Tue, 14 May 2024 10:00 -
Tue, 28 May 2024 12:00
C5

Current topics in Lorentzian geometric analysis: Non-regular spacetimes

Dr Clemens Sämann
(Mathematical Insittute)
Further Information

Sessions led by Dr Clemens Sämann will take place on:

Tuesday, 14 May 10am-12pm C5 (Lecture)
Thursday, 16 May 10am-12pm C5 (Lecture)
Tuesday, 28 May 10am-12pm C5 (Reading group)

Participants should have a good knowledge of differential geometry and metric spaces (basics of Lorentzian geometry will be reviewed). Some knowledge of measure theory, functional analysis (in particular Sobolev spaces) and optimal transport is recommended but we will try to be as self-contained as possible.

Abstract

Course Overview
The course gives an introduction to a topic of current interest in Lorentzian geometic analysis and mathematical General Relativity: an approach to nonregular spacetimes based on a “metric” point of view.
 

Learning Outcomes
Becoming acquainted with Lorentzian length spaces, sectional and Ricci curvature bounds for non-regular Lorentzian spaces and the appropriate techniques.
 

Course Synopsis
Lecture 1a: Review of Lorentzian geometry, spaces of constant curvature, causality theory, singularity theorems.
Lecture 1b: Introduction to Lorentzian length spaces, timelike sectional curvature bounds.


Lecture 2a: Optimal transport, timelike Ricci curvature bounds
Lecture 2b: Sobolev calculus for time functions. Literature: [O’N83, KS18, CM20].
 

Reading group: Depending on student’s interest one could discuss the papers [GKS19, AGKS21, ABS22].

 

References
[ABS22] L. Aké Hau, S. Burgos, and D. A. Solis. Causal completions as Lorentzian pre-length spaces. General Relativity and Gravitation, 54(9), 2022. doi:10.1007/s10714-022-02980-x.
[AGKS21] S. B. Alexander, M. Graf, M. Kunzinger, and C. Sämann. Generalized cones as Lorentzian length spaces: Causality, curvature, and singularity theorems. Comm. Anal. Geom., to appear, 2021. doi:10.48550/arXiv.1909.09575. arXiv:1909.09575 [math.MG].
[CM20] F. Cavalletti and A. Mondino. Optimal transport in Lorentzian synthetic spaces, synthetic timelike Ricci curvature lower bounds and applications. Cambridge Journal of Mathematics, to appear, arXiv:2004.08934 [math.MG], 2020. doi:10.48550/arXiv.2004.08934.
[GKS19] J. D. E. Grant, M. Kunzinger, and C. Sämann. Inextendibility of spacetimes and Lorentzian length spaces. Ann. Global Anal. Geom., 55(1):133–147, 2019. doi:10.1007/s10455-018-9637-x.
[KS18] M. Kunzinger and C. Sämann. Lorentzian length spaces. Ann. Glob. Anal. Geom., 54(3):399–447, 2018. doi:10.1007/s10455-018-9633-1.
[O’N83] B. O’Neill. Semi-Riemannian geometry with applications to relativity, volume 103 of Pure and Applied Mathematics. Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1983.

 

Should you be interested in taking part in the course, please send an email to @email  by 10 May 2024. 

Fri, 05 May 2023

12:00 - 13:00
C5

The first Hochschild cohomology of twisted group algebras

William Murphy
(City University London)
Abstract

Given a group G and a field k, we can "twist" the multiplication of the group algebra kG by a 2-cocycle, and the result is a twisted group algebra. Twisted group algebras arise as direct sums of blocks of group algebras, and so are of interest in representation and block theory. In this talk we will discuss some recently obtained results on the first Hochschild cohomology of twisted group algebras, in particular that these cohomology groups are nontrivial whenever G is a finite simple group.

