Mon, 10 Jun 2019

14:15 - 15:15
L3

Gibbs measures of nonlinear Schrodinger equations as limits of many-body quantum states

VEDRAN SOHINGER
(University of Warwick)
Abstract

Gibbs measures of nonlinear Schrödinger equations are a fundamental object used to study low-regularity solutions with random initial data. In the dispersive PDE community, this point of view was pioneered by Bourgain in the 1990s. We study the problem of the derivation of Gibbs measures as high-temperature limits of thermal states in many-body quantum mechanics.

In our work, we apply a perturbative expansion in the interaction. This expansion is then analysed by means of Borel resummation techniques. In two and three dimensions, we need to apply a Wick-ordering renormalisation procedure. Moreover, in one dimension, our methods allow us to obtain a microscopic derivation of the time-dependent correlation functions for the cubic nonlinear Schrödinger equation. This is based partly on joint work with Jürg Fröhlich, Antti Knowles, and Benjamin Schlein.

Fri, 26 Oct 2018

12:00 - 13:00
L4

Stochastic perturbations of singular polynomial eigenvalue problems

Martin Lotz
(University of Warwick)
Abstract


One occasionally encounters computational problems that work just fine on ill-posed inputs, even though they should not. One example is polynomial eigenvalue problems, where standard algorithms such as QZ can find a desired solution to instances with infinite condition number to machine precision, while being completely oblivious to the ill-conditioning of the problem. One explanation is that, intuitively, adversarial perturbations are extremely unlikely, and "for all practical purposes'' the problem might not be ill-conditioned at all. We analyse perturbations of singular polynomial eigenvalue problems and derive methods to bound the likelihood of adversarial perturbations for any given input in different stochastic models.


Joint work with Vanni Noferini
 

Tue, 23 Oct 2018

14:00 - 14:30
L5

A Bayesian Conjugate Gradient Method

Jon Cockayne
(University of Warwick)
Abstract

A fundamental task in numerical computation is the solution of large linear systems. The conjugate gradient method is an iterative method which offers rapid convergence to the solution, particularly when an effective preconditioner is employed. However, for more challenging systems a substantial error can be present even after many iterations have been performed. The estimates obtained in this case are of little value unless further information can be provided about the numerical error. In this paper we propose a novel statistical model for this numerical error set in a Bayesian framework. Our approach is a strict generalisation of the conjugate gradient method, which is recovered as the posterior mean for a particular choice of prior. The estimates obtained are analysed with Krylov subspace methods and a contraction result for the posterior is presented. The method is then analysed in a simulation study as well as being applied to a challenging problem in medical imaging.

Tue, 30 Oct 2018

15:45 - 16:45
L4

Bogomolov type inequality for Fano varieties with Picard number 1

Chunyi Li
(University of Warwick)
Abstract

I will talk about some basic facts about slope stable sheaves and the Bogomolov inequality.  New techniques from stability conditions will imply new stronger bounds on Chern characters of stable sheaves on some special varieties, including  Fano varieties, quintic threefolds and etc. I will discuss the progress in this direction and some related open problems.

Mon, 19 Nov 2018

15:45 - 16:45
L3

Fast-slow systems driven by slowly mixing deterministic dynamics.

ALEXEY KOREPANOV
(University of Warwick)
Abstract

I will talk about R^n valued random processes driven by a "noise", which is generated by a deterministic dynamical system, randomness coming from the choice of the initial condition.

Such processes were considered by D.Kelly and I.Melbourne.I will present our joint work with I.Chevyrev, P.Friz, I.Melbourne and H.Zhang, where we consider the noise with long term memory. We prove convergence to solution of a stochastic differential equation which is, depending on the noise, driven by either a Brownian motion (optimizing the assumptions of Kelly-Melbourne) or a Lévy process.Our work is made possible by recent progress in rough path theory for càdlàg paths in p-variation topology.

 

Mon, 05 Nov 2018

15:45 - 16:45
L3

Anomalous diffusion in deterministic Lorentz gases

IAN MELBOURNE
(University of Warwick)
Abstract

The classical Lorentz gas model introduced by Lorentz in 1905, studied further by Sinai in the 1960s, provides a rich source of examples of chaotic dynamical systems with strong stochastic properties (despite being entirely deterministic).  Central limit theorems and convergence to Brownian motion are well understood, both with standard n^{1/2} and nonstandard (n log n)^{1/2} diffusion rates.

In joint work with Paulo Varandas, we discuss examples with diffusion rate n^{1/a}, 1<a<2, and prove convergence to an a-stable Levy process.  This includes to the best of our knowledge the first natural examples where the M_2 Skorokhod topology is the appropriate one.



 

Wed, 30 May 2018

16:00 - 17:00
C5

The pants graph

Esmee te Winkel
(University of Warwick)
Abstract

In the 80s, Hatcher and Thurston introduced the pants graph as a tool to prove that the mapping class group of a closed, orientable surface is finitely presented. The pants graph remains relevant for the study of the mapping class group, sitting between the marking graph and the curve graph. More precisely, there is a sequence of natural coarse lipschitz maps taking the marking graph via the pants graph to the curve graph.

A second motivation for studying the pants graph comes from Teichmüller theory. Brock showed that the pants graph can be interpreted as a combinatorial model for Teichmüller space with the Weil-Petersson metric.

In this talk I will introduce the pants graph, discuss some of its properties and state a few open questions.

Wed, 02 May 2018

16:00 - 17:00
C5

Treating vertex transitive graphs like groups

Alexander Wendland
(University of Warwick)
Abstract

In 2012 Eskin, Fisher and Whyte proved there was a locally finite vertex transitive graph which was not quasi-isometric to any connected locally finite Cayley Graph. This motivates the study of vertex transitive graphs from a geometric group theory point of view. We will discus how concepts and problems from group theory generalise to this setting. Constructing one framework in which problems can be framed so that techniques from group theory can be applied. This is work in progress with Agelos Georgakopoulos.

Subscribe to University of Warwick