Fri, 16 Feb 2018

14:00 - 14:45

Getting to where you want to be: bacterial swimming and its control

Professor Judy Armitage
(Dept of Biochemistry University of Oxford)
Abstract

Bacteria swim by rotating semi-rigid helical flagellar filaments, using an ion driven rotary motor embedded in the membrane. Bacteria are too small to sense a spatial gradient and therefore sense changes in time, and use the signals to bias their direction changing pattern to bias overall swimming towards a favourable environment. I will discuss how interdisciplinary research has helped us understand both the mechanism of motor function and its control by chemosensory signals.

Please see https://www.eventbrite.co.uk/e/qbiox-colloquium-dunn-school-seminar-hil…

for details.

Fri, 02 Jun 2017

14:00 - 15:00
L3

Cell cycle regulation by systems-level feedback control

Prof Bela Novak
(Dept of Biochemistry University of Oxford)
Abstract

In the first part of my presentation, I will briefly summarize a dynamic view of the cell cycle created in collaboration with Prof John Tyson over the past 25 years. 
In our view, the decisions a cell must make during DNA synthesis and mitosis are controlled by bistable switches, which provide abrupt and irreversible transition 
between successive cell cycle phases. In addition, bistability provides the foundation for 'checkpoints' that can stop cell proliferation if problems arise 
(e.g., DNA damage by UV irradiation). In the second part of my talk, I will highlight a few representative examples from our ongoing BBSRC Strategic LoLa grant 
(http://cellcycle.org.uk/) in which we are testing the predictions of our theoretical ideas in human cells in collaboration with four experimental groups.

Subscribe to Dept of Biochemistry University of Oxford