Tue, 12 May 2015

17:00 - 18:00
C2

Permutation groups, primitivity and derangements

Tim Burness
(Bristol)
Abstract

Let G be a transitive permutation group. If G is finite, then a classical theorem of Jordan implies the existence of fixed-point-free elements, which we call derangements. This result has some interesting and unexpected applications, and it leads to several natural problems on the abundance and order of derangements that have been the focus of recent research. In this talk, I will discuss some of these related problems, and I will report on recent joint work with Hung Tong-Viet on primitive permutation groups with extremal derangement properties.

Mon, 16 Feb 2015
15:45
L6

Balanced walls in random groups

John M. Mackay
(Bristol)
Abstract

Building a suitable family of walls in the Cayley complex of a finitely
presented group G leads to a nontrivial action of G on a CAT(0) cube
complex, which shows that G does not have Kazhdan's property (T).  I
will discuss how this can be done for certain random groups in Gromov's
density model.  Ollivier and Wise (building on earlier work of Wise on
small-cancellation groups) have built suitable walls at densities <1/5,
but their method fails at higher densities.  In recent joint work with
Piotr Przytycki we give a new construction which finds walls at densites
<5/24.

Thu, 20 Nov 2014

16:00 - 17:00
L5

On Roth's theorem on arithmetic progression

Thomas Bloom
(Bristol)
Abstract

In 1953 Roth proved that any positive density subset of the integers contains a non-trivial three term arithmetic progression. I will present a recent quantitative improvement for this theorem, give an overview of the main ideas of the proof, and discuss its relation to other recent work in the area. I will also discuss some closely related problems. 

Thu, 29 May 2014

17:15 - 18:15
L6

Cichon's diagram for computability theory

Andrew Brooke-Taylor
(Bristol)
Abstract

Cardinal characteristics of the continuum are (definitions for) cardinals that are provably uncountable and at most the cardinality c of the reals, but which (if the continuum hypothesis fails) may be strictly less than c.  Cichon's diagram is a standard diagram laying out all of the ZFC-provable inequalities between the most familiar cardinal characteristics of the continuum.  There is a natural analogy that can be drawn between these cardinal characteristics and highness properties of Turing oracles in computability theory, with implications taking the place of inequalities.  The diagram in this context is mostly the same with a few extra equivalences: many of the implications were trivial or already known, but there remained gaps, which in joint work with Brendle, Ng and Nies we have filled in.

Thu, 27 Feb 2014

17:15 - 18:15
L6

Use of truth in logic

Kentaro Fujimoto
(Bristol)
Abstract

Formal truth theory sits between mathematical logic and philosophy. In this talk, I will try to give a partial overview of formal truth theory, from my particular perspective and research, in connection to some areas of mathematical logic.

Thu, 13 Feb 2014

17:15 - 18:15
L6

Determinacy provable within Analysis

Philip Welch
(Bristol)
Abstract

It is well known that infinite perfect information two person games at low levels in the arithmetic hierarchy of sets have winning strategies for one of the players, and moreover this fact can be proven in analysis alone. This has led people to consider reverse mathematical analyses of precisely which subsystems of second order arithmetic are needed. We go over the history of these results. Recently Montalban and Shore gave a precise delineation of the amount of determinacy provable in analysis. Their arguments use concretely given levels of the Gödel constructible hierarchy. It should be possible to lift those arguments to the amount of determinacy, properly including analytic determinacy, provable in stronger theories than the standard ZFC set theory. We summarise some recent joint work with Chris Le Sueur.

Mon, 10 Feb 2014

15:30 - 16:30

Dynamics on some infinite translation surfaces

Corinna Ulcigrai
(Bristol)
Abstract

We will consider infinite translation surfaces which are abelian covers of

compact surfaces with a (singular) flat metric and focus on the dynamical

properties of their flat geodesics. A motivation come from mathematical

physics, since flat geodesics on these surfaces can be obtained by unfolding

certain mathematical billiards. A notable example of such billiards is  the

Ehrenfest model, which consists of a particle bouncing off the walls of a

periodic planar array of rectangular scatterers.

The dynamics of flat geodesics on compact translation surfaces is now well

understood thanks to the beautiful connection with Teichmueller dynamics. We

will survey some recent advances on the study of infinite translation

surfaces and in particular focus on a joint work with K. Fraczek,  in which

we proved that the Ehrenfest model and more in general geodesic flows on

certain abelain covers have no dense orbits. We will try to convey an

heuristic idea of how Teichmueller dynamics plays a crucial role in the

proofs.

Thu, 14 Nov 2013

17:15 - 18:15
L6

First-order irrationality criteria

Lee Butler
(Bristol)
Abstract

A major desideratum in transcendental number theory is a simple sufficient condition for a given real number to be irrational, or better yet transcendental. In this talk we consider various forms such a criterion might take, and prove the existence or non-existence of them in various settings.

Subscribe to Bristol