Computational Mathematics and Applications Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
Tomorrow
14:00
Abstract

We discuss the design of algorithms and codes for the solution of large sparse systems of linear equations on extreme scale computers that are characterized by having many nodes with multi-core CPUs or GPUs. We first use two approaches to get good single node performance. For symmetric systems we use task-based algorithms based on an assembly tree representation of the factorization. We then use runtime systems for scheduling the computation on both multicore CPU nodes and GPU nodes [6]. In this work, we are also concerned with the efficient parallel implementation of the solve phase using the computed sparse factors, and we show impressive results relative to other state-of-the-art codes [3]. Our second approach was to design a new parallel threshold Markowitz algorithm [4] based on Luby’s method [7] for obtaining a maximal independent set in an undirected graph. This is a significant extension since our graph model is a directed graph. We then extend the scope of both these approaches to exploit distributed memory parallelism. In the first case, we base our work on the block Cimmino algorithm [1] using the ABCD software package coded by Zenadi in Toulouse [5, 8]. The kernel for this algorithm is the direct factorization of a symmetric indefinite submatrix for which we use the above symmetric code. To extend the unsymmetric code to distributed memory, we use the Zoltan code from Sandia [2] to partition the matrix to singly bordered block diagonal form and then use the above unsymmetric code on the blocks on the diagonal. In both cases, we illustrate the added parallelism obtained from combining the distributed memory parallelism with the high single-node performance and show that our codes out-perform other state-of-the-art codes. This work is joint with a number of people. We developed the algorithms and codes in an EU Horizon 2020 Project, called NLAFET, that finished on 30 April 2019. Coworkers in this were: Sebastien Cayrols, Jonathan Hogg, Florent Lopez, and Stojce ´ ∗iain.duff@stfc.ac.uk 1 Nakov. Collaborators in the block Cimmino part of the project were: Philippe Leleux, Daniel Ruiz, and Sukru Torun. Our codes available on the github repository https://github.com/NLAFET.

References [1] M. ARIOLI, I. S. DUFF, J. NOAILLES, AND D. RUIZ, A block projection method for sparse matrices, SIAM J. Scientific and Statistical Computing, 13 (1992), pp. 47–70. [2] E. BOMAN, K. DEVINE, L. A. FISK, R. HEAPHY, B. HENDRICKSON, C. VAUGHAN, U. CATALYUREK, D. BOZDAG, W. MITCHELL, AND J. TERESCO, Zoltan 3.0: Parallel Partitioning, Load-balancing, and Data Management Services; User’s Guide, Sandia National Laboratories, Albuquerque, NM, 2007. Tech. Report SAND2007-4748W http://www.cs.sandia. gov/Zoltan/ug_html/ug.html. [3] S. CAYROLS, I. S. DUFF, AND F. LOPEZ, Parallelization of the solve phase in a task-based Cholesky solver using a sequential task flow model, Int. J. of High Performance Computing Applications, To appear (2019). NLAFET Working Note 20. RAL-TR-2018-008. [4] T. A. DAVIS, I. S. DUFF, AND S. NAKOV, Design and implementation of a parallel Markowitz threshold algorithm, Technical Report RAL-TR-2019-003, Rutherford Appleton Laboratory, Oxfordshire, England, 2019. NLAFET Working Note 22. Submitted to SIMAX. [5] I. S. DUFF, R. GUIVARCH, D. RUIZ, AND M. ZENADI, The augmented block Cimmino distributed method, SIAM J. Scientific Computing, 37 (2015), pp. A1248–A1269. [6] I. S. DUFF, J. HOGG, AND F. LOPEZ, A new sparse symmetric indefinite solver using a posteriori threshold pivoting, SIAM J. Scientific Computing, To appear (2019). NLAFET Working Note 21. RAL-TR-2018-012. [7] M. LUBY, A simple parallel algorithm for the maximal independent set problem, SIAM J. Computing, 15 (1986), pp. 1036–1053. [8] M. ZENADI, The solution of large sparse linear systems on parallel computers using a hybrid implementation of the block Cimmino method., These de Doctorat, ´ Institut National Polytechnique de Toulouse, Toulouse, France, decembre 2013.

  • Computational Mathematics and Applications Seminar
6 February 2020
14:00
Raphael Hauser
Abstract

(Joint work with: Jüri Lember, Heinrich Matzinger, Raul Kangro)

Principal component analysis is an important pattern recognition and dimensionality reduction tool in many applications and are computed as eigenvectors

of a maximum likelihood covariance that approximates a population covariance. The eigenvectors are often used to extract structural information about the variables (or attributes) of the studied population. Since PCA is based on the eigen-decomposition of the proxy covariance rather than the ground-truth, it is important to understand the approximation error in each individual eigenvector as a function of the number of available samples. The combination of recent results of Koltchinskii & Lounici [8] and Yu, Wang & Samworth [11] yields such bounds. In the presented work we sharpen these bounds and show that eigenvectors can often be reconstructed to a required accuracy from a sample of strictly smaller size order.

  • Computational Mathematics and Applications Seminar
Abstract

In this talk I will present a Perron-Frobenius type result for nonlinear eigenvector problems which allows us to compute the global maximum of a class of constrained nonconvex optimization problems involving multihomogeneous functions.

I will structure the talk into three main parts:

First, I will motivate the optimization of homogeneous functions from a graph partitioning point of view, showing an intriguing generalization of the famous Cheeger inequality.

Second, I will define the concept of multihomogeneous function and I will state our main Perron-Frobenious theorem. This theorem exploits the connection between optimization of multihomogeneous functions and nonlinear eigenvectors to provide an optimization scheme that has global convergence guarantees.

Third, I will discuss a few example applications in network science and machine learning that require the optimization of multihomogeneous functions and that can be solved using nonlinear Perron eigenvectors.

 

 

  • Computational Mathematics and Applications Seminar
12 March 2020
14:00
Mark Girolami
Abstract

The finite element method (FEM) is one of the great triumphs of applied mathematics, numerical analysis and software development. Recent developments in sensor and signalling technologies enable the phenomenological study of systems. The connection between sensor data and FEM is restricted to solving inverse problems placing unwarranted faith in the fidelity of the mathematical description of the system. If one concedes mis-specification between generative reality and the FEM then a framework to systematically characterise this uncertainty is required. This talk will present a statistical construction of the FEM which systematically blends mathematical description with observations.

>

  • Computational Mathematics and Applications Seminar
Add to My Calendar