Thu, 17 Oct 2019

15:30 - 17:00
L3

Nitric oxide in the exhaled air: a messenger from the deepest parts of the lungs. Mathematical modeling of its transport for a better management of pulmonary diseases (cystic fibrosis, asthma, …)

Benoit Haut
(Université libre de Bruxelles (ULB))
Abstract

During this seminar, we will present a new mathematical model describing the transport of nitric oxide (NO) in a realistic geometrical representation of the lungs. Nitric oxide (NO) is naturally produced in the bronchial region of the lungs. It is a physiological molecule that has antimicrobial properties and allows the relaxation of muscles. It is well known that the measurement of the molar fraction of NO in the exhaled air, the so-called FeNO, allows a monitoring of asthmatic patients, since the production of this molecule in the lungs is increased in case of inflammation. However, recent clinical studies have shown that the amount of NO in the exhaled air can also be affected by « non-inflammatory » processes, such as the action of a bronchodilator or a respiratory physiotherapy session for a patient with cystic fibrosis. Using our new model, we will highlight the complex interplay between different transport phenomena in the lungs. More specifically, we will show why changes taking place in the deepest part of the lungs are expected to impact the FeNO. This gives a new light on the clinical studies mentioned below, allowing to confer a new role to the NO for the management of various pulmonary pathologies.

Thu, 18 Oct 2018

16:00 - 17:30
L3

Periodic and localized structures in thin elastic plates

Fabian Brau
(Université libre de Bruxelles (ULB))
Abstract

Many types of patterns emerging spontaneously can be observed in systems involving thin elastic plates and subjected to external or internal stresses (compression, differential growth, shearing, tearing, etc.). These mechanical systems can sometime be seen as model systems for more complex natural systems and allow to study in detail elementary emerging patterns. One of the simplest among such systems is a bilayer composed of a thin plate resting on a thick deformable substrate. Upon slight compression, periodic undulations (wrinkles) with a well-defined wavelength emerge at the level of the thin layer. We will show that, as the compression increases, this periodic state is unstable and that a second order transition to a localized state (fold) occurs when the substrate is a dense fluid.

Subscribe to Université libre de Bruxelles (ULB)