Mathematical Biology and Ecology Seminar

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this series
14 February 2020
14:00
Abstract

The pRED Clinical Pharmacology Disease Modelling Group (CPDMG) aims to better understand the biological basis of inter-patient variability of clinical response to drugs.  Improved understanding of how our drugs drive clinical responses informs which combination dosing regimens (“right drugs”) specific patient populations (“right patients”) are most likely to benefit from. Drug evoked responses are driven by drug-molecular-target interactions that perturb target functions. These direct, "proximal effects" (typically activation and/or inhibition of protein function) propagate across the biological processes these targets participate in via “distal effects” to drive clinical responses. Clinical Systems Pharmacology approaches are used by CPDMG to predict the mechanisms by which drug combinations evoke observed clinical responses. Over the last 5 years, CPDMG has successfully applied these approaches to inform key decisions across clinical development programs. Implementation of these approaches requires: (i) integration of prior relevant biological/clinical knowledge with large clinical and “omics” datasets; (ii) application of supervised machine learning (specifically, Artificial Neural Networks (ANNs)) to transform this knowledge/data into actionable, clinically relevant, mechanistic insights.  In this presentation, key features of these approaches will be discussed by way of clinical examples.  This will provide a framework for outlining the current limitations of these approaches and how we plan to address them in the future.

  • Mathematical Biology and Ecology Seminar
13 March 2020
14:00
Professor Alan Garfinkel
Abstract

There is a need for a new kind of maths course, to be taught, not to mathematics students, but to biologists with little or no maths background. There have been many recent calls for an upgrade to the mathematical background of biologists: undergraduate biology students need to understand the role of modeling and dynamics in understanding ecological systems, evolutionary dynamics, neuroscience, physiology, epidemiology, and the modeling that underlies the concept of climate change. They also need to understand the importance of feedback, both positive and negative, in creating dynamical systems in biology.

Such a course is possible. The most important foundational development was the 20th century replacement of the vague and unhelpful concept of a differential equation by the rigorous geometric concept of a vector field, a function from a multidimensional state space to its tangent space, assigning “change vectors” to every point in state space. This twentieth-century concept is not just more rigorous, but in fact makes for superior pedagogy. We also discuss the key nonlinear behaviors that biological systems display, such as switch-like behavior, robust oscillations and even chaotic behavior.

This talk will outline such a course. It would have a significant effect on the conduct of biological research and teaching, and bring the usefulness of mathematical modeling to a wide audience.

  • Mathematical Biology and Ecology Seminar
Add to My Calendar