Tue, 06 Jun 2023

14:00 - 15:00
C5

Simplicity of Nekrashevych algebras of contracting self-similar groups

Nora Szakacs
(University of Manchester)
Abstract

A self-similar group is a group $G$ acting on a regular, infinite rooted tree by automorphisms in such a way that the self-similarity of the tree is reflected in the group. The most common examples are generated by the states of a finite automaton. Many famous groups, like Grigorchuk's 2-group of intermediate growth, are of this form. Nekrashevych associated $C^*$-algebras and algebras with coefficients in a field to self-similar groups. In the case $G$ is trivial, the algebra is the classical Leavitt algebra, a famous finitely presented simple algebra. Nekrashevych showed that the algebra associated to the Grigorchuk group is not simple in characteristic 2, but Clark, Exel, Pardo, Sims, and Starling showed its Nekrashevych algebra is simple over all other fields. Nekrashevych then showed that the algebra associated to the Grigorchuk-Erschler group is not simple over any field (the first such example). The Grigorchuk and Grigorchuk-Erschler groups are contracting self-similar groups. This important class of self-similar groups includes Gupta-Sidki p-groups and many iterated monodromy groups like the Basilica group. Nekrashevych proved algebras associated to contacting groups are finitely presented.

In this talk, we discuss a result of the speaker and Benjamin Steinberg characterizing simplicity of Nekrashevych algebras of contracting groups. In particular, we give an algorithm for deciding simplicity given an automaton generating the group. We apply our results to several families of contracting groups like GGS groups and Sunic's generalizations of Grigorchuk's group associated to polynomials over finite fields.

Fri, 24 Feb 2023
16:00
C5

The Atiyah-Singer index theorem: Physics applications

Enrico Marchetto
Further Information

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

Tue, 31 May 2022

12:30 - 13:30
C5

Communicating Mathematics: From equations to storytelling

Michael Negus
(Mathematical Institute (University of Oxford))
Abstract

When you ask someone what maths is, their answer will massively depend on how they’ve been exposed to maths up until that point. From a 10-year-old who will tell you it’s adding up numbers, to a Fields medalist who may say to you about the idea of abstraction of logical ideas, there is no clear consensus as to the “right” answer to this question. Our individual journeys as mathematicians give us a clear idea about what it means to us, and this affects how we then communicate our ideas to an audience of other mathematicians and the general public. However, a pitfall that we easily fall into as a result is forgetting that others can understand maths in a different way to ourselves, and by only offering our preferred perspective, we are missing out on the chance to effectively communicate our ideas.

In this talk, I will explore how our individual understanding of what mathematics is can shape our methods of communication. I will review which methods of communication mathematicians utilise, and show examples where each method does well, and not so well.  Examples of communication methods include writing equations, plotting graphs, creating diagrams and storytelling. Given this, I will cover how by using a collection of these different methods, you can increase the impact of your research by engaging with the various different mindsets your audience may have on what mathematics is.

 

Tue, 17 May 2022

12:30 - 13:30
C5

Finite element methods for the Stokes–Onsager–Stefan–Maxwell equations of multicomponent flow

Francis Aznaran
(Mathematical Institute (University of Oxford))
Abstract

The Onsager framework for linear irreversible thermodynamics provides a thermodynamically consistent model of mass transport in a phase consisting of multiple species, via the Stefan–Maxwell equations, but a complete description of the overall transport problem necessitates also solving the momentum equations for the flow velocity of the medium. We derive a novel nonlinear variational formulation of this coupling, called the (Navier–)Stokes–Onsager–Stefan–Maxwell system, which governs molecular diffusion and convection within a non-ideal, single-phase fluid composed of multiple species, in the regime of low Reynolds number in the steady state. We propose an appropriate Picard linearisation posed in a novel Sobolev space relating to the diffusional driving forces, and prove convergence of a structure-preserving finite element discretisation. The broad applicability of our theory is illustrated with simulations of the centrifugal separation of noble gases and the microfluidic mixing of hydrocarbons.

