Fri, 23 Feb 2018

14:15 - 15:15
C3

Brownian Motion, Polar Oceans, and the Statistical Physics of Climate

Srikanth Toppaladoddi
(All Souls College)
Abstract

In this talk, I show how concepts from non-equilibrium statistical physics can be employed in the study of climate. The specific problem addressed is the geophysical-scale evolution of Arctic sea ice. Using an analogy with Brownian motion, the original evolution equation for the sea ice thickness distribution function by Thorndike et al. (J. Geophys. Res. 80(33), pp. 4501 — 4513, 1975) is transformed to a Fokker-Planck-like conservation law. The steady solution is $g(h) = {\cal N}(q) h^q \mathrm{e}^{-~ h/H}$, where $q$ and $H$ are expressible in terms of moments over the transition probabilities between thickness categories. The solution exhibits the functional form used in observational fits and shows that for $h \ll 1$, $g(h)$ is controlled by both thermodynamics and mechanics, whereas for $h \gg 1$ only mechanics controls $g(h)$. We also derive the underlying Langevin equation governing the dynamics of the ice thickness $h$, from which we predict the observed $g(h)$. Further, seasonality is introduced by using the Eisenman-Wettlaufer model (Proc. Natl. Acad. Sci. USA 106, pp. 28-32, 2009) for the thermal growth of sea ice. The time-dependent problem is studied by numerically integrating the Fokker-Planck equation. The results obtained from these numerical integrations and their comparison with satellite observations are discussed.

Subscribe to All Souls College