Fri, 18 May 2012

14:30 - 15:30
DH 3rd floor SR

Inverse methods in glaciology

Dr. Hilmar Gudmundsson
(British Antarctic Survey, Cambridge)
Abstract

Inverse methods are frequently used in geosciences to estimate model parameters from indirect measurements. A common inverse problem encountered when modelling the flow of large ice masses such as the Greenland and the Antarctic ice sheets is the determination of basal conditions from surface data. I will present an overview over some of the inverse methods currently used to tackle this problem and in particular discuss the use of Bayesian inverse methods in this context. Examples of the use of adjoint methods for large-scale optimisation problems that arise, for example, in flow modelling of West-Antarctica will be given.

Fri, 24 Feb 2012

14:30 - 15:30
DH 3rd floor SR

Ocean forcing of ice sheet change in West Antarctica

Dr. Adrian Jenkins
(British Antarctic Survey, Cambridge)
Abstract

The part of the West Antarctic Ice Sheet that drains into the Amundsen Sea is currently thinning at such a rate that it contributes nearly 10 percent of the observed rise in global mean sea level. Acceleration of the outlet glaciers means that the sea level contribution has grown over the past decades, while the likely future contribution remains a key unknown. The synchronous response of several independent glaciers, coupled with the observation that thinning is most rapid at their downstream ends, where the ice goes afloat, hints at an oceanic driver. The general assumption is that the changes are a response to an increase in submarine melting of the floating ice shelves that has been driven in turn by an increase in the transport of ocean heat towards the ice sheet. Understanding the causes of these changes and their relationship with climate variability is imperative if we are to make quantitative estimates of sea level into the future.

Observations made since the mid‐1990s on the Amundsen Sea continental shelf have revealed that the seabed troughs carved by previous glacial advances guide seawater around 3‐4°C above the freezing point from the deep ocean to the ice sheet margin, fuelling rapid melting of the floating ice. This talk summarises the results of several pieces of work that investigate the chain of processes linking large‐scale atmospheric processes with ocean circulation over the continental shelf and beneath the floating ice shelves and the eventual transfer of heat to the ice. While our understanding of the processes is far from complete, the pieces of the jigsaw that have been put into place give us insight into the potential causes of variability in ice shelf melting, and allow us to at least formulate some key questions that still need to be answered in order to make reliable projections of future ice sheet evolution in West Antarctica.

Subscribe to British Antarctic Survey, Cambridge