Fri, 28 Jan 2022
16:00
N4.01

Generalized Symmetries of the Graviton

Javier Magan
(UPenn)
Further Information

It is also possible to join virtually via Teams.

Abstract

In this talk we discuss the set of generalized symmetries associated with the free graviton theory in four dimensions. These are generated by ring-like operators. As for the Maxwell field, we find a set of “electric” and a dual set of “magnetic” topological operators and compute their algebra. The associated electric and magnetic fields satisfy a set of constraints equivalent to the ones of a stress tensor of a 3d CFT. This implies that the generalized symmetry is charged under space-time symmetries, and it provides a bridge between linearized gravity and the tensor gauge theories that have been introduced recently in the context of fractonic systems in condensed matter physics.

Thu, 19 Oct 2017
15:00
L4

Dynamic Gauge Linear Sigma Models from Six Dimensions

Fabio Abruzzi
(UPenn)
Abstract

Compactifications of 6D Superconformal Field Theories (SCFTs) on four-manidolfds lead to novel interacting 2D SCFTs. I will describe the various Lagrangian and non-Lagrangian sectors of the resulting 2D theories, as well as their interactions. In general this construction can be embedded in compactifications of the physical superstring, providing a general template for realizing 2D conformal field theories coupled to worldsheet gravity, i.e. a UV completion for non-critical string theories.  

 
Fri, 11 Aug 2017

13:00 - 14:00
C1

Invertible Topological Field Theories

Benedict Morrissey
(UPenn)
Abstract

Topological field theories (TFT's) are physical theories depending only on the topological properties of spacetime as opposed to also depending on the metric of spacetime.  This talk will introduce topological field theories, and the work of Freed and Hopkins on how a class of TFT's called "invertible" TFT's describe certain states of matter, and are classified by maps of spectra.  Constructions of field theories corresponding to specific maps of spectra will be described.
 

Subscribe to UPenn