Tue, 01 Feb 2022

14:00 - 15:00
Virtual

Multiscale analysis of the COVID-19 pandemic from cells to society: a (multilayer) network approach

Manlio De Domenico
(University of Padua)
Further Information

[[{"fid":"64806","view_mode":"default","fields":{"format":"default"},"link_text":"NetowrksSeminar_1Feb.pdf","type":"media","field_deltas":{"2":{"format":"default"}},"attributes":{"class":"media-element file-default","data-delta":"2"}}]]

Abstract

In this talk we will show the application of (multilayer) network science to a wide spectrum of problems related to the ongoing COVID-19 pandemic, ranging from the molecular to the societal scale. Specifically, we will discuss our recent results about how network analysis: i) has been successfully applied to virus-host protein-protein interactions to unravel the systemic nature of SARS-CoV-2 infection; ii) has been used to gain insights about the potential role of non-compliant behavior in spreading of COVID-19; iii) has been crucial to assess the infodemic risk related to the simultaneous circulation of reliable and unreliable information about COVID-19.

References:

Assessing the risks of "infodemics" in response to COVID-19 epidemics
R. Gallotti, F. Valle, N. Castaldo, P. Sacco, M. De Domenico, Nature Human Behavior 4, 1285-1293 (2020)

CovMulNet19, Integrating Proteins, Diseases, Drugs, and Symptoms: A Network Medicine Approach to COVID-19
N. Verstraete, G. Jurman, G. Bertagnolli, A. Ghavasieh, V. Pancaldi, M. De Domenico, Network and Systems Medicine 3, 130 (2020)

Multiscale statistical physics of the pan-viral interactome unravels the systemic nature of SARS-CoV-2 infections
A. Ghavasieh, S. Bontorin, O. Artime, N. Verstraete, M. De Domenico, Communications Physics 4, 83 (2021)

Individual risk perception and empirical social structures shape the dynamics of infectious disease outbreaks
V. D'Andrea, R. Gallotti, N. Castaldo, M. De Domenico, To appear in PLOS Computational Biology (2022)

Thu, 14 Nov 2019

14:00 - 15:00
L4

On the preconditioning of coupled multi-physics problems

Massimiliano Ferronato
(University of Padua)
Abstract

The fully coupled numerical simulation of different physical processes, which can typically occur
at variable time and space scales, is often a very challenging task. A common feature of such models is that
their discretization gives rise to systems of linearized equations with an inherent block structure, which
reflects the properties of the set of governing PDEs. The efficient solution of a sequence of systems with
matrices in a block form is usually one of the most time- and memory-demanding issue in a coupled simulation.
This effort can be carried out by using either iteratively coupled schemes or monolithic approaches, which
tackle the problem of the system solution as a whole.

This talk aims to discuss recent advances in the monolithic solution of coupled multi-physics problems, with
application to poromechanical simulations in fractured porous media. The problem is addressed either by proper
sparse approximations of the Schur complements or special splittings that can partially uncouple the variables
related to different physical processes. The selected approaches can be included in a more general preconditioning
framework that can help accelerate the convergence of Krylov subspace solvers. The generalized preconditioner
relies on approximately decoupling the different processes, so as to address each single-physics problem
independently of the others. The objective is to provide an algebraic framework that can be employed as a
general ``black-box'' tool and can be regarded as a common starting point to be later specialized for the
particular multi-physics problem at hand.

Numerical experiments, taken from real-world examples of poromechanical problems and fractured media, are used to
investigate the behaviour and the performance of the proposed strategies.

Subscribe to University of Padua