Tue, 17 May 2022

14:00 - 15:00
Virtual

Unicellular maps and hyperbolic surfaces in high genus

Baptiste Louf
(Uppsala University)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

In the past few years, the study of the geometric properties of random maps has been extended to a new regime, the "high genus regime", where we are interested in maps whose size and genus tend to infinity at the same time, at the same rate.
We consider here a slightly different case, where the genus also tends to infinity, but less rapidly than the size, and we study the law of simple cycles (with a well-chosen rescaling of the graph distance) in unicellular maps (maps with one face), thanks to a powerful bijection of Chapuy, Féray and Fusy.
The interest of this work is that we obtain exactly the same law as Mirzakhani and Petri who counted closed geodesics on a model of random hyperbolic surfaces in large genus (the Weil-Petersson measure). This leads us to conjecture that these two models are somehow "the same" in the limit. This is joint work with Svante Janson.

Tue, 03 Nov 2020

14:30 - 15:30
Virtual

From open to closed strings at genus one

Bram Verbeek
(Uppsala University)
Further Information

Please contact Erik Panzer or Ömer Gürdoğan to be added to the mailing list and receive joining instructions to the online seminar.

Abstract

In this talk I will discuss relations between the low-energy expansions  of open- and closed string amplitudes. At genus zero, it has been shown that the single-valued map of MZVs maps open-string amplitudes to their closed-string counterparts. After reviewing this story, I will discuss recent work at genus one which aims to define a similar mapping from the open to the closed string. Our construction is driven by the differential equations and degeneration limits of certain generating functions of string integrals and suggests a pairing of integration cycles and forms at genus one - analogous to the duality between Parke-Taylor factors and disk boundaries at genus zero. Finally, I will discuss the impact of said mapping on the elliptic MZVs and modular graph forms which arise naturally upon solving these differential equations.

Tue, 10 Oct 2017

12:00 - 13:15
L4

Connecting the ambitwistor and the sectorized heterotic strings

Dr Thales Azevedo
(Uppsala University)
Abstract

Shortly after Mason & Skinner introduced the so-called ambitwistor strings, Berkovits came up with a pure-spinor analogue of the theory, which was later shown to provide the supersymmetric version of the Cachazo-He-Yuan amplitudes. In the heterotic version, however, both models give somewhat unsatisfactory descriptions of the supergravity sector.

In this talk, I will show how the original pure-spinor version of the heterotic ambitwistor string can be modified in a consistent manner that renders the supergravity sector treatable. In addition to the massless states, the spectrum of the new model --- which we call sectorized heterotic string --- contains a single massive level. In the limit in which a dimensionful parameter is taken to infinity, these massive states become the unexpected massless states (e.g. a 3-form potential) first encountered by Mason & Skinner."

Tue, 18 Oct 2016
14:30
L6

Component sizes in random graphs with given vertex degrees

Svante Janson
(Uppsala University)
Abstract

The threshold for existence of a giant component in a random graph with given vertex degrees was found by Molloy and Reed (1995), and several authors have since studied the size of the largest and other components in various cases. The critical window was found by Hatami and Molloy (2012), and has a width that depends on whether the asymptotic degree distribution has a finite third moment or not. I will describe some new results (joint work with Remco van der Hofstad and Malwina Luczak) on the barely supercritical case, where this difference between finite and infinite third moment also is seen.

Fri, 15 May 2015

14:00 - 15:00
L3

Towards consistent and effective modeling in the stochastic reaction-diffusion framework

Prof Stefan Engblom
(Uppsala University)
Abstract

I this talk I will try to give an overview of recent progress in
spatial stochastic modeling within the reaction-diffusion
framework. While much of the initial motivation for this work came
from problems in cell biology, I will also highlight some examples
from epidemics and neuroscience.

As a motivating introduction, some newly discovered properties of
optimal controls in stochastic enzymatic reaction networks will be
presented. I will next detail how diffusive and subdiffusive reactive
processes in realistic geometries at the cellular scale may be modeled
mesoscopically. Along the way, some different means by which these
models may be analyzed with respect to consistency and convergence
will also be discussed. These analytical techniques hint at how
effective (i.e. parallel) numerical implementations can be
designed. Large-scale simulations will serve as illustrations.

Subscribe to Uppsala University