Wed, 12 Sep 2012

10:15 - 11:15
OCCAM Common Room (RI2.28)

Mono-monostatic bodies: the story of the Gömböc

Gabor Domokos
(Budapest University of Technology and Economics)
Abstract

Russian mathematician V.I.Arnold conjectured that convex, homogeneous bodies with less than four equilibria (also called mono-monostatic) may exist. Not only did his conjecture turn out to be true, the newly discovered objects show various interesting features. Our goal is to give an overview of these findings as well as to present some new results. We will point out that mono-monostatic bodies are neither flat, nor thin, they are not similar to typical objects with more equilibria and they are hard to approximate by polyhedra. Despite these "negative" traits, there seems to be strong indication that these forms appear in Nature due to their special mechanical properties.

Mon, 10 Nov 2008
15:45
Oxford-Man Institute

Self-organised criticality in mean field random graph models

Mr. Balazs Rath
(Budapest University of Technology and Economics)
Abstract

We modify the usual Erdos-Renyi random graph evolution by letting connected clusters 'burn down' (i.e. fall apart to disconnected single sites) due to a Poisson flow of lightnings. In a range of the intensity of rate of lightnings, the system sticks to a permanent critical state (i.e. exhibits so-called self-organised critical behaviour). The talk will be based on joint work with Balint Toth.

Mon, 09 Jun 2008
14:10
Oxford-Man Institute

t2/3-scaling of current variance in interacting particle systems

Dr Marton Balazs
(Budapest University of Technology and Economics)
Abstract

Particle current is the net number of particles that pass an observer who moves with a deterministic velocity V. Its fluctuations in time-stationary interacting particle systems are nontrivial and draw serious attention. It has been known for a while that in most models diffusive scaling and the corresponding Central Limit Theorem hold for this quantity. However, such normal fluctuations disappear for a particular value of V, called the characteristic speed.

For this velocity value, the correct scaling of particle current fluctuations was shown to be t1/3 and the limit distribution was also identified by K. Johansson in 2000 and later by P. L. Ferrari and H. Spohn in 2006. These results use heavy combinatorial and analytic tools, and their application is limited to a few particular models, one of which is the totally asymmetric simple exclusion process (TASEP). I will explain a purely probabilistic, more robust approach that provides the t2/3-scaling of current variance, but not the limit distribution, in (non-totally) asymmetric simple exclusion (ASEP) and some other particle systems. I will also point out a key feature of the models which allows the proof of such universal behaviour.

Joint work with Júlia Komjáthy and Timo Seppälläinen)

Subscribe to Budapest University of Technology and Economics