We generalize the recent holographic correspondence between an ensemble average of free bosons in two dimensions, and a Chern-Simons-like theory of gravity in three dimensions, by Afkhami-Jeddi et al and Maloney and Witten. We find that the correspondence also works for toroidal orbifolds, but we run into difficulties generalizing to K3 and Calabi-Yau sigma models. For the case of toroidal orbifolds, we extend the holographic correspondence to averages of correlation functions of twist operators by using properties of rational tangles in three-dimensional balls and their covering spaces. Based on work to appear with C. Keller, H. Ooguri, and I. Zadeh.

# Forthcoming Seminars

Please note that the list below only shows forthcoming events, which may not include regular events that have not yet been entered for the forthcoming term. Please see the past events page for a list of all seminar series that the department has on offer.

Past events in this seriesGeometric complexity theory is an approach towards solving computational complexity lower bounds questions using algebraic geometry and representation theory. This talk contains an introduction to geometric complexity theory and a presentation of some recent results. Along the way connections to the study of secant varieties and to classical combinatorial and representation theoretic conjectures will be pointed out.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

I will discuss joint work with S. Galatius and A. Kupers in which we investigate the homology of general linear groups over a ring $A$ by considering the collection of all their classifying spaces as a graded $E_\infty$-algebra. I will first explain diverse results that we obtained in this investigation, which can be understood without reference to $E_\infty$-algebras but which seem unrelated to each other: I will then explain how the point of view of cellular $E_\infty$-algebras unites them.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Mean field games (MFG) and mean field control problems (MFC) are frameworks to study Nash equilibria or social optima in games with a continuum of agents. These problems can be used to approximate competitive or cooperative situations with a large finite number of agents. They have found a broad range of applications, from economics to crowd motion, energy production and risk management. Scalable numerical methods are a key step towards concrete applications. In this talk, we propose several numerical methods for MFG and MFC. These methods are based on machine learning tools such as function approximation via neural networks and stochastic optimization. We provide numerical results and we investigate the numerical analysis of these methods by proving bounds on the approximation scheme. If time permits, we will also discuss model-free methods based on extensions of the traditional reinforcement learning setting to the mean-field regime.

I take the “collapse of the wave-function” to be an objective physical process—OR (the Objective Reduction of the quantum state)—which I argue to be intimately related to a basic conflict between the principles of equivalence and quantum linear superposition, which leads us to a fairly specific formula (in agreement with one found earlier by Diósi) for the timescale for OR to take place. Moreover, we find that for consistency with relativity, OR needs to be “instantaneous” but with curious retro-active features. By extending an argument due to Donadi, for EPR situations, we find a fundamental conflict with “gradualist” models such as CSL, in which OR is taken to be the result of a (stochastic) evolution of quantum amplitudes.

The join button will be published on the right (Above the view all button) 30 minutes before the seminar starts (login required).

Networks are an imperfect representation of a dataset, yet often there is little consideration for how these imperfections may affect network evolution and structure.

In this talk, I want to discuss a simple set of generative network models in which the mechanism of network growth is decomposed into two layers. The first layer represents the “observed” network, corresponding to our conventional understanding of a network. Here I want to consider the scenario in which the network you observe is not self-contained, but is driven by a second hidden network, comprised of the same nodes but different edge structure. I will show how a range of different network growth models can be constructed such that the observed and hidden networks can be causally decoupled, coupled only in one direction, or coupled in both directions.

One consequence of such models is the emergence of abrupt transitions in observed network topology – one example results in scale-free degree distributions which are robust up to an arbitrarily long threshold time, but which naturally break down as the network grows larger. I will argue that such examples illustrate why we should be wary of an overreliance on static networks (measured at only one point in time), and will discuss other possible implications for prediction on networks.

Coadmissible modules over Frechet-Stein algebras arise naturally in p-adic representation theory, e.g. in the study of locally analytic representations of p-adic Lie groups or the function spaces of rigid analytic Stein spaces. We show that in many cases, the category of coadmissible modules admits an exact and fully faithful embedding into the category of complete bornological modules, also preserving tensor products. This allows us to introduce derived methods to the study of coadmissible modules without forsaking the analytic flavour of the theory. As an application, we introduce six functors for Ardakov-Wadsley's D-cap-modules and discuss some instances where coadmissibility (in a derived sense) is preserved.

## Further Information:

This seminar will be held via zoom. Meeting link will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-announce) in our weekly announcement on Monday.

Random band matrices (RBM) are natural intermediate models to study eigenvalue statistics and quantum propagation in disordered systems, since they interpolate between mean-field type Wigner matrices and random Schrodinger operators. In particular, RBM can be used to model the Anderson metal-insulator phase transition (crossover) even in 1d. In this talk we will discuss some recent progress in application of the supersymmetric method (SUSY) and transfer matrix approach to the analysis of local spectral characteristics of some specific types of 1d RBM.

One of the main characterisations of word-hyperbolic groups is that they are the groups with a linear isoperimetric function. That is, for a compact 2-complex X, the hyperbolicity of its fundamental group is equivalent to the existence of a linear isoperimetric function for disc diagrams D -->X.

It is likewise known that hyperbolic groups have a linear annular isoperimetric function and a linear homological isoperimetric function. I will talk about these isoperimetric functions, and about a (previously unexplored) generalisation to all homotopy types of surface diagrams. This is joint work with Dani Wise.