Tue, 03 May 2022

12:30 - 13:30
C5

A model of internal stresses within hydrogel-coated stem cells in transit to the liver

Simon Finney
(Mathematical Institute (University of Oxford))
Abstract

In 2020, cirrhosis and other liver diseases were among the top five causes of death for
individuals aged 35-65 in Scotland, England and Wales. At present, the only curative
treatment for end-stage liver disease is through transplant which is unsustainable.
Stem cell therapies could provide an alternative. By encapsulating the stem cells we
can modulate the shear stress imposed on each cell to promote integrin expression
and improve the probability of engraftment. We model an individual, hydrogel-coated
stem cell moving along a fluid-filled channel due to a Stokes flow. The stem cell is
treated as a Newtonian fluid and the coating is treated as a poroelastic material with
finite thickness. In the limit of a stiff coating, a semi-analytical approach is developed
which exploits a decoupling of the fluids and solid problems. This enables the tractions
and pore pressures within the coating to be obtained, which then feed directly into a
purely solid mechanics problem for the coating deformation. We conduct a parametric
study to elucidate how the properties of the coating can be tuned to alter the stress
experienced by the cell.

Tue, 08 Mar 2022

12:30 - 13:30
C5

Modelling the labour market: Occupational mobility during the pandemic in the U.S.

Anna Berryman
(University of Oxford)
Abstract

Understanding the impact of societal and economic change on the labour market is important for many causes, such as automation or the post-carbon transition. Occupational mobility plays a role in how these changes impact the labour market because of indirect effects, brought on by the different levels of direct impact felt by individual occupations. We develop an agent-based model which uses a network representation of the labour market to understand these impacts. This network connects occupations that workers have transitioned between in the past, and captures the complex structure of relationships between occupations within the labour market. We develop these networks in both space and time using rich survey data to compare occupational mobility across the United States and through economic upturns and downturns to start understanding the factors that influence differences in occupational mobility.

Tue, 22 Feb 2022

12:30 - 13:15
C5

Modelling laser-induced vapour bubbles in the treatment of kidney stones

Sophie Abrahams
(Mathematical Institute (University of Oxford))
Abstract

We present models of a vapour bubble produced during ureteroscopy and laser lithotripsy treatment of kidney stones. This common treatment for kidney stones involves passing a flexible ureteroscope containing a laser fibre via the ureter and bladder into the kidney, where the fibre is placed in contact with the stone. Laser pulses are fired to fragment the stone into pieces small enough to pass through an outflow channel. Laser energy is also transferred to the surrounding fluid, resulting in vapourisation and the production of a cavitation bubble.

While in some cases, bubbles have undesirable effects – for example, causing retropulsion of the kidney stone – it is possible to exploit bubbles to make stone fragmentation more efficient. One laser manufacturer employs a method of firing laser pulses in quick succession; the latter pulses pass through the bubble created by the first pulse, which, due to the low absorption rate of vapour in comparison to liquid, increases the laser energy reaching the stone.

As is common in bubble dynamics, we couple the Rayleigh-Plesset equation to an energy conservation equation at the vapour-liquid boundary, and an advection-diffusion equation for the surrounding liquid temperature.1 However, this present work is novel in considering the laser, not only as the cause of nucleation, but as a spatiotemporal source of heat energy during the expansion and collapse of a vapour bubble.
 

Numerical and analytical methods are employed alongside experimental work to understand the effect of laser power, pulse duration and pulse pattern. Mathematically predicting the size, shape and duration of a bubble reduces the necessary experimental work and widens the possible parameter space to inform the design and usage of lasers clinically.

Tue, 08 Feb 2022

12:30 - 13:30
C5

Reinforcement Learning for Optimal Execution

Huining Yang
(Mathematical Institute (University of Oxford))
Abstract

Optimal execution of large positions over a given trading period is a fundamental decision-making problem for financial services. In this talk we explore reinforcement learning methods, in particular policy gradient methods, for finding the optimal policy in the optimal liquidation problem. We show results for the case where we assume a linear quadratic regulator (LQR) model for the underlying dynamics and where we apply the method to the data directly. The empirical evidence suggests that the policy gradient method can learn the global optimal solution for a larger class of stochastic systems containing the LQR framework, and that it is more robust with respect to model misspecification when compared to a model-based approach.

Subscribe to